Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 237-249.doi: 10.16420/j.issn.0513-353x.2021-1117
• Research Papers • Next Articles
WANG Xiaochen1,2,3, NIE Ziye1,2,3, LIU Xianju1,2, DUAN Wei1,2, FAN Peige1,2,*(), LIANG Zhenchang1,2,*()
Received:
2022-10-14
Revised:
2022-12-05
Online:
2023-02-25
Published:
2023-03-06
Contact:
*(E-mail:CLC Number:
WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, LIANG Zhenchang. Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries[J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1117
基因 Gene | 基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|---|
VvACTIN7 | VIT_04s0044g00580 | CTTGCATCCCTCAGCACCTT | TCCTGTGGACAATGGATGGA |
VvNCED1 | VIT_19s0093g00550 | CCACACTCCCAAAAGAGAAGGA | CGGAGCAAAATTACCGGCG |
VvGT | VIT_03s0063g00050 | CGTCAACTGCTCATCCAACG | GGCAGAACAAAGACCTCCGA |
VvβG1 | VIT_01s0011g00760 | AGGTGCTCCATCCCCCTATT | AGTGGCTTCAATGTCCTCTGT |
VvPYL1 | VIT_02s0012g01270 | CTCAGCCGGAGTTCCAAGAG | GAGTAGGGAGGAGCATTGGC |
VvPP2C2 | VIT_04s0008g01420 | CGTAGGAGATGGGAAGTGGC | TTGTTTGAGTCCCTCGGCAG |
VvSnRK2.1 | VIT_02s0236g00130 | GGCAGCTCCTTTCCCGTATT | ATCCTTCCCCTGGTGTCCTT |
VvSnRK2.6 | VIT_03s0063g01080 | CAGTGAGGATGAGGCACGTT | GGAGCAATGTATGCAGGGGT |
VvABI5 | VIT_08s0007g03420 | GCAGGTCAGTTCGGTTTGGA | CTGCCAGAGCCTGTTGAAGA |
VvABF2 | VIT_18s0001g10450 | CGGGATGGGAATGGTTGGTT | ACCTTCTCTACAGCCCCACT |
VvDXS2 | VIT_11s0052g01780 | CTGCTGCCCAGGACAACAAT | CAGCCAACGTCTCAAGCTCC |
VvDXS3 | VIT_04s0008g04970 | TTGAAAGGGAAACGGGAAC | TGGGTGTAAAGAATGACGACTG |
VvDXR | VIT_17s0000g08390 | TGCTGGGGGTCCTTTTGTCCTTCC | TCAACGGGCCAATCCCTGAATGC |
VvHDR | VIT_03s0063g02030 | CGTTATGTTAGTAGTTGGTGGGTG | CTTATTCTGTTTCCTGGACCTATTC |
VvGPPS | VIT_15s0024g00850 | ATGGTGGTTGCTGAGGTCC | CAACAATAGGACTGTGGGACG |
VvPNLinNer1 | VIT_00s0385g00010 | AGATGGGATTTGTCTGCTTTCA | CTTATGCTCCTTGTGGACCTTG |
Table 1 The primer sequences used for qRT-PCR analysis
基因 Gene | 基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|---|
VvACTIN7 | VIT_04s0044g00580 | CTTGCATCCCTCAGCACCTT | TCCTGTGGACAATGGATGGA |
VvNCED1 | VIT_19s0093g00550 | CCACACTCCCAAAAGAGAAGGA | CGGAGCAAAATTACCGGCG |
VvGT | VIT_03s0063g00050 | CGTCAACTGCTCATCCAACG | GGCAGAACAAAGACCTCCGA |
VvβG1 | VIT_01s0011g00760 | AGGTGCTCCATCCCCCTATT | AGTGGCTTCAATGTCCTCTGT |
VvPYL1 | VIT_02s0012g01270 | CTCAGCCGGAGTTCCAAGAG | GAGTAGGGAGGAGCATTGGC |
VvPP2C2 | VIT_04s0008g01420 | CGTAGGAGATGGGAAGTGGC | TTGTTTGAGTCCCTCGGCAG |
VvSnRK2.1 | VIT_02s0236g00130 | GGCAGCTCCTTTCCCGTATT | ATCCTTCCCCTGGTGTCCTT |
VvSnRK2.6 | VIT_03s0063g01080 | CAGTGAGGATGAGGCACGTT | GGAGCAATGTATGCAGGGGT |
VvABI5 | VIT_08s0007g03420 | GCAGGTCAGTTCGGTTTGGA | CTGCCAGAGCCTGTTGAAGA |
VvABF2 | VIT_18s0001g10450 | CGGGATGGGAATGGTTGGTT | ACCTTCTCTACAGCCCCACT |
VvDXS2 | VIT_11s0052g01780 | CTGCTGCCCAGGACAACAAT | CAGCCAACGTCTCAAGCTCC |
VvDXS3 | VIT_04s0008g04970 | TTGAAAGGGAAACGGGAAC | TGGGTGTAAAGAATGACGACTG |
VvDXR | VIT_17s0000g08390 | TGCTGGGGGTCCTTTTGTCCTTCC | TCAACGGGCCAATCCCTGAATGC |
VvHDR | VIT_03s0063g02030 | CGTTATGTTAGTAGTTGGTGGGTG | CTTATTCTGTTTCCTGGACCTATTC |
VvGPPS | VIT_15s0024g00850 | ATGGTGGTTGCTGAGGTCC | CAACAATAGGACTGTGGGACG |
VvPNLinNer1 | VIT_00s0385g00010 | AGATGGGATTTGTCTGCTTTCA | CTTATGCTCCTTGTGGACCTTG |
Fig. 1 The effects of ABA on the volume,single berry weight,titratable acid,glucose and fructose of‘Jingxiangyu’grape *,** indicated significant difference between treatment and the control at the same time at 0.05,0.01 levels respectively. The same below.
游离态单萜化合物 Free monoter-penes | 处理后7 d 7 days after treatment | 处理后14 d 14 days after treatment | 处理后21 d 21 days after treatment | |||
---|---|---|---|---|---|---|
对照 Control | ABA | 对照 Control | ABA | 对照 Control | ABA | |
游离态单萜物质总量 Total content of free monoterpenes | 20.93 ± 3.75 | 7.96 ± 2.25* | 56.99 ± 1.31 | 26.26 ± 2.86* | 69.92 ± 2.02 | 80.56 ± 2.22* |
里那醇 Linalool | 3.28 ± 0.75 | 1.37 ± 0.51* | 36.79 ± 2.22 | 14.40 ± 4.55* | 41.21 ± 3.07 | 52.43 ± 3.23* |
π 蒎烯 π Pinene | 0.49 ± 0.28 | 0.15 ± 0.13 | 2.99 ± 0.11 | 1.28 ± 0.29* | 3.58 ± 0.34 | 5.47 ± 0.57* |
脱氢里那醇 Hotrienol | 1.72 ± 0.51 | 0.57 ± 0.58 | 2.46 ± 0.55 | 1.54 ± 0.65 | 3.62 ± 0.41 | 4.64 ± 0.52* |
顺式里那醇氧化物 cis-Linalool Oxide | 4.81 ± 2.17 | 0.79 ± 0.94* | 3.25 ± 0.07 | 2.07 ± 0.10* | 5.53 ± 0.14 | 3.04 ± 0.27* |
顺式罗勒烯 cis-Ocimene | 0.25 ± 0.11 | 0.38 ± 0.05 | 0.76 ± 0.09 | 0.31 ± 0.08* | 1.07 ± 0.13 | 1.30 ± 0.11* |
右旋柠檬烯d-Limonene | 0.71 ± 0.49 | 1.06 ± 0.10 | 1.23 ± 0.08 | 0.45 ± 0.14* | 1.33 ± 0.06 | 1.82 ± 0.18* |
别罗勒烯Allocimene B | 0.06 ± 0.05 | 0 ± 0 | 0.40 ± 0.03 | 0.17 ± 0.03* | 0.53 ± 0.03 | 0.73 ± 0.08* |
右旋π蒎烯1R-πPinene | 0.09 ± 0.05 | 0.18 ± 0.03 | 0.32 ± 0.04 | 0.13 ± 0.03* | 0.43 ± 0.06 | 0.57 ± 0.10 |
反式罗勒烯 trans-Ocimene | 0.10 ± 0.06 | 0.17 ± 0.03 | 0.29 ± 0.06 | 0.13 ± 0.03* | 0.41 ± 0.05 | 0.59 ± 0.11* |
反式香叶醇trans-Geraniol | 2.07 ± 1.05 | 0.60 ± 0.29 | 1.33 ± 0.39 | 1.34 ± 0.45 | 1.94 ± 0.44 | 1.23 ± 0.15* |
π水芹烯 π Phellandrene | Nd | Nd | 0.35 ± 0.03 | 0.09 ± 0.07* | 0.44 ± 0.03 | 0.57 ± 0.04* |
顺式松油醇π Terpieol | 0.08 ± 0.01 | 0.09 ± 0.02 | 0.25 ± 0.04 | 0.10 ± 0.07* | 0.25 ± 0.04 | 0.51 ± 0.07* |
3-蒈烯 3-Carene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
侧柏烯2-Thujene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
萜品油烯Terpinolene | Nd | Nd | 0.20 ± 0.01 | 0.02 ± 0.05* | 0.25 ± 0.02 | 0.37 ± 0.02* |
顺式香叶醇cis-Geraniol | 0.30 ± 0.14 | 0.10 ± 0.06 | 0.19 ± 0.04 | 0.17 ± 0.05 | 0.30 ± 0.05 | 0.26 ± 0.02 |
玫瑰醚 Rose oxide | 1.18 ± 0.17 | 0.76 ± 0.23 | 0.58 ± 0.02 | 0.66 ± 0.19 | 0.69 ± 0.03 | 0.50 ± 0.02* |
顺式萜品醇 π Terpineol | 0.14 ± 0.02 | 0.12 ± 0.04 | 0.24 ± 0.02 | 0.12 ± 0.02 | 0.22 ± 0.02 | 0.25 ± 0.01* |
环氧芳樟醇Epoxylinalol | 0.17 ± 0.03 | 0.09 ± 0.03 | 0.40 ± 0.09 | 0.19 ± 0.01* | 0.25 ± 0.01 | 0.25 ± 0.02 |
莰酮 Camphor | 0.02 ± 0.03 | Nd | 0.02 ± 0.03 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
香茅醇Citronellol | 0.17 ± 0.00 | 0.10 ± 0.03 | 0.12 ± 0.04 | 0.11 ± 0.03 | 0.15 ± 0.07 | 0.16 ± 0.10 |
香茅醛 Citral | 0.10 ± 0.01 | 0.06 ± 0.01* | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
左旋薄荷醇l-(-)-Menthol | 0.11 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.02 | 0.12 ± 0.02 | 0.15 ± 0.03 | 0.17 ± 0.02 |
左旋4-萜品醇 l-4-terpineol | Nd | Nd | Nd | Nd | Nd | Nd |
薄荷醇 Menthol | 0.04 ± 0.03 | 0.04 ± 0.04 | 0.05 ± 0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 |
异香叶醇Isogeraniol | Nd | 0.03 ± 0.05 | Nd | 0.05 ± 0.04 | Nd | Nd |
游离态单萜化合物 Free monoter-penes | 处理后28 d 28 days after treatment | 处理后35 d 35 days after treatment | ||||
对照 Control | ABA | 对照 Control | ABA | |||
游离态单萜物质总量 Total contents of free monoterpenes | 153.64 ± 4.23 | 194.23 ± 3.74** | 214.71 ± 8.01 | 311.74 ± 12.72** | ||
里那醇 Linalool | 98.29 ± 4.56 | 122.89 ± 4.39* | 149.48 ± 11.88 | 206.58 ± 10.64* | ||
π 蒎烯 π Pinene | 9.69 ± 1.12 | 12.83 ± 0.71* | 14.48 ± 1.05 | 24.36 ± 2.66* | ||
脱氢里那醇 Hotrienol | 7.11 ± 0.84 | 13.82 ± 0.97* | 6.59 ± 1.47 | 12.96 ± 2.19* | ||
顺式里那醇氧化物 cis-Linalool Oxide | 6.92 ± 0.66 | 7.43 ± 0.24 | 5.49 ± 0.55 | 8.38 ± 0.54* | ||
顺式罗勒烯 cis-Ocimene | 3.14 ± 0.45 | 4.02 ± 0.22* | 4.62 ± 0.23 | 8.37 ± 1.10* | ||
右旋柠檬烯d-Limonene | 2.96 ± 0.26 | 3.67 ± 0.16* | 4.41 ± 0.30 | 6.99 ± 0.92* | ||
别罗勒烯Allocimene B | 1.32 ± 0.21 | 1.75 ± 0.08* | 2.08 ± 0.21 | 3.55 ± 0.52* | ||
右旋π蒎烯1R-π Pinene | 1.11 ± 0.10 | 1.52 ± 0.13* | 2.07 ± 0.10 | 3.51 ± 0.58* | ||
反式罗勒烯trans-Ocimene | 1.15 ± 0.10 | 1.53 ± 0.16* | 2.06 ± 0.08 | 3.50 ± 0.58* | ||
反式香叶醇trans-Geraniol | 4.83 ± 0.39 | 3.70 ± 0.70* | 3.88 ± 1.05 | 2.40 ± 2.03 | ||
π水芹烯 π Phellandrene | 0.90 ± 0.30 | 1.23 ± 0.05* | 1.46 ± 0.13 | 2.33 ± 0.29* | ||
顺式松油醇 π Terpieol | 0.67 ± 0.11 | 1.34 ± 0.18* | 0.95 ± 0.28 | 2.13 ± 0.42* | ||
3-蒈烯3-Carene | 0.87 ± 0.11 | 1.03 ± 0.04* | 1.40 ± 0.08 | 2.03 ± 0.17* | ||
侧柏烯2-Thujene | 0.86 ± 0.10 | 1.01 ± 0.04* | 1.32 ± 0.13 | 1.92 ± 0.17* | ||
萜品油烯Terpinolene | 0.55 ± 0.10 | 0.86 ± 0.06* | 0.86 ± 0.13 | 1.52 ± 0.22* | ||
顺式香叶醇cis-Geraniol | 0.90 ± 0.10 | 0.97 ± 0.18 | 0.82 ± 0.21 | 1.20 ± 0.26 | ||
玫瑰醚Rose oxide | 1.01 ± 0.03 | 1.11 ± 0.03* | 0.72 ± 0.01 | 1.04 ± 0.07* | ||
顺式萜品醇 π Terpineol | 0.43 ± 0.03 | 0.54 ± 0.01* | 0.60 ± 0.05 | 0.92 ± 0.16* | ||
环氧芳樟醇Epoxylinalol | 0.43 ± 0.07 | 0.49 ± 0.17 | 0.48 ± 0.07 | 0.66 ± 0.13 | ||
莰酮 Camphor | 0.10 ± 0.03 | 0.25 ± 0.02* | 0.10 ± 0.03 | 0.25 ± 0.08* | ||
香茅醇Citronellol | 0.24 ± 0.02 | 0.44 ± 0.21 | 0.35 ± 0.25 | 0.22 ± 0.14 | ||
香茅醛Citral | 0.16 ± 0.03 | 0.14 ± 0.02 | 0.12 ± 0.03 | 0.15 ± 0.02 | ||
左旋薄荷醇l-(-)-Menthol | 0.13 ± 0.01 | 0.15 ± 0.01* | 0.13 ± 0.01 | 0.13 ± 0.02 | ||
左旋4-萜品醇 l-4-terpineol | Nd | Nd | 0.02 ± 0.03 | 0.09 ± 0.02* | ||
薄荷醇Menthol | 0.04 ± 0.03 | 0.05 ± 0.03 | 0.06 ± 0.00 | 0.04 ± 0.03 | ||
异香叶醇Isogeraniol | Nd | Nd | Nd | Nd |
Table 2 The effects of ABA on free monoterpenoids content in‘Jingxiangyu’berries μg · kg-1 FW
游离态单萜化合物 Free monoter-penes | 处理后7 d 7 days after treatment | 处理后14 d 14 days after treatment | 处理后21 d 21 days after treatment | |||
---|---|---|---|---|---|---|
对照 Control | ABA | 对照 Control | ABA | 对照 Control | ABA | |
游离态单萜物质总量 Total content of free monoterpenes | 20.93 ± 3.75 | 7.96 ± 2.25* | 56.99 ± 1.31 | 26.26 ± 2.86* | 69.92 ± 2.02 | 80.56 ± 2.22* |
里那醇 Linalool | 3.28 ± 0.75 | 1.37 ± 0.51* | 36.79 ± 2.22 | 14.40 ± 4.55* | 41.21 ± 3.07 | 52.43 ± 3.23* |
π 蒎烯 π Pinene | 0.49 ± 0.28 | 0.15 ± 0.13 | 2.99 ± 0.11 | 1.28 ± 0.29* | 3.58 ± 0.34 | 5.47 ± 0.57* |
脱氢里那醇 Hotrienol | 1.72 ± 0.51 | 0.57 ± 0.58 | 2.46 ± 0.55 | 1.54 ± 0.65 | 3.62 ± 0.41 | 4.64 ± 0.52* |
顺式里那醇氧化物 cis-Linalool Oxide | 4.81 ± 2.17 | 0.79 ± 0.94* | 3.25 ± 0.07 | 2.07 ± 0.10* | 5.53 ± 0.14 | 3.04 ± 0.27* |
顺式罗勒烯 cis-Ocimene | 0.25 ± 0.11 | 0.38 ± 0.05 | 0.76 ± 0.09 | 0.31 ± 0.08* | 1.07 ± 0.13 | 1.30 ± 0.11* |
右旋柠檬烯d-Limonene | 0.71 ± 0.49 | 1.06 ± 0.10 | 1.23 ± 0.08 | 0.45 ± 0.14* | 1.33 ± 0.06 | 1.82 ± 0.18* |
别罗勒烯Allocimene B | 0.06 ± 0.05 | 0 ± 0 | 0.40 ± 0.03 | 0.17 ± 0.03* | 0.53 ± 0.03 | 0.73 ± 0.08* |
右旋π蒎烯1R-πPinene | 0.09 ± 0.05 | 0.18 ± 0.03 | 0.32 ± 0.04 | 0.13 ± 0.03* | 0.43 ± 0.06 | 0.57 ± 0.10 |
反式罗勒烯 trans-Ocimene | 0.10 ± 0.06 | 0.17 ± 0.03 | 0.29 ± 0.06 | 0.13 ± 0.03* | 0.41 ± 0.05 | 0.59 ± 0.11* |
反式香叶醇trans-Geraniol | 2.07 ± 1.05 | 0.60 ± 0.29 | 1.33 ± 0.39 | 1.34 ± 0.45 | 1.94 ± 0.44 | 1.23 ± 0.15* |
π水芹烯 π Phellandrene | Nd | Nd | 0.35 ± 0.03 | 0.09 ± 0.07* | 0.44 ± 0.03 | 0.57 ± 0.04* |
顺式松油醇π Terpieol | 0.08 ± 0.01 | 0.09 ± 0.02 | 0.25 ± 0.04 | 0.10 ± 0.07* | 0.25 ± 0.04 | 0.51 ± 0.07* |
3-蒈烯 3-Carene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
侧柏烯2-Thujene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
萜品油烯Terpinolene | Nd | Nd | 0.20 ± 0.01 | 0.02 ± 0.05* | 0.25 ± 0.02 | 0.37 ± 0.02* |
顺式香叶醇cis-Geraniol | 0.30 ± 0.14 | 0.10 ± 0.06 | 0.19 ± 0.04 | 0.17 ± 0.05 | 0.30 ± 0.05 | 0.26 ± 0.02 |
玫瑰醚 Rose oxide | 1.18 ± 0.17 | 0.76 ± 0.23 | 0.58 ± 0.02 | 0.66 ± 0.19 | 0.69 ± 0.03 | 0.50 ± 0.02* |
顺式萜品醇 π Terpineol | 0.14 ± 0.02 | 0.12 ± 0.04 | 0.24 ± 0.02 | 0.12 ± 0.02 | 0.22 ± 0.02 | 0.25 ± 0.01* |
环氧芳樟醇Epoxylinalol | 0.17 ± 0.03 | 0.09 ± 0.03 | 0.40 ± 0.09 | 0.19 ± 0.01* | 0.25 ± 0.01 | 0.25 ± 0.02 |
莰酮 Camphor | 0.02 ± 0.03 | Nd | 0.02 ± 0.03 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
香茅醇Citronellol | 0.17 ± 0.00 | 0.10 ± 0.03 | 0.12 ± 0.04 | 0.11 ± 0.03 | 0.15 ± 0.07 | 0.16 ± 0.10 |
香茅醛 Citral | 0.10 ± 0.01 | 0.06 ± 0.01* | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
左旋薄荷醇l-(-)-Menthol | 0.11 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.02 | 0.12 ± 0.02 | 0.15 ± 0.03 | 0.17 ± 0.02 |
左旋4-萜品醇 l-4-terpineol | Nd | Nd | Nd | Nd | Nd | Nd |
薄荷醇 Menthol | 0.04 ± 0.03 | 0.04 ± 0.04 | 0.05 ± 0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 |
异香叶醇Isogeraniol | Nd | 0.03 ± 0.05 | Nd | 0.05 ± 0.04 | Nd | Nd |
游离态单萜化合物 Free monoter-penes | 处理后28 d 28 days after treatment | 处理后35 d 35 days after treatment | ||||
对照 Control | ABA | 对照 Control | ABA | |||
游离态单萜物质总量 Total contents of free monoterpenes | 153.64 ± 4.23 | 194.23 ± 3.74** | 214.71 ± 8.01 | 311.74 ± 12.72** | ||
里那醇 Linalool | 98.29 ± 4.56 | 122.89 ± 4.39* | 149.48 ± 11.88 | 206.58 ± 10.64* | ||
π 蒎烯 π Pinene | 9.69 ± 1.12 | 12.83 ± 0.71* | 14.48 ± 1.05 | 24.36 ± 2.66* | ||
脱氢里那醇 Hotrienol | 7.11 ± 0.84 | 13.82 ± 0.97* | 6.59 ± 1.47 | 12.96 ± 2.19* | ||
顺式里那醇氧化物 cis-Linalool Oxide | 6.92 ± 0.66 | 7.43 ± 0.24 | 5.49 ± 0.55 | 8.38 ± 0.54* | ||
顺式罗勒烯 cis-Ocimene | 3.14 ± 0.45 | 4.02 ± 0.22* | 4.62 ± 0.23 | 8.37 ± 1.10* | ||
右旋柠檬烯d-Limonene | 2.96 ± 0.26 | 3.67 ± 0.16* | 4.41 ± 0.30 | 6.99 ± 0.92* | ||
别罗勒烯Allocimene B | 1.32 ± 0.21 | 1.75 ± 0.08* | 2.08 ± 0.21 | 3.55 ± 0.52* | ||
右旋π蒎烯1R-π Pinene | 1.11 ± 0.10 | 1.52 ± 0.13* | 2.07 ± 0.10 | 3.51 ± 0.58* | ||
反式罗勒烯trans-Ocimene | 1.15 ± 0.10 | 1.53 ± 0.16* | 2.06 ± 0.08 | 3.50 ± 0.58* | ||
反式香叶醇trans-Geraniol | 4.83 ± 0.39 | 3.70 ± 0.70* | 3.88 ± 1.05 | 2.40 ± 2.03 | ||
π水芹烯 π Phellandrene | 0.90 ± 0.30 | 1.23 ± 0.05* | 1.46 ± 0.13 | 2.33 ± 0.29* | ||
顺式松油醇 π Terpieol | 0.67 ± 0.11 | 1.34 ± 0.18* | 0.95 ± 0.28 | 2.13 ± 0.42* | ||
3-蒈烯3-Carene | 0.87 ± 0.11 | 1.03 ± 0.04* | 1.40 ± 0.08 | 2.03 ± 0.17* | ||
侧柏烯2-Thujene | 0.86 ± 0.10 | 1.01 ± 0.04* | 1.32 ± 0.13 | 1.92 ± 0.17* | ||
萜品油烯Terpinolene | 0.55 ± 0.10 | 0.86 ± 0.06* | 0.86 ± 0.13 | 1.52 ± 0.22* | ||
顺式香叶醇cis-Geraniol | 0.90 ± 0.10 | 0.97 ± 0.18 | 0.82 ± 0.21 | 1.20 ± 0.26 | ||
玫瑰醚Rose oxide | 1.01 ± 0.03 | 1.11 ± 0.03* | 0.72 ± 0.01 | 1.04 ± 0.07* | ||
顺式萜品醇 π Terpineol | 0.43 ± 0.03 | 0.54 ± 0.01* | 0.60 ± 0.05 | 0.92 ± 0.16* | ||
环氧芳樟醇Epoxylinalol | 0.43 ± 0.07 | 0.49 ± 0.17 | 0.48 ± 0.07 | 0.66 ± 0.13 | ||
莰酮 Camphor | 0.10 ± 0.03 | 0.25 ± 0.02* | 0.10 ± 0.03 | 0.25 ± 0.08* | ||
香茅醇Citronellol | 0.24 ± 0.02 | 0.44 ± 0.21 | 0.35 ± 0.25 | 0.22 ± 0.14 | ||
香茅醛Citral | 0.16 ± 0.03 | 0.14 ± 0.02 | 0.12 ± 0.03 | 0.15 ± 0.02 | ||
左旋薄荷醇l-(-)-Menthol | 0.13 ± 0.01 | 0.15 ± 0.01* | 0.13 ± 0.01 | 0.13 ± 0.02 | ||
左旋4-萜品醇 l-4-terpineol | Nd | Nd | 0.02 ± 0.03 | 0.09 ± 0.02* | ||
薄荷醇Menthol | 0.04 ± 0.03 | 0.05 ± 0.03 | 0.06 ± 0.00 | 0.04 ± 0.03 | ||
异香叶醇Isogeraniol | Nd | Nd | Nd | Nd |
[1] |
Abbas F, Ke Y G, Yu R C, Yue Y C, Amanullah S, Jahangir M M, Fan Y P. 2017. Volatile terpenoids:multiple functions,biosynthesis,modulation and manipulation by genetic engineering. Planta, 246:803-816.
doi: 10.1007/s00425-017-2749-x URL |
[2] |
Bahena S M, Ohama T, Suehiro Y, Hata Y, Isogai A, Iwashita K, Goto-Yamamoto N, Koyama K. 2019. The potential aroma and flavor compounds in Vitis sp. cv. Koshu and V. vinifera L. cv. Chardonnay under different environmental conditions. Journal of Science of Food and Agriculture, 99 (4):1926-1937.
doi: 10.1002/jsfa.2019.99.issue-4 URL |
[3] |
Boneh U, Biton I, Schwartz A, Ben-Ari G. 2012. Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 187:89-96.
doi: 10.1016/j.plantsci.2012.01.015 pmid: 22404836 |
[4] |
Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, Bitz O, Schwab W. 2014. A UDP-glucose:monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiology, 165 (2):561-581.
pmid: 24784757 |
[5] | Chen Kun-song, Li Fang, Zhang Shang-long. 1999. Regulation of ABA and IAA on fruit ripening process of kiwifruit. Acta Horticulturae Sinica, 26 (2):81-86. (in Chinese) |
陈昆松, 李方, 张上隆. 1999. ABA和IAA对猕猴桃果实成熟进程的调控. 园艺学报, 26 (2):81-86. | |
[6] |
Coombe B G, Mccarthy M G. 2000. Dynamics of grape berry growth and physiology of ripening. Australian Journal of Grape and Wine Research, 6:131-135.
doi: 10.1111/j.1755-0238.2000.tb00171.x URL |
[7] |
Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. 2010. Abscisic acid:emergence of a core signaling network. Annual Review of Plant Biology, 61:651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755 |
[8] |
Gao Z, Li Q, Li J, Chen Y J, Luo M, Li H, Wang J Y, Wu Y S, Duan S Y, Wang L, Song S R, Xu W P, Zhang C X, Wang S P, Ma C. 2018. Characterization of the ABA receptor VlPYL 1 that regulates anthocyanin accumulation in grape berry skin. Frontiers in Plant Science, 9:592.
doi: 10.3389/fpls.2018.00592 URL |
[9] |
Gómez M J, Gómez-Míguez M, Vicario I M, Heredia F J. 2007. Assessment of colour and aroma in white wines vinifications:effects of grape maturity and soil type. Journal of Food Engineering, 79 (3):758-764.
doi: 10.1016/j.jfoodeng.2006.02.038 URL |
[10] | Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, Li J J, Ding Y L, Shi Y T, Wang Y, Yang Y Q, Guo Y, Zhu J K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China, 63 (5):635-674. |
[11] |
Li H, Gao Z, Chen Q J, Li Q, Luo M, Wang J Y, Hu L P, Zahid M S, Wang L, Zhao L P, Song S R, Xu W P, Zhang C X, Ma C, Wang S P. 2020. Grapevine ABA receptor VvPYL1 regulates root hair development in transgenic Arabidopsis. Plant Physiology and Biochemistry, 149:190-200.
doi: 10.1016/j.plaphy.2020.02.008 URL |
[12] |
Li J J, Liu B Y, Li X Y, Li D M, Han J Y, Zhang Y, Ma C, Xu W P, Wang L, Jiu S T, Zhang C X, Wang S P. 2021. Exogenous abscisic acid mediates berry quality improvement by altered endogenous plant hormones level in“Ruiduhongyu”grapevine. Frontiers in Plant Science, 12:739964.
doi: 10.3389/fpls.2021.739964 URL |
[13] |
Li W, Li W F, Yang S J, Ma Z H, Zhou Q, Mao J, Han S Y, Chen B H. 2020. Transcriptome and metabolite conjoint analysis reveals that exogenous methyl jasmonate regulates monoterpene synthesis in grape berry skin. Journal of Agricultural and Food Chemistry, 68 (18):5270-5281.
doi: 10.1021/acs.jafc.0c00476 pmid: 32338508 |
[14] |
Li X Y, Wen Y Q, Meng N, Qian X, Pan Q H. 2017. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Frontiers in Plant Science, 8:1226.
doi: 10.3389/fpls.2017.01226 URL |
[15] | Li Xiao-hong, Li Yun-jing, Ma Xiao-qing, Guo Jun, Liu Hai-jiao, Zheng Guo-qing, Tao Jian-min. 2021. Current situation and prospect of grape industry development in China. Fruit in South of China, 50 (5):161-166. (in Chinese) |
李小红, 李运景, 马晓青, 郭军, 刘海礁, 郑国清, 陶建敏. 2021. 我国葡萄产业发展现状及展望. 中国南方果树, 50 (5):161-166. | |
[16] |
Liu J Y, Chen N N, Chen F, Cai B, Santo S D, Tornielli G B, Pezzotti M, Cheng Z M. 2014. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine(Vitis vinifera). BMC Genomics, 15:281.
doi: 10.1186/1471-2164-15-281 |
[17] |
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324 (5930):1064-1068.
doi: 10.1126/science.1172408 pmid: 19407143 |
[18] |
Martin D M, Aubourg S, Schouwey M B, Daviet L, Schalk M, Toub O, Lund S T, Bohlmann J. 2010. Functional annotation,genome organization and phylogeny of the grapevine(Vitis vinifera)terpene synthase gene family based on genome assembly,FLcDNA cloning,and enzyme assays. BMC Plant Biology, 10:226.
doi: 10.1186/1471-2229-10-226 pmid: 20964856 |
[19] |
Murcia G, Fontana a, Pontin M, Baraldi R, Bertazza G, Piccoli P N. 2017. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry, 135:34-52.
doi: 10.1016/j.phytochem.2016.12.007 URL |
[20] |
Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324 (5930):1068-1071.
doi: 10.1126/science.1173041 URL |
[21] | Quan Gui-rong, Gao Xiang, Hui Zhu-mei. 2020. Effects of exogenous plant hormones on aroma components of grapes and dry red wine. Journal of Northwest A & F University(Nat Sci Ed), 48 (1):126-133. (in Chinese) |
权桂蓉, 高翔, 惠竹梅. 2020. 外源激素处理对葡萄及葡萄酒香气成分的影响. 西北农林科技大学学报(自然科学版), 48 (1):126-133. | |
[22] |
Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. 2004. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3,an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiology, 136 (2):3134-3147.
doi: 10.1104/pp.104.046169 pmid: 15466233 |
[23] |
Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Eileen Tan M H, Suino-Powell K M, He Y Z, Xu Y, Chalmers M J, Brunzelle J S, Zhang H M, Yang H Y, Jiang H L, Li J, Yong E L, Cutler S, Zhu J K, Griffin P R, Melcher K, Xu H E. 2012. Molecular mimicry regulates ABA signaling by SnRK 2 kinases and PP2C phosphatases. Science, 335 (6064):85-88.
doi: 10.1126/science.1215106 URL |
[24] | Sun Lei, Qian Xu, Zhang Guojun, Yan Ailing, Wang Xiaoyue, Wang Huiling, Ren Jiancheng, Xu Haiying. 2018. Differential monoterpenes accumulation of‘Xiangfei’and‘Zao Meiguixiang’grape between greenhouse and open-field cultivation. Acta Horticulturae Sinica, 45 (8):1467-1478. (in Chinese) |
孙磊, 钱旭, 张国军, 闫爱玲, 王晓玥, 王慧玲, 任建成, 徐海英. 2018. ‘香妃’和‘早玫瑰香’葡萄温室与露地栽培单萜积累差异分析. 园艺学报, 45 (8):1467-1478.
doi: 10.16420/j.issn.0513-353x.2017-0843 |
|
[25] |
Sun Y F, Chen P, Duan C R, Tao P, Wang Y P, Ji K, Hu Y, Li Q, Dai S J, Wu Y, Luo H, Sun L, Leng P. 2012. Transcriptional regulation of genes encoding key enzymes of abscisic acid metabolism during melon(Cucumis melo L.)fruit development and ripening. Journal of Plant Growth Regulation, 32 (2):233-244.
doi: 10.1007/s00344-012-9293-5 URL |
[26] | Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. Biotechnology of Isoprenoids, 148:63-106. |
[27] | Wang Li-ting, Gao Jiang-man, Zhou Ya-li, Jiang Yue, Duan Bing-bing, Hui Zhu-mei. 2018. Effects of exogenous ABA and EBR on growth and maturation of wine grape“Cabernet Sauvignon”and endogenous hormones. Northern Horticulture,(3):38-45. (in Chinese) |
王利廷, 高江曼, 周亚丽, 姜越, 段冰冰, 惠竹梅. 2018. 外源ABA和EBR处理对酿酒葡萄“赤霞珠”生长成熟的调控及内源激素的影响. 北方园艺,(3):38-45. | |
[28] |
Wheeler S, Loveys B,Ford, Davies C. 2009. The relationship between the expression of abscisic acid biosynthesis genes,accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Australian Journal of Grape and Wine Research, 15 (3):195-204.
doi: 10.1111/ajgw.2009.15.issue-3 URL |
[29] | Xu Xian-bin, Li Hui, Geng Xiao-yue, Zheng Huan, Tao Jian-min. 2021. Regulation mechanism of ABA pathway genes on anthocyanin biosynthesis in grape skins. Acta Botanica Boreali-Occidentalla Sinica, 41 (3):406-415. (in Chinese) |
徐献斌, 李慧, 耿晓月, 郑焕, 陶建敏. 2021. ABA信号通路对葡萄果皮花青苷生物合成的调控机制研究. 西北植物学报, 41 (3):406-415. | |
[30] |
Yang Weihai, Zeng Lizhen, Xiao Qiusheng, Shi Shengyou. 2021. Changes of fruit abscission and carbohydrate,ABA and related genes expression in the pericarp and fruit abscission zone of longan under starvation stress. Acta Horticulturae Sinica, 48 (8):1457-1469. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0538 |
杨为海, 曾利珍, 肖秋生, 石胜友. 2021. 饥饿胁迫下龙眼落果与果皮和离区糖、ABA及相关基因表达的变化. 园艺学报, 48 (8):1457-1469.
doi: 10.16420/j.issn.0513-353x.2020-0538 |
|
[31] |
Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie A R. 2019. Revisiting the basal role of ABA-roles outside of stress. Trends in Plant Science, 24 (7):625-635.
doi: S1360-1385(19)30104-9 pmid: 31153771 |
[32] |
Zhang E P, Chai F M, Zhang H H, Li S H, Liang Z C, Fan P G. 2017. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry, 237:379-389.
doi: S0308-8146(17)30941-X pmid: 28764010 |
[33] | Zhang Er-peng. 2017. The accumulation and distribution of monoterpenes in table grape berries and their responses to sunlight[M. D. Dissertation]. Beijing: Institute of Botany,the Chinese Academy of Sciences. (in Chinese) |
张二朋. 2017. 鲜食葡萄果实萜类物质合成、分布特点及其对光响应的研究[硕士论文]. 北京: 中国科学院植物研究所. | |
[34] |
Zhang H H, Fan P G, Liu C X, Wu B H, Li S H, Liang Z C. 2014a. Sunlight exclusion from muscat grape alters volatile profiles during berry development. Food Chemistry, 164:242-250.
doi: 10.1016/j.foodchem.2014.05.012 URL |
[35] |
Zhang Y J, Wang X J, Wu J X, Chen S Y, Chen H, Chai L J, Yi H L. 2014b. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA,sucrose and JA during citrus fruit ripening. PLoS ONE, 9 (12):e116056.
doi: 10.1371/journal.pone.0116056 URL |
[36] |
Zhang Z, Zou L M, Ren C, Ren F R, Wang Y, Fan P G, Li S H, Liang Z C. 2019. VvSWEET 10 mediates sugar accumulation in grapes. Genes, 10 (4):255.
doi: 10.3390/genes10040255 URL |
[37] | Zhao De-qing, Gao Zhao-yin, Hu Mei-jiao, Li Min, Li Chun-xia, Gong De-qiang, Zhao Chao. 2019. Effects of tiphenon and gibberellin on mango fruit yield and quality after treatments in young period. Fruits in south of China, 48 (3):63-66. (in Chinese) |
赵德庆, 高兆银, 胡美姣, 李敏, 李春霞, 弓德强, 赵超. 2019. 幼果期喷施噻苯隆和赤霉素对杧果果实产量和品质的影响. 中国南方果树, 48 (3):63-66. | |
[38] |
Zhu B Q, Cai J, Wang Z Q, Xu X Q, Duan C Q, Pan Q H. 2014. Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries. International Journal of Molecular Sciences, 15:21992-22010.
doi: 10.3390/ijms151221992 URL |
[39] |
Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167 (2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[1] | MA Shuaihui, HE Guangqi, CHENG Yizhe, GUO Dalong. Analysis of Alternative Splicing at Different Developmental Stages of Kyoho Grapes with 5-azaC Treatment [J]. Acta Horticulturae Sinica, 2023, 50(3): 523-533. |
[2] | HUANG Rong, DONG Chao, JIANG Jiao, QIN Yi, LIU Yanlin, SONG Yuyang. Investigation of the Effect of Rain-shelter Cultivation on the Microbial Diversity of Berry Surface for‘Cabernet Sauvignon’Grapes [J]. Acta Horticulturae Sinica, 2023, 50(3): 635-646. |
[3] | SUN Lei, YAN Ailing, ZHANG Guojun, WANG Huiling, WANG Xiaoyue, REN Jiancheng, XU Haiying. A New Table Grape Cultivar‘Ruidu Mozhi’ [J]. Acta Horticulturae Sinica, 2023, 50(3): 685-686. |
[4] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[5] | WANG Baoliang, LIU Fengzhi, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, ZHANG Yican, LI Peng, and WANG Haibo. A New Early Ripening Grape Cultivar‘Huapu Zaoyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 33-34. |
[6] | WANG Baoliang, WANG Haibo, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, WANG Zhiqiang, WANG Xiaolong, and LIU Fengzhi. A New Middle Ripening Grape Cultivar‘Huapu Huangyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 35-36. |
[7] | A Late-maturing Seedless Grape Cultivar‘Zilongzhu’. A Late-maturing Seedless Grape Cultivar‘Zilongzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 37-38. |
[8] | SHI Xiaoxin, DU Guoqiang, YANG Lili, QIAO Yuelian, HUANG Chengli, WANG Suyue, ZHAO Yuexin, WEI Xiaohui, WANG Li, and QI Xiangli. A Late-ripening Seedless Grape Cultivar‘Hongfeng Wuhe’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 39-40. |
[9] | WU Yueyan, CHEN Tianchi, WANG Liru, HAN Shanqi, and FU Tao. A New Table Grape Cultivar‘Yongzaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 41-42. |
[10] | WANG Xiaoyue, YAN Ailing, ZHANG Guojun, WANG Huiling, REN Jiancheng, LIU Zhenhua, SUN Lei, and XU Haiying, . A New Grape Cultivar‘Ruidu Wanhong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 29-30. |
[11] | WANG Yongjian, KONG Junhua, FAN Peige, LIANG Zhenchang, JIN Xiuliang, LIU Buchun, DAI Zhanwu. Grape Phenome High-throughput Acquisition and Analysis Methods:A Review [J]. Acta Horticulturae Sinica, 2022, 49(8): 1815-1832. |
[12] | ZHANG Qiuyue, LIU Changlai, YU Xiaojing, YANG Jiading, FENG Chaonian. Screening of Reference Genes for Differentially Expressed Genes in Pyrus betulaefolia Plant Under Salt Stress by qRT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. |
[13] | WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species [J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212. |
[14] | LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress [J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. |
[15] | LIANG Chen, SUN Ruyi, XIANG Rui, SUN Yimeng, SHI Xiaoxin, DU Guoqiang, WANG Li. Genome-wide Identification of Grape GRF Family and Expression Analysis [J]. Acta Horticulturae Sinica, 2022, 49(5): 995-1007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd