https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (12): 2551-2567.doi: 10.16420/j.issn.0513-353x.2023-0010

• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles     Next Articles

Preliminary Study on the Mechanism of Flower Organ Development and Sex Formation in Different Grapes

HAN Kai1, LUO Yaoxing2, JIAO Xiaobo2, YAN Zhao1, NAOMI Abe-Kanoh3, MA Xiaohe4,*(), JI Wei2,3,*()   

  1. 1 Department of Materials and Chemical Engineering,Taiyuan University,Taiyuan 030032,China
    2 College of Horticulture,Shanxi Agricultural University,Taigu,Shanxi 030801,China
    3 Faculty of Agriculture,Yamagata University,Yamagata 997-8555,Japan
    4 Pomology Institute,Shanxi Agricultural University,Taigu,Shanxi 030815,China
  • Received:2023-01-20 Revised:2023-06-21 Online:2023-12-25 Published:2023-12-29
  • Contact: MA Xiaohe, JI Wei

Abstract:

In the current study,the flowers of three grape varieties‘Beichun'(hermaphrodite),‘1613C'(male) and‘520A'(female)were chosen. Hormone determination and transcriptome sequencing were performed at the early bud stage,large bud stage and blooming stage. The accumulation of various plant hormones in flowers of different genders was different,and so was that in flowers of the same gender at different developmental stages. The contents of IAA,ABA and MeJA were the highest in the large bud stage of female flowers. A total of 31 965 expressed genes were obtained,and 1 535 genes were directly related to flower development and were mainly involved in phenylpropane synthesis and plant hormone signal transduction pathways. Some genes are continuously up-regulated or down-regulated at different developmental stages. The genes that are continuously up-regulated are mainly involved in Phenylpropane synthesis,plant hormone signal transduction and other pathways. The genes that are continuously down-regulated are mainly involved in starch and sugar metabolism,and amino acid synthesis. MADS-box genes,such as AP1SEP1AG2 and SOC1 were significantly differently expressed in different floral organs at developmental stages. During flower sex differentiation,the differential expression of the MADS-box gene,the flower-induced integron gene,and the detoxification and stress-related genes play important roles.

Key words: grape, flower organ, RNA-seq, endogenous hormone, flower sex differentiation