Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (3): 635-646.doi: 10.16420/j.issn.0513-353x.2021-1190
• Research Notes • Previous Articles Next Articles
HUANG Rong1, DONG Chao1, JIANG Jiao1, QIN Yi1,2, LIU Yanlin1,2, SONG Yuyang1,2,*()
Received:
2022-11-26
Revised:
2023-01-04
Online:
2023-03-25
Published:
2023-04-03
Contact:
*(E-mail:yuyangsong@nwsuaf.edu.cn)
CLC Number:
HUANG Rong, DONG Chao, JIANG Jiao, QIN Yi, LIU Yanlin, SONG Yuyang. Investigation of the Effect of Rain-shelter Cultivation on the Microbial Diversity of Berry Surface for‘Cabernet Sauvignon’Grapes[J]. Acta Horticulturae Sinica, 2023, 50(3): 635-646.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1190
Fig. 1 Composition of fungal(a,b)and bacterial(c,d)communities on the surface of‘Cabernet Sauvignon’grapes cultivated in rain-shelter and open -field modes a and c:at phylum level;b and d:at genus level. S:Rain-shelter mode;N:Open-field mode(control). V:Veraison stage;R:Ripening stage. The same below.
处理 Treatment | 采收时期 Sampling stage | 真菌 Fungi | |||
---|---|---|---|---|---|
Sobs | Chao1 | Simpson | 覆盖率 Good’s coverage | ||
避雨棚 | 转色期 Veraison stage | 574.33 | 691.88 | 0.78 | 1.00 |
Rain-shelter | 成熟期 Ripening stage | 302.00 | 432.71 | 0.79 | 1.00 |
露天(对照) | 转色期 Veraison stage | 455.00 | 572.37 | 0.81 | 1.00 |
Open-field(Control) | 成熟期 Ripening stage | 301.00 | 423.71 | 0.82 | 1.00 |
处理 Treatment | 采收时期 Sampling stage | 细菌 Bacteria | |||
Sobs | Chao1 | Simpson | 覆盖率 Good’s coverage | ||
避雨棚 | 转色期 Veraison stage | 1 274.33 | 2 034.17 | 0.88 | 1.00 |
Rain-shelter | 成熟期 Ripening stage | 414.50 | 624.63 | 0.67 | 1.00 |
露天(对照) | 转色期 Veraison stage | 808.17 | 1 194.15 | 0.96 | 1.00 |
Open-field(Control) | 成熟期 Ripening stage | 480.33 | 774.99 | 0.63 | 1.00 |
Table 1 α diversity of bacteria and fungi on the surface of‘Cabernet Sauvignon’grapes cultivated in rain-shelter and open-fields
处理 Treatment | 采收时期 Sampling stage | 真菌 Fungi | |||
---|---|---|---|---|---|
Sobs | Chao1 | Simpson | 覆盖率 Good’s coverage | ||
避雨棚 | 转色期 Veraison stage | 574.33 | 691.88 | 0.78 | 1.00 |
Rain-shelter | 成熟期 Ripening stage | 302.00 | 432.71 | 0.79 | 1.00 |
露天(对照) | 转色期 Veraison stage | 455.00 | 572.37 | 0.81 | 1.00 |
Open-field(Control) | 成熟期 Ripening stage | 301.00 | 423.71 | 0.82 | 1.00 |
处理 Treatment | 采收时期 Sampling stage | 细菌 Bacteria | |||
Sobs | Chao1 | Simpson | 覆盖率 Good’s coverage | ||
避雨棚 | 转色期 Veraison stage | 1 274.33 | 2 034.17 | 0.88 | 1.00 |
Rain-shelter | 成熟期 Ripening stage | 414.50 | 624.63 | 0.67 | 1.00 |
露天(对照) | 转色期 Veraison stage | 808.17 | 1 194.15 | 0.96 | 1.00 |
Open-field(Control) | 成熟期 Ripening stage | 480.33 | 774.99 | 0.63 | 1.00 |
Fig. 3 PcoA analysis of fungal(a)and bacterial(b)community structure on the surface of‘Cabernet Sauvignon’grapes cultivated in rain-sheltered and open-field modes
Fig. 4 NMDS analysis of fungal(a)and bacterial(b)community structure on the surface of‘Cabernet Sauvignon’grapes cultivated in rain-sheltered and open-field modes
Fig. 5 Welch’s t test for differences in fungal(a)and bacterial(b)species on the surface of‘Cabernet Sauvignon’grapes in rain-shelter and open-field modes during veraison stage(P < 0.05)
Fig. 6 Detection of fungal(a)and bacterial(b)species differences on the surface of‘Cabernet Sauvignon’grapes in rain-shelter and open-field modes during ripening a:LEFse analysis of fungal flora(LDA > 3);b:Welch’s t test of significant differences in bacterial communities(P < 0.05)。
[1] |
Ali A, Ghani M, Li Y, Ding H, Meng H, Cheng Z. 2019. Hiseq base molecular characterization of soil microbial community,diversity structure,and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of northern China. International Journal of Molecular Sciences, 20 (11):2619.
doi: 10.3390/ijms20112619 URL |
[2] |
Aragon I, Perez-Mendoza D, Gallegos M, Ramos C. 2015. The c-di-GMP phosphodiesterase BifA is involved in the virulence of bacteria from the Pseudomonas syringae complex. Molecular Plant Pathology, 16 (6):604-615.
doi: 10.1111/mpp.2015.16.issue-6 URL |
[3] |
Barata A, Malfeito-Ferreira M, Loureiro V. 2012. The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153 (3):243-259.
doi: 10.1016/j.ijfoodmicro.2011.11.025 pmid: 22189021 |
[4] |
Bedimo J, Cilas C, Nottéghem J, Bieysse D. 2012. Effect of temperatures and rainfall variations on the development of coffee berry disease caused by Colletotrichum kahawae. Crop Protection, 31 (1):125-131.
doi: 10.1016/j.cropro.2011.09.010 URL |
[5] | Blättel V, Wirth K, Claus H, Schlott B, Pfeiffer P, König H. 2009. A lytic enzyme cocktail from Streptomyce ssp. B 578 for the control of lactic and acetic acid bacteria in wine. Applied Microbiology & Biotechnology, 83 (5):839-848. |
[6] | Bokulich N, Thorngate J, Richardson P, Mills D. 2014. Microbial biogeography of wine grapes is conditioned by cultivar,vintage,and climate. Proceedings of the National Academy of Sciences of the United States of America, 111 (1):E139-E148. |
[7] |
Cabral L, Rodríguez A, Delgado J, Patriarca A. 2019. Understanding the effect of postharvest tomato temperatures on two toxigenic Alternaria spp. strains:growth,mycotoxins and cell-wall integrity-related gene expression. Journal of the Science of Food and Agriculture, 99 (15):6689-6695.
doi: 10.1002/jsfa.9950 pmid: 31350766 |
[8] |
Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Pena A, Goodrich J, Gordon J. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5):335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[9] |
Chen X, Zhang Q, Zeng S, Chen Y, Huang X. 2020. Rain-shelter cultivation affects fruit quality of pear,and the chemical properties and microbial diversity of rhizosphere soil. Canadian Journal of Plant Science, 100 (6):683-691.
doi: 10.1139/cjps-2018-0249 URL |
[10] | Ciani M, Comitini F, Ilaria M, Paola D. 2010. Controlled mixed culture fermentation:a new perspective on the use of non-Saccharomyces yeasts in winemaking. Fems Yeast Research,(2):123-133. |
[11] |
Cruz-Lagunas B, Ortega-Acosta S, Reyes-García G, Toribio-Jiménez J, Palemón-Alberto F. 2020. Colletotrichum gloeosporioides causes anthracnose on grapefruit(Citrus paradisi)in Mexico. Australasian Plant Disease Notes, 15 (1):31.
doi: 10.1007/s13314-020-00401-z |
[12] |
Gao F, Chen J, Xiao J, Cheng W, Zheng X, Wang B, Shi X. 2019. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang,China. Food Research International, 122:348-360.
doi: 10.1016/j.foodres.2019.04.029 URL |
[13] |
Grangeteau C, Roullier-Gall C, Rousseaux S, Gougeon R, Schmitt-Kopplin P, Alexandre H, Guilloux-Benatier M. 2017. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microbial Biotechnology, 10:354-370.
doi: 10.1111/1751-7915.12428 pmid: 27778455 |
[14] |
Guetsky R, Kobiler I, Wang X, Perlman N, Prusky D. 2005. Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Phytopathology, 95 (11):1341-1348.
doi: 10.1094/PHYTO-95-1341 pmid: 18943366 |
[15] |
Heredia-Ponce Z, de Vicente A, Cazorla F, Gutiérrez-Barranquero J. 2021. Beyond the wall:exopolysaccharides in the biofilm lifestyle of pathogenic and beneficial plant-associated Pseudomonas. Microorganisms, 9 (2):445.
doi: 10.3390/microorganisms9020445 URL |
[16] |
Hong Y, Park H. 2013. Role of non-Saccharomyces yeasts in Korean wines produced from campbell early grapes:potential use of Hanseniaspora uvarum as a starter culture. Food Microbiology, 34 (1):207-214.
doi: 10.1016/j.fm.2012.12.011 URL |
[17] | Huang Z, Qiu J, Li J, Xu D, Liu Q. 2021. Exploration of microbial diversity based on 16S rRNA gene sequence analysis. Acta Microbiologica Sinica, 61 (5):1044-1063. |
[18] | Jeromel A, Korenika A, Ivana T. 2019. An influence of different yeast species on wine aroma composition. The Science of Beverages, 5:171-285. |
[19] |
Kalua C, Boss P. 2009. Evolution of volatile compounds during the development of Cabernet Sauvignon grapes(Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 57 (9):3818-3830.
doi: 10.1021/jf803471n URL |
[20] |
King E, Bassi A, Ross D, Druebbisch B. 2011. An industry perspective on the use of“atoxigenic”strains of Aspergillus flavus as biological control agents and the significance of cyclopiazonic acid. Toxin Reviews, 30 (2-3):33-41.
doi: 10.3109/15569543.2011.588818 URL |
[21] |
Liu D, Howell K. 2020. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environmental Microbiology, 23 (4):1842-1857.
doi: 10.1111/emi.v23.4 URL |
[22] |
Mezzasalma V, Sandionigi A, Bruni I, Bruno A, Lovicu G, Casiraghi M. 2017. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE, 12 (9):e0184615.
doi: 10.1371/journal.pone.0184615 URL |
[23] |
Moreira N, Mendes F, de Pinho R, Hogg T, Vasconcelos I. 2008. Heavy sulphur compounds,higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. International Journal of Food Microbiology, 124 (3):231-238.
doi: 10.1016/j.ijfoodmicro.2008.03.025 pmid: 18457893 |
[24] |
Morrison-Whittle P, Goddard M. 2018. From vineyard to winery:a source map of microbial diversity driving wine fermentation. Environmental Microbiology, 20:75-84.
doi: 10.1111/1462-2920.13960 pmid: 29052965 |
[25] |
Nilgün N, Eniz K. 2019. Antibacterial effect of verjuice against food-borne pathogens. British Food Journal, 121 (10):2265-2276.
doi: 10.1108/BFJ-11-2018-0746 |
[26] |
Nisiotou A, Rantsiou K, Iliopoulos V, Cocolin L, Nychas G. 2011. Bacterial species associated with sound and Botrytis-infected grapes from a greek vineyard. International Journal of Food Microbiology, 145 (2-3):432-436.
doi: 10.1016/j.ijfoodmicro.2011.01.017 pmid: 21315469 |
[27] | Pauline R, Amélie R, Laurence G. 2019. From flavanols biosynthesis to wine tannins:what place for grape seeds? Journal of Agricultural & Food Chemistry, 67 (5):1325-1343. |
[28] |
Portillo M, Mas A. 2016. Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. LWT-Food Science and Technology, 72:317-321.
doi: 10.1016/j.lwt.2016.05.009 URL |
[29] |
Prieto C, Jara C, Mas A, Romero J. 2007. Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. International Journal of Food Microbiology, 115 (3):348-355.
pmid: 17289199 |
[30] |
Schilder A, Miles T, Gillett J, Jarosz A. 2013. The effect of environmental factors on infection of blueberry fruit by Colletotrichum acutatum. Plant Pathology, 62 (6):1238-1247.
doi: 10.1111/ppa.2013.62.issue-6 URL |
[31] |
Serra R, Braga A, Venancio A. 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production,with particular emphasis on ochratoxin A. Research in Microbiology, 156 (4):515-521.
pmid: 15862450 |
[32] | Sumby K, Bartle L, Grbin P, Jiranek V. 2019. Measures to improve wine malolactic fermentation. Applied Microbiology & Biotechnology, 103:2033-2051. |
[33] | Wang F, Saito S, Michailides T, Xiao C. 2021. Postharvest use of natamycin to control Alternaria rot on blueberry fruit caused by Alternaria alternata and A. arborescens. Postharvest Biology and Technology, 172. https://doi.org/10.1016/j.postharvbio.2020.111383. |
[34] |
Yu S, Liu C, Liang C, Zang C, Liu L, Wang H, Guan T. 2017. Effects of rain-shelter cultivation on the temporal dynamics of grape downy mildew epidemics. Journal of Phytopathology, 165 (5):331-341.
doi: 10.1111/jph.2017.165.issue-5 URL |
[35] |
Zhang S, Chen X, Zhong Q, Huang Z, Bai Z. 2017. Relations among epiphytic microbial communities from soil,leaves and grapes of the grapevine. Frontiers in Life Science, 10 (1):73-83.
doi: 10.1080/21553769.2017.1365776 URL |
[36] | Zhang S W, Chen X, Zhong Q, Zhuang X, Bai Z. 2019. Microbial community analyses associated with nine varieties of wine grape carposphere based on high-throughput sequencing. Microorganisms, 7 (12):E668. |
[37] |
Zhang P, Fuentes S, Siebert T, Krstic M, Herderich M, Barlow E, Howell K. 2016. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes. Food Chemistry, 204:463-474.
doi: 10.1016/j.foodchem.2016.02.125 URL |
[1] | YANG Yi, LI Tingyao, LI Guojing, CHEN Hancai, SHEN Zhuo, ZHOU Xuan, WU Zengxiang, WU Xinyi, ZHANG Yan. Development and Application of Insertion-Deletion(InDel)Markers in Asparagus Bean Based on Whole Genome Re-sequencing Data [J]. Acta Horticulturae Sinica, 2022, 49(4): 778-790. |
[2] | WANG Xiaoqi, JIANG Weitao, YAO Yuanyuan, YIN Chengmiao, CHEN Xuesen, and MAO Zhiquan, . Research Advance of Apple Replant Disease Based on Soil Microorganism [J]. Acta Horticulturae Sinica, 2020, 47(11): 2223-2237. |
[3] | HAN Weiwei1,HAN Ning1,JIANG Kaikai2,YANG Mo1,and ZHAO Xinjie1,*. The Influence of the Film-forming Antitranspirant on the Ripening Process of Vitis vinifera‘Cabernet Sauvignon’ [J]. ACTA HORTICULTURAE SINICA, 2018, 45(3): 447-456. |
[4] | WU Lei1,LIU Hong-ru1,CHEN Miao-jin2,WU Da-jun2,ZHANG Bo1,*,YIN Xue-ren1,XU Chang-jie1,and CHEN Kun-song1. Effects of Rain-shelter Cultivation on Formation of Peach Fruit Volatile Compounds [J]. ACTA HORTICULTURAE SINICA, 2015, 42(3): 535-544. |
[5] | FU Xue-qin1,* and HUANG Wen-xin2. Analysis on Microbial Diversity in the Rhizosphere of Nanfeng Tangerine of Different Tree-age [J]. ACTA HORTICULTURAE SINICA, 2014, 41(4): 631-640. |
[6] | ZHANG Xue-yan;TIAN Yong-qiang;Gao Yan-ming;and GAO Li-hong;. The Effect of Different Cultivation Systems in Greenhouse Cucumber on Soil Microbial Function Structure [J]. ACTA HORTICULTURAE SINICA, 2011, 38(7): 1317-1324. |
[7] | WU Feng-zhi and WANG Xue-zheng. Effect of Soybean-Cucumber and Wheat-Cucumber Rotation on Soil Microbial Community Species Diversity [J]. ACTA HORTICULTURAE SINICA, 2007, 34(6): 1543-1546. |
[8] | Zhang Zhiyong;Ma Wenqi. Studies on the Requirement and Accumulative Trend of Nutrients in Wine Grape‘Cabernet Sauvignon’ [J]. ACTA HORTICULTURAE SINICA, 2006, 33(3): 466-470. |
[9] | Luo Guoguang;Wu Xiaoyun;and Leng Ping. Study on Climatic Zoning for Wine-grape Growing in Huabei Regions [J]. ACTA HORTICULTURAE SINICA, 2001, 28(6): 487-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd