园艺学报 ›› 2022, Vol. 49 ›› Issue (7): 1429-1440.doi: 10.16420/j.issn.0513-353x.2021-0445
陶鑫1, 朱荣香1, 贡鑫1, 吴磊1, 张绍铃1, 赵建荣2,*(), 张虎平1,*()
收稿日期:
2022-03-10
修回日期:
2022-04-20
出版日期:
2022-07-25
发布日期:
2022-07-29
通讯作者:
赵建荣,张虎平
E-mail:zjr0105@163.com;hpzhang@njau.edu.cn
基金资助:
TAO Xin1, ZHU Rongxiang1, GONG Xin1, WU Lei1, ZHANG Shaoling1, ZHAO Jianrong2,*(), ZHANG Huping1,*()
Received:
2022-03-10
Revised:
2022-04-20
Online:
2022-07-25
Published:
2022-07-29
Contact:
ZHAO Jianrong,ZHANG Huping
E-mail:zjr0105@163.com;hpzhang@njau.edu.cn
摘要:
以‘丰水’梨为试材,对果实果糖激酶基因PpyFRK5进行克隆、表达分析和功能研究。结果表明,PpyFRK5编码的蛋白属于磷酸果糖激酶B亚家族(pfkB),具有高度保守的pfkB家族特征性结构域及果糖激酶特有的ATP结合域和糖结合域;PpyFRK5在果实不同发育时期和不同器官中存在差异表达,在成熟的果实和种子中表达量最高;PpyFRK5定位于质膜和细胞质中;在果实发育的整个过程中,PpyFRK5的表达与蔗糖含量呈显著正相关,瞬时超表达PpyFRK5的梨果实蔗糖含量显著升高,瞬时沉默PpyFRK5的梨果实蔗糖含量显著降低;PpyFRK5的启动子区域包含多个参与光响应、激素诱导以及胁迫响应的顺式作用元件。
中图分类号:
陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440.
TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit[J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440.
用途 Use | 名称 Name | 序列(5′-3′) Sequence |
---|---|---|
实时荧光定量PCR | PpyFRK5-F | TTCGTTGGCAAGGTTGGAG |
Quantitative real-time PCR | PpyFRK5-R | TCACCGTCGTTCTTCAAGGTC |
Tubulin-F | TGGGCTTTGCTCCTCTTAC | |
Tubulin-R | CCTTCGTGCTCATCTTACC | |
基因克隆、超表达和亚细胞定位 Cloning,overexpression,and subcellular localization | 35S:PpyFRK5-GFP-F | GAGAACACGGGGGACTCTAGAATGGCGAATTCAGAGAGTCCAC |
35S:PpyFRK5-GFP-R | GCCCTTGCTCACCATGGATCCTTTGGCTTTGGACTTGGAAATG | |
病毒诱导的基因沉默 | pTRV2-PpyFRK5-F | GAAGGCCTCCATGGGGATCCTGTGGTTCTGTCCCTGTGG |
Virus induced gene silencing | pTRV2-PpyFRK5-R | GCCTCGAGACGCGTGAGCTCCATCAGACTGGGTTGGAAGA |
启动子扩增 Promoter amplification | PpyFRK5-pro-F | GTCGACGGTATCGATAAGCTTCCTTATATTTGTCGACTGTAGGTCGA |
PpyFRK5-pro-R | CGCTCTAGAACTAGTGGATCCTCTCTCTTAACTCTTGCGATTGAGA |
表1 本研究使用的引物序列
Table 1 Primer sequences used in this study
用途 Use | 名称 Name | 序列(5′-3′) Sequence |
---|---|---|
实时荧光定量PCR | PpyFRK5-F | TTCGTTGGCAAGGTTGGAG |
Quantitative real-time PCR | PpyFRK5-R | TCACCGTCGTTCTTCAAGGTC |
Tubulin-F | TGGGCTTTGCTCCTCTTAC | |
Tubulin-R | CCTTCGTGCTCATCTTACC | |
基因克隆、超表达和亚细胞定位 Cloning,overexpression,and subcellular localization | 35S:PpyFRK5-GFP-F | GAGAACACGGGGGACTCTAGAATGGCGAATTCAGAGAGTCCAC |
35S:PpyFRK5-GFP-R | GCCCTTGCTCACCATGGATCCTTTGGCTTTGGACTTGGAAATG | |
病毒诱导的基因沉默 | pTRV2-PpyFRK5-F | GAAGGCCTCCATGGGGATCCTGTGGTTCTGTCCCTGTGG |
Virus induced gene silencing | pTRV2-PpyFRK5-R | GCCTCGAGACGCGTGAGCTCCATCAGACTGGGTTGGAAGA |
启动子扩增 Promoter amplification | PpyFRK5-pro-F | GTCGACGGTATCGATAAGCTTCCTTATATTTGTCGACTGTAGGTCGA |
PpyFRK5-pro-R | CGCTCTAGAACTAGTGGATCCTCTCTCTTAACTCTTGCGATTGAGA |
图2 PpyFRK5基因的结构组成白色框表示5′和3′端;黄色框表示外显子;灰色框表示内含子。
Fig. 2 Gene structure analysis of PpyFRK5The white boxes indicate the 5′ and 3′ ends;the yellow boxes indicate exons and the gray boxes indicate introns.
图3 PpyFRK5氨基酸序列分析A:在染色体上的位置和保守结构域;B:编码氨基酸序列比对。(a1)、(a2)和(a3)为pfkB家族的标志结构;(b)为果糖激酶家族特征性bac_FRK结构域;α代表糖结合位点,β代表ATP结合位点; Ppy:砂梨;Pbr:白梨;Md:苹果;Pp:桃;Rc:月季;Fv:草莓;Sl:番茄;At:拟南芥。
Fig. 3 Amino acid sequence analysis of PpyFRK5A:A schematic diagram of the position of PpyFRK5 on the chromosome and the position of conserved domains in PpyFRK5;B:Amino acid sequence alignment of PpyFRK5;(a1),(a2)and(a3)are the landmark structures of the pfkB family and(b)is the characteristic bac_FRK domains of the fructokinase family;α represents the sugar binding site,and β represents the ATP binding site;Ppy:Pyrus pyrifolia; Pbr:Pyrus bretschneideri;Md:Malus × domestica;Pp:Prunus persica;Rc:Rosa chinensis; Fv:Fragaria vesca;Sl:Solanum lycopersicum;At:Arabidopsis thaliana.
图6 PpyFRK5在梨果实不同发育时期(A)和不同器官中(B)的相对表达量
Fig. 6 Relative expression level of PpyFRK5 at different stages of fruit development(A)and different organs(B)in pear
图8 超表达(A)和沉默表达(B)PpyFRK5的梨果实中的PpyFRK5相对表达量和可溶性糖含量
Fig. 8 Relative expression level of PpyFRK5 and soluble sugar content in pear fruits with overexpression(A)and silencing(B)of PpyFRK5* α = 0.05,** α = 0.01.
顺式作用元件 cis-element | 序列 Sequence | 功能 Probable function |
---|---|---|
ABRE | ACGTG | 脱落酸响应元件Involved in the abscisic acid response |
ARE | AAACCA | 厌氧诱导响应元件Essential for the anaerobic induction |
AE-Box | ACAAACAA | 光响应元件Part of a module for light response |
CGTCA-motif | CGTCA | MeJA响应元件Involved in the MeJA response |
Box-4 | ATTAAT | 光响应元件Involved in light response |
CAAT-Box | CCAAT;CAAT | 启动子和增强子区域元件Element in the promoter and enhancer regions |
G-Box | CACGTT | 光响应元件Involved in light response |
LTR | CCGAAA | 低温响应元件Involved in low-temperature response |
MBS | CAACTG | MYB结合位点MYB binding site |
TATA-Box | TATA;TATAAA | 转录起始位点Approximately -30 from the transcription start |
RY-element | CATGCATG | 种子特异性调控响应元件Involved in seed-specific regulation |
TC-rich repeats | ATTCTCTAAC | 防御和胁迫响应元件Involved in defense and stress response |
TCT-motif | TCTTAC | 光响应元件Part of a light responsive element |
TGACG-motif | TGACG | MeJA响应元件Involved in the MeJA response |
as-1 | TGACG | 转录结合位点Transcription factor-binding site |
circadian | CAAAGATATC | 昼夜节律控制响应元件Involved in circadian control |
表2 PpyFRK5启动子区顺式作用元件分析
Table 2 Analysis of the main cis-elements in promoter region of PpyFRK5
顺式作用元件 cis-element | 序列 Sequence | 功能 Probable function |
---|---|---|
ABRE | ACGTG | 脱落酸响应元件Involved in the abscisic acid response |
ARE | AAACCA | 厌氧诱导响应元件Essential for the anaerobic induction |
AE-Box | ACAAACAA | 光响应元件Part of a module for light response |
CGTCA-motif | CGTCA | MeJA响应元件Involved in the MeJA response |
Box-4 | ATTAAT | 光响应元件Involved in light response |
CAAT-Box | CCAAT;CAAT | 启动子和增强子区域元件Element in the promoter and enhancer regions |
G-Box | CACGTT | 光响应元件Involved in light response |
LTR | CCGAAA | 低温响应元件Involved in low-temperature response |
MBS | CAACTG | MYB结合位点MYB binding site |
TATA-Box | TATA;TATAAA | 转录起始位点Approximately -30 from the transcription start |
RY-element | CATGCATG | 种子特异性调控响应元件Involved in seed-specific regulation |
TC-rich repeats | ATTCTCTAAC | 防御和胁迫响应元件Involved in defense and stress response |
TCT-motif | TCTTAC | 光响应元件Part of a light responsive element |
TGACG-motif | TGACG | MeJA响应元件Involved in the MeJA response |
as-1 | TGACG | 转录结合位点Transcription factor-binding site |
circadian | CAAAGATATC | 昼夜节律控制响应元件Involved in circadian control |
[1] |
Damari-Weissler H, Kandel-Kfir M, Gidoni D, Mett A, Belausov E, Granot D. 2006. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta, 224:1495-1502.
pmid: 16977457 |
[2] |
Damari-Weissler H, Rachamilevitch S, Aloni R, German M A, Cohen S, Zwieniecki M A, Holbrook N M, Granot D. 2009. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Planta, 230:795-805.
doi: 10.1007/s00425-009-0985-4 pmid: 19633866 |
[3] |
Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. 2005. Modulation of fructokinase activity of potato(Solanum tuberosum)results in substantial shifts in tuber metabolism. Plant Cell Physiol, 46:1103-1115.
doi: 10.1093/pcp/pci123 URL |
[4] | Dennis D, Blakeley S D. 2000. Carbohydrate metabolism//Buchanan B,Gruissem W,Jones R. Biochemistry and molecular biology of plants. American Society of Plant Physiologists, 46:630-675. |
[5] |
Fennington G J, Hughes T A. 1996. The fructokinase from Rhizobium leguminosarum biovar trifolii belongs to group I fructokinase enzymes and is encoded separately from other carbohydrate metabolism enzymes. Microbiology, 142:321-330.
doi: 10.1099/13500872-142-2-321 URL |
[6] |
Fulda S, Mikkat S, Stegmann H, Horn R. 2011. Physiology and proteomics of drought stress acclimation in sunflower(Helianthus annuus L.). Plant Biol, 13:632-642.
doi: 10.1111/j.1438-8677.2010.00426.x URL |
[7] | Geng Yan-qiu, Dong Xiao-chang, Zhang Chun-mei. 2021. Recent progress of sugar transporter in horticultural crops. Acta Horticulturae Sinica, 48 (4):676-687. |
耿艳秋, 董肖昌, 张春梅. 2021. 园艺作物糖转运蛋白研究进展. 园艺学报, 48 (4):676-687. | |
[8] |
German M A, Asher I, Petreikov M, Dai N, Schaffer A A, Granot D. 2004. Cloning,expression and characterization of LeFRK3,the fourth tomato (Lycopersicon esculentum Mill.)gene encoding fructokinase. Plant Sci, 166:285-291.
doi: 10.1016/j.plantsci.2003.09.017 URL |
[9] |
German M A, Dai N, Chmelnitsky I, Sobolev I, Salts Y, Barg R, Schaffer A A, Granot D. 2002. LeFRK4,a novel tomato(Lycopersicon esculentum Mill.)fructokinase specifically expressed in stamens. Plant Sci, 163:607-613.
doi: 10.1016/S0168-9452(02)00170-X URL |
[10] |
German M A, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Loffe M, Shahak Y, Schaffer A A, Granot D. 2003. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J, 34:837-846.
doi: 10.1046/j.1365-313X.2003.01765.x URL |
[11] |
Granot D, David-Schwartz R, Kelly G. 2013. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci, 4:44.
doi: 10.3389/fpls.2013.00044 pmid: 23487525 |
[12] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[13] |
Lü J H, Tao X, Yao G H, Zhang S L, Zhang H P. 2020. Transcriptome analysis of low-and high-sucrose pear cultivars identifies key regulators of sucrose biosynthesis in fruits. Plant Cell Physiol, 61:1493-1506.
doi: 10.1093/pcp/pcaa068 URL |
[14] | Lü Jia-hong, Wang Ying-zhen, Cheng Rui, Wang Guo-ming, Zhang Shao-ling, Wu Jun, Zhang Hu-ping. 2018. Genome-wide identification and expression analysis of sucrose synthase(SUS)and sucrose phosphate synthase(SPS)gene families in pear. Acta Horticulturae Sinica, 45 (3):421-435. |
吕佳红, 王英珍, 程瑞, 王国明, 张绍铃, 吴俊, 张虎平. 2018. 梨蔗糖合成相关酶SUS和SPS基因家族的鉴定与表达分析. 园艺学报, 45 (3):421-435. | |
[15] |
Martinez-Barajas E, Krohn B M, Stark D M, Randall D D. 1997. Purification and characterization of recombinant tomato fruit(Lycopersicon esculentum Mill.)fructokinase expressed in Escherichia coli. Protein Expres Purif, 11 (1):41-46.
doi: 10.1006/prep.1997.0762 URL |
[16] | Moriguchi T, Abe K, Sanada T, Yamaki S. 1992. Levels and role of sucrose synthase,sucrose-phosphate synthase,and acid invertase in sucrose accumulation in fruit of Asian pear. J Am Soc Hortic Sci, 117 (2):274-278. |
[17] |
Mukherjee T, Ivanova M, Dagda M, Kanayama Y, Granot D, Holaday A S. 2015. Constitutively overexpressing a tomato fructokinase gene(LeFRK1)in cotton(Gossypium hirsutum L. cv. Coker 312)positively affects plant vegetative growth,boll number and seed cotton yield. Funct Plant Biol, 42:899-908.
doi: 10.1071/FP15035 pmid: 32480732 |
[18] |
Odanaka S, Bennett A B, Kanayama Y. 2002. Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol, 129:1119-1126.
pmid: 12114566 |
[19] |
Pego J V, Smeekens S C. 2000. Plant fructokinases:a sweet family get-together. Trends Plant Sci, 5:531-536.
pmid: 11120475 |
[20] |
Riggs J W, Cavales P C, Chapiro S M, Callis J. 2017. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC Plant Biol, 17:83-100.
doi: 10.1186/s12870-017-1031-5 pmid: 28441933 |
[21] | Stein O, Avin-Wittenberg T, Krahnert I, Zemach H, Bogol V, Daron O, Aloni R, Fernie A R, Granot D. 2017. Arabidopsis fructokinases are important for seed oil accumulation and vascular development. Front Plant Sci, 7:2047-2062. |
[22] |
Stein O, Damari-Weissler H, Secchi F, Rachmilevitch S, German M A, Yeselson Y, Amir R, Schaffer A, Holbrook N M, Aloni R, Zwieniecki M A, Granot D. 2016. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. New Phytol, 209:1484-1495.
doi: 10.1111/nph.13705 pmid: 26467542 |
[23] |
Stein O, Granot D. 2018. Plant fructokinases:evolutionary,developmental,and metabolic aspects in sink tissues. Front Plant Sci, 9:339-350.
doi: 10.3389/fpls.2018.00339 pmid: 29616058 |
[24] |
Tanase K, Yamaki S. 2000. Sucrose synthase isozymes related to sucrose accumulation during fruit development of Japanese pear(Pyrus pyrifolia Nakai). J Jpn Soc Hortic Sci, 69:671-676.
doi: 10.2503/jjshs.69.671 URL |
[25] |
Taylor M A, Ross H A, Gardner A, Davies H A. 1995. Characterisation of a cDNA encoding fructokinase from potato(Solanum tuberosum L.). J Plant Physiol, 145 (3):253-256.
doi: 10.1016/S0176-1617(11)81885-7 URL |
[26] |
Yang J J, Zhu L C, Cui W F, Zhang C, Li D X, Ma B C, Cheng L L, Ruan Y L, Ma F W, Li M J. 2018. Increased activity of MdFRK2,a high-affinity fructokinase,leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. Hortic Res, 5:71-82.
doi: 10.1038/s41438-018-0099-x URL |
[27] | Yao Gai-fang, Zhang Shao-ling, Cao Yu-fen, Liu Jun, Wu Jun, Yuan Jiang, Zhang Hu-ping, Xiao Chang-cheng. 2010. Characteristics of components and contents of soluble sugars in pear fruits from different species. Scientia Agricultura Sinica, 43 (20):4229-4237. (in Chinese) |
姚改芳, 张绍铃, 曹玉芬, 刘军, 吴俊, 袁江, 张虎平, 肖长城. 2010. 不同栽培种梨果实中可溶性糖组分及含量特征. 中国农业科学, 43 (20):4229-4237. | |
[28] |
Yao Y, Geng M T, Wu X H, Sun C, Wang Y L, Chen X, Shang L, Lu X H, Li Z, Li R M, Fu S P, Duan R J, Liu J, Hu X W, Guo J C. 2017. Identification,expression,and functional analysis of the fructokinase gene family in Cassava. Int J Mol Sci, 18 (11):2398-2424.
doi: 10.3390/ijms18112398 URL |
[29] |
Zhang H P, Su Y, Yu Q, Qin G H. 2021. Quantitative proteomic analysis of the pear(Pyrus pyrifolia cv.‘Hosui’)flesh provides novel insights about development and quality characteristics of fruit. Planta, 253:69.
doi: 10.1007/s00425-021-03585-5 pmid: 33599839 |
[30] |
Zhang H P, Wu J Y, Qin G H, Yao G F, Qi K J, Wang L F, Zhang S L. 2014a. The role of sucrose-metabolizing enzymes in pear fruit that differ in sucrose accumulation. Acta Physiol Plant, 36:71-77.
doi: 10.1007/s11738-013-1387-6 URL |
[31] |
Zhang H P, Wu J Y, Tao S T, Wu T, Qi K J, Zhang S J, Wang J Z, Huang W J, Wu J, Zhang S L. 2014b. Evidence for apoplasmic phloem unloading in pear fruit. Plant Mol Biol Rep, 32:931-939.
doi: 10.1007/s11105-013-0696-7 URL |
[1] | 宋健坤, 杨英杰, 李鼎立, 马春晖, 王彩虹, 王 然. 梨新品种‘鲁秀’[J]. 园艺学报, 2022, 49(S2): 3-4. |
[2] | 董星光, 曹玉芬, 张 莹, 田路明, 霍宏亮, 齐 丹, 徐家玉, 刘 超, 王立东. 抗寒脆肉梨新品种‘玉翠香’[J]. 园艺学报, 2022, 49(S2): 5-6. |
[3] | 欧春青, 姜淑苓, 王 斐, 马 力, 张艳杰, 刘振杰. 早熟梨新品种‘兴梨蜜水’[J]. 园艺学报, 2022, 49(S2): 7-8. |
[4] | 张艳杰, 王 斐, 欧春青, 马 力, 姜淑苓, 刘振杰. 梨新品种‘中梨玉脆3’[J]. 园艺学报, 2022, 49(S2): 9-10. |
[5] | 范 净, 陈启亮, 张靖国, 杨晓平, 杜 威, 田 瑞, 周德平, 胡红菊, . 中熟红皮砂梨新品种‘金彤’[J]. 园艺学报, 2022, 49(S2): 11-12. |
[6] | 王苏珂, 李秀根, 杨 健, 王 龙, 苏艳丽, 张向展, 薛华柏. 红皮梨新品种‘丹霞红’[J]. 园艺学报, 2022, 49(S2): 13-14. |
[7] | 王 斐, 欧春青, 张艳杰, 马 力, 姜淑苓. 晚熟耐贮梨新品种‘华秋’[J]. 园艺学报, 2022, 49(S1): 9-10. |
[8] | 宋健坤, 李鼎立, 杨英杰, 马春晖, 王彩虹, 王 然. 梨新品种‘琴岛红’[J]. 园艺学报, 2022, 49(S1): 11-12. |
[9] | 黄玲, 胡先梅, 梁泽慧, 王艳平, 产祝龙, 向林. 郁金香花青素合成酶基因TgANS的克隆与功能鉴定[J]. 园艺学报, 2022, 49(9): 1935-1944. |
[10] | 郭伟珍, 赵京献, 李莹. 中早熟梨新品种‘美玉’[J]. 园艺学报, 2022, 49(9): 2051-2052. |
[11] | 刘金明, 郭彩华, 袁星, 亢超, 全绍文, 牛建新. 梨Dof家族基因鉴定及其在宿存与脱落萼片中的表达分析[J]. 园艺学报, 2022, 49(8): 1637-1649. |
[12] | 杨禹妍, 段新圆, 何治霖, 邴起浩, 陈锁英, 刘晓曼, 曾明, 刘小刚. 金柑UDP-鼠李糖合成酶基因的克隆与功能解析[J]. 园艺学报, 2022, 49(8): 1663-1672. |
[13] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[14] | 麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染[J]. 园艺学报, 2022, 49(6): 1247-1260. |
[15] | 梁沁, 张延晖, 康开权, 刘瑾航, 李亮, 冯宇, 王超, 杨超, 李永裕. miR168家族进化特性及其在砂梨休眠期的表达模式分析[J]. 园艺学报, 2022, 49(5): 958-972. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司