园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1247-1260.doi: 10.16420/j.issn.0513-353x.2021-0323
麻明英1,2, 郝晨星1,2, 张凯1,2, 肖桂华1,2, 苏翰英1,2, 文康1, 邓子牛1,2, 马先锋1,2,*()
收稿日期:
2021-12-10
修回日期:
2022-02-28
出版日期:
2022-06-25
发布日期:
2022-07-04
通讯作者:
马先锋
E-mail:maxf8006@126.com
基金资助:
MA Mingying1,2, HAO Chenxing1,2, ZHANG Kai1,2, XIAO Guihua1,2, SU Hanying1,2, WEN Kang1, DENG Ziniu1,2, MA Xianfeng1,2,*()
Received:
2021-12-10
Revised:
2022-02-28
Online:
2022-06-25
Published:
2022-07-04
Contact:
MA Xianfeng
E-mail:maxf8006@126.com
摘要:
柑橘溃疡病菌(Xanthomonas citri subsp. citri,Xcc)侵染感病种质冰糖橙叶片后,在侵染部位形成典型的火山口凸起症状,但在抗病种质枸橼C-05叶片侵染部位呈现逐渐褐色坏死,未形成溃疡病典型症状。基于前期冰糖橙和枸橼C-05叶片接种Xcc的转录组测序结果,分析鉴定的20个甜橙SWEET受Xcc诱导表达变化,结果显示SWEET2a和SWEET17d在冰糖橙中受Xcc诱导上调表达,SWEET12b在枸橼C-05中受Xcc诱导上调表达;实时荧光定量PCR验证,SWEET2a在冰糖橙叶片中受Xcc诱导高表达而在枸橼C-05叶片中表达变化不显著;SWEET2a在不同柑橘种质同源基因编码的氨基酸序列相似性为94.6%,其启动子顺式作用元件在冰糖橙和枸橼C-05中的种类和数量存在较大差异。冰糖橙和枸橼C-05叶片瞬时过表达结果显示,SWEET2a促进Xcc的繁殖,且拟南芥过表达转基因株系接种毒性菌Pst.DC3000(Pseudomonas syringae tomato DC3000)后,单位叶面积菌含量显著高于野生型。SWEET2a蛋白部分定位于质膜,表明SWEET2a可能被Xcc劫持用于跨膜运输糖类物质至胞外,供给Xcc在细胞间隙定殖所需要的能量。
中图分类号:
麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染[J]. 园艺学报, 2022, 49(6): 1247-1260.
MA Mingying, HAO Chenxing, ZHANG Kai, XIAO Guihua, SU Hanying, WEN Kang, DENG Ziniu, MA Xianfeng. CsSWEET2a Promotes the Infection of Xanthomonas citri subsp. citri[J]. Acta Horticulturae Sinica, 2022, 49(6): 1247-1260.
基因 Gene | 引物名称 Primer ID | 引物序列(5′-3′) Primer sequence | 退火温度/℃ Tm | 产物大小/ bp Size |
---|---|---|---|---|
SWEET17d | orange1.1t04897-qPCR-F1 | AATTTCATTTTTGGGCTTCTAGGCA | 58 | 105 |
orange1.1t04897-qPCR-R1 | AAATTCCTCCGTTGATCTACGCTGT | |||
SWEET12b | orange1.1t02627-qPCR-F1 | CACGTCTTCGTCTTCTCGGA | 58 | 89 |
orange1.1t02627-qPCR-R1 | GCGTACGACCAGCCTCATAA | |||
SWEET2a | Cs2g04140-qPCR-F1 | TCGCTACAGTGAATTCAGTTGGAGC | 60 | 174 |
Cs2g04140-qPCR-R1 | GCCGCCCATTGGAGTCAA | |||
EF1a | GTAACCAAGTCTGCTGCCAAG | |||
GACCCAAACACCCAACACATT | ||||
SWEET2a | Cs2g04140-KpnⅠ-F | GGGGTACCATGTCTTCAGTTGGGATTTC | 60 | 1 771 |
Cs2g04140- KpnⅠ-R | CCGGTACCTGCAAATGAATCGATCAG | |||
Cs2g04140-F | TCTGGAACTCAAGCATTCCGACTTT | 55 | 581 | |
p1300-eYFP-R | CCGGACACGCTGAACTTGT |
表1 引物列表
Table 1 The List of Primers
基因 Gene | 引物名称 Primer ID | 引物序列(5′-3′) Primer sequence | 退火温度/℃ Tm | 产物大小/ bp Size |
---|---|---|---|---|
SWEET17d | orange1.1t04897-qPCR-F1 | AATTTCATTTTTGGGCTTCTAGGCA | 58 | 105 |
orange1.1t04897-qPCR-R1 | AAATTCCTCCGTTGATCTACGCTGT | |||
SWEET12b | orange1.1t02627-qPCR-F1 | CACGTCTTCGTCTTCTCGGA | 58 | 89 |
orange1.1t02627-qPCR-R1 | GCGTACGACCAGCCTCATAA | |||
SWEET2a | Cs2g04140-qPCR-F1 | TCGCTACAGTGAATTCAGTTGGAGC | 60 | 174 |
Cs2g04140-qPCR-R1 | GCCGCCCATTGGAGTCAA | |||
EF1a | GTAACCAAGTCTGCTGCCAAG | |||
GACCCAAACACCCAACACATT | ||||
SWEET2a | Cs2g04140-KpnⅠ-F | GGGGTACCATGTCTTCAGTTGGGATTTC | 60 | 1 771 |
Cs2g04140- KpnⅠ-R | CCGGTACCTGCAAATGAATCGATCAG | |||
Cs2g04140-F | TCTGGAACTCAAGCATTCCGACTTT | 55 | 581 | |
p1300-eYFP-R | CCGGACACGCTGAACTTGT |
图3 冰糖橙和枸橼C-05 SWEETs受Xcc和Xoo诱导的表达量变化 双尾t检验(* P < 0.05)。.
Fig. 3 Relative expression of SWEETs induced by Xcc and Xoo in‘Bingtang’Sweet Orange and Citron C-05 Two-tailed student’s t-test(* P < 0.05).
图4 SWEET2a编码的氨基酸序列差异比对 BTC:冰糖橙;JY C-05:枸橼C-05;CGXY:长果香橼;Cg:柚;SJG:金柑;PTJY:普通枸橼。
Fig. 4 Sequence difference alignment of amino acids encoded by SWEET2a BTC:‘Bingtang’ Sweet Orange;JY C-05:Citron C-5;CGXY:Changguo Citron;Cg:Citrus Grandis;SJG:Fortunella Hindsii;PTJY:Common Citron.
图5 不同枸橼种质SWEET2a编码的氨基酸序列差异比对 JY C-05:枸橼C-05;AGXY:矮果香橼;PTJY:普通枸橼;YXY:园香橼;CGXY:长果香橼;DNXY:丹娜香橼;MGJY:美国枸橼;NCXY:南川香橼;YSXY:野生香橼;XXY:小香橼。
Fig. 5 Sequence difference alignment of amino acids encoded by SWEET2a in different Citron medica JY C-05:Citron C-5;AGXY:Aiguo Citron;PTJY:Common Citron;YXY:Round Citron;CGXY:Changguo Citron;DNXY:Danna Citron;MGJY:American Citron;NCXY:Nanchuan Citron;YSXY:Wild Citron;XXY:Small Citron.
顺式元件 cis-Element | 功能预测 Function prediction | 序列 Sequence | 起始位/bp Start position | |
---|---|---|---|---|
冰糖橙 ‘Bingtang’Sweet Orange | 枸橼C-05 Citron C-05 | |||
ARE | 厌氧诱导Anaerobic induction | AAACCA | + 212 | -905 |
+ 1 046 | -933 | |||
+ 1 489 | ||||
TCA-element | 水杨酸响应Salicylic acid responsiveness | TCAGAAGAGG | + 1 924 | |
MBS | MYB结合位点参与干旱诱导 | CAACTG | -1 626 | + 181 |
MYB binding site involved in drought-inducibility | -611 | |||
-1 422 | ||||
LTR | 低温诱导Low-temperature responsiveness | CCGAAA | -649 | -623 |
CAT-box | 分生组织表达Meristem expression | GCCACT | + 198 | + 1 571 |
-1 155 | ||||
+ 1 768 | ||||
TC-rich repeats | 防御和应激反应Defense and stress responsiveness | GTTTTCTTAC | + 1 478 | |
ABRE | 脱落酸响应Abscisic acid responsiveness | ACGTG | + 185 | |
+ 186 | ||||
-681 | ||||
+ 855 | ||||
-1 122 | ||||
-1 124 | ||||
+ 1 125 | ||||
-1 221 | ||||
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | CAACGG | -1 500 | -1 067 |
O2-site | Zein新陈代谢调节Zein metabolism regulation | GATGATGTGG | -356 | |
+ 399 | ||||
GCN4_motif | 胚乳表达Endosperm expression | TGAGTCA | + 44 | |
TGACG-motif | 茉莉酸甲酯响应MeJA-responsiveness | TGACG | -1 419 | |
TATC-box | 赤霉素响应Gibberellin responsiveness | TATCCCA | -341 |
表2 SWEET2a启动子顺式作用元件分析
Table 2 The Cis-acting regulatory elements in promoter of SWEET2a
顺式元件 cis-Element | 功能预测 Function prediction | 序列 Sequence | 起始位/bp Start position | |
---|---|---|---|---|
冰糖橙 ‘Bingtang’Sweet Orange | 枸橼C-05 Citron C-05 | |||
ARE | 厌氧诱导Anaerobic induction | AAACCA | + 212 | -905 |
+ 1 046 | -933 | |||
+ 1 489 | ||||
TCA-element | 水杨酸响应Salicylic acid responsiveness | TCAGAAGAGG | + 1 924 | |
MBS | MYB结合位点参与干旱诱导 | CAACTG | -1 626 | + 181 |
MYB binding site involved in drought-inducibility | -611 | |||
-1 422 | ||||
LTR | 低温诱导Low-temperature responsiveness | CCGAAA | -649 | -623 |
CAT-box | 分生组织表达Meristem expression | GCCACT | + 198 | + 1 571 |
-1 155 | ||||
+ 1 768 | ||||
TC-rich repeats | 防御和应激反应Defense and stress responsiveness | GTTTTCTTAC | + 1 478 | |
ABRE | 脱落酸响应Abscisic acid responsiveness | ACGTG | + 185 | |
+ 186 | ||||
-681 | ||||
+ 855 | ||||
-1 122 | ||||
-1 124 | ||||
+ 1 125 | ||||
-1 221 | ||||
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | CAACGG | -1 500 | -1 067 |
O2-site | Zein新陈代谢调节Zein metabolism regulation | GATGATGTGG | -356 | |
+ 399 | ||||
GCN4_motif | 胚乳表达Endosperm expression | TGAGTCA | + 44 | |
TGACG-motif | 茉莉酸甲酯响应MeJA-responsiveness | TGACG | -1 419 | |
TATC-box | 赤霉素响应Gibberellin responsiveness | TATCCCA | -341 |
图6 SWEET2a在本氏烟叶片的表达特征 A:注射含有35S::SWEET2a:eYFP的本氏烟;B:注射含有35S::SWEET2a:eYFP与细胞质膜定位标签基因PM-RB的本氏烟叶片质壁分离。黄色箭头指示SWEET2a荧光表达,蓝色箭头指示细胞壁,白色箭头指示PM-RB荧光,红色箭头指示为二者融合荧光。
Fig. 6 The expression patten of SWEET2a in Nicotiana benthamiana A:The Nicotiana benthamiana leaf containing 35S::SWEET2a:eYFP was injected;B:After injection of 35S::SWEET2a:eYFP and cytoplasmic membrane localization gene PM-RB,the plasma wall of Nicotiana benthamiana leaf was isolated. The yellow arrow indicates the fluorescence expression of SWEET2a;The blue arrow indicates the location of the cell wall;The white arrow indicates the fluorescence expression of PM-RB;The red arrows indicate merge expression of the two.
图7 瞬时过表达SWEET2a冰糖橙和枸橼C-05叶片接种Xcc后15 d症状(A)和0 ~ 4 d Xcc生长量(B) A:SWEET2a瞬时过表达的冰糖橙叶片接种后15 d症状;B:瞬时过表达后,冰糖橙中Xcc生长量。双尾t检验(* P < 0.05)。
Fig. 7 The symptom of Xcc in leaves of‘Bingtang’Sweet Orange and Citron C-05 after transient overexpression of SWEET2a at 15 d(A)and the growth of Xcc at 0-4 d(B) A:The symptoms of transient overexpression of SWEET2a in‘Bingtang’Sweet Orange leaves in 15 d;B:The growth of Xcc in‘Bingtang’ Sweet Orange after transient overexpression. Two-tailed Student’s t-test(* P < 0.05).
图9 OE-SWEET2a 接种Pst.DC3000后3 d症状(A)和病菌含量(B) A:接种Pst. DC3000后3 d症状;B:单位叶面积Pst. DC3000含量;Wild Type:野生型拟南芥对照。双尾t检验(* p < 0.05)。
Fig. 9 Symptoms(A)and pathogen content(B)of OE-SWEET2a at 3 days after inoculation with Pst.DC3000 A:Symptoms of Pst. DC3000 in 3 d;B:Pst. DC3000 content per unit leaf area;WT:Wild Type. Two-tailed Student’s t-test(* P < 0.05).
[1] |
Behlau F, Belasque J J, Bergamin F A, Graham J H, Leite J R P, Gottwald T R. 2008. Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protection, 27 (3-5):807-813.
doi: 10.1016/j.cropro.2007.11.008 URL |
[2] | Rhonda C M, Steinfath M, Lisec J, Becher M, Witucka-Wall H, TorjéK O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy, 104 (11):4759-4764. |
[3] |
Chandran D. 2015. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. Iubmb Life, 67 (7):461-471.
doi: 10.1002/iub.1394 pmid: 26179993 |
[4] |
Chardon F, Bedu M, Calenge F, Klemens P A W, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17. Current Biology, 23 (8):697-702.
doi: 10.1016/j.cub.2013.03.021 pmid: 23583552 |
[5] |
Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. 2015. The Arabidopsis vacuolar sugar transporter SWEET 2 limits carbon sequestration from roots and restricts pythium infection. The Plant Journal, 83 (6):1046-1058.
doi: 10.1111/tpj.12948 URL |
[6] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W, Kim J, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468 (7323):527-532.
doi: 10.1038/nature09606 URL |
[7] |
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio W S, Fernie A R, Frommer W B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335:207-211.
doi: 10.1126/science.1213351 URL |
[8] |
Chen L Q. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist, 201 (4):1150-1155.
doi: 10.1111/nph.12445 URL |
[9] |
Chong J L, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine:VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany, 65:6589-6601.
doi: 10.1093/jxb/eru375 URL |
[10] |
Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. 2006. Targeting xa13,a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics, 112:455-461.
doi: 10.1007/s00122-005-0145-6 URL |
[11] |
Cohn Megan, Morbitzer Robert, Bart Rebecca S, Hou B H, Shybut M, Frommer W B, Dahlbeck D, Lahaye T, Gomez M, Staskawicz B J. 2014. Xanthomonas axonopodis Virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in Cassava. Molecular Plant-Microbe Interactions, 27 (11):1186-1198.
doi: 10.1094/MPMI-06-14-0161-R pmid: 25083909 |
[12] |
Cox K L, Meng F H, Wilkins K E, Li F J, Wang P, Booher N J, Carpenter C D, Chen L Q, Zheng H, Gao X Q, Zheng Y, Fei Z J, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L B. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications, 8:15588.
doi: 10.1038/ncomms15588 URL |
[13] | Das A K. 2003. Citrus canker-a review. J Appl Hort, 5 (1):52-60. |
[14] |
Ference C M, Baldwin E A, Manthey J A, Jones J B. 2020. Inhibitory extracts of calamondin leaves associated with precipitous decline of Xanthomonas citri subsp. citri populations. European Journal of Plant Pathology, 156 (2):451-461.
doi: 10.1007/s10658-019-01894-w URL |
[15] |
Frank B R, Kristen A L, David M B. 2012. SWEET as sugar:new sucrose effluxers in plants. Molecular Plant, 5 (4):766-768.
doi: 10.1093/mp/sss054 pmid: 22815540 |
[16] |
Gao Y, Wang Z, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Ji B L, Xuan Y H. 2018. Genome-wide identification of the SWEET gene family in wheat. Gene, 642:284-292.
doi: 10.1016/j.gene.2017.11.044 URL |
[17] | Geng Yanqiu, Dong Xiaochang, Zhang Chunmei. 2021. Recent progress of sugar transporter in horticultural crops. Acta Horticulturae Sinica, 48 (4):676-688. (in Chinese) |
耿艳秋, 董肖昌, 张春梅. 2021. 园艺作物糖转运蛋白研究进展. 园艺学报, 48 (4):676-688. | |
[18] |
Gottwald T R, Graham J H, Civerolo E L, Barrett H C, Hearn C J. 1993. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity. Plant Disease, 77 (10):1004-1009.
doi: 10.1094/PD-77-1004 URL |
[19] |
Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. 2014. SWEET17,a facilitative transporter,mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164 (2):777-789.
doi: 10.1104/pp.113.232751 URL |
[20] | Hu Y, Zhang J L, Jia H G, Sosso D, Li T, Frommer W B, Yang B, White F F, Wang N, Jones J B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA, 111(4):E521-529. |
[21] |
Jean C R T, Stroock A D. 2017. Phloem loading through plasmodesmata a biophysical analysis. Plant Physiology, 175:904-915.
doi: 10.1104/pp.16.01041 URL |
[22] |
Joan D, Emily G, Christina K, Francoise S P, Casieri L, Wipf D. 2012. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 17 (7):413-422.
doi: 10.1016/j.tplants.2012.03.009 URL |
[23] |
Lalonde S, Wipf D, Frommer W B. 2004. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 55:341-372.
pmid: 15377224 |
[24] | Li Qiang, Qi Jingjing, Dou Wanfu, Qin Xiujuan, He Yongrui, Chen Shanchun. 2020. Overexpression of CsNBS-LRR in citrus confers bacterial canker resistance by regulating SA signaling pathway. Acta Horticulturae Sinica, 47 (5):817-826. (in Chinese) |
李强, 祁静静, 窦万福, 秦秀娟, 何永睿, 陈善春. 2020. 柑橘超量表达CsNBS-LRR 通过SA 信号途径增强对溃疡病抗性. 园艺学报, 47 (5):817-826. | |
[25] | Liu Q S, Meng Y, Zhou Y, Li X H, Xiao J H, Wang S P. 2011. A paralog of the MtN3/saliva family recessively confersrace-specific resistance to Xanthomonas oryzae in rice. Plantcell Environ, 34:1958-1969. |
[26] |
Liu X Z, Zhang Y, Yang C, Tian Z H, Li J X. 2016. AtSWEET4,a hexose facilitator,mediates sugar transport to axial sinks and affects plant development. Scientific Reports, 6:1-12.
doi: 10.1038/s41598-016-0001-8 URL |
[27] | Ma Zhimin, Duan Yu, Xu Jianjian, Bin Yu, Zhou Changyong, Song Zhen. 2021. The rapid detection of Xanthomonas citri ssp. citri(Xcc)based on recombinase polymerase amplification(RPA)assay. Acta Horticulturae Sinica, 48 (3):590-599. (in Chinese) |
马志敏, 段玉, 许建建, 宾羽, 周常勇, 宋震. 2021. 基于重组酶聚合酶扩增技术(RPA)的柑橘溃疡病菌检测方法. 园艺学报, 48 (3):590-599. | |
[28] | Qi Jingjing, Dou Wanfu, Zhang Qingwen, Hu Anhua, Chen Shanchun, Lei Tiangang, Peng Aihong, Xu Lanzhen, Yao Lixiao, He Yongrui, Li Qiang. 2020. Interacting protein screening and analysis of CsAP2-09—a citrus bacterial canker related transcription factor. Acta Horticulturae Sinica, 47 (3):432-444. (in Chinese) |
祁静静, 窦万福, 张庆雯, 胡安华, 陈善春, 雷天刚, 彭爱红, 许兰珍, 姚利晓, 何永睿, 李强. 2020 柑橘抗溃疡病转录因子CsAP2-09互作蛋白筛选与分析. 园艺学报, 47 (3):432-444. | |
[29] | Qi Jingjing, Qin Xiujuan, Xie Yu, Chen Shanchun, He Yongrui, Li Qiang. 2021. Correlation analysis of citrus catalase gene CsKat01and citrus canker disease. Acta Horticulturae Sinica, 48 (1):26-36. (in Chinese) |
祁静静, 秦秀娟, 谢宇, 陈善春, 何永睿, 李强. 2021. 过氧化氢酶基因CsKat01与柑橘溃疡病相关性分析. 园艺学报, 48 (1):26-36. | |
[30] |
Schaad N W, Postnikova E, Lacy G, Sechler A, Agarkova I, Stromberg P E, Stromberg V K, Vidaver A K. 2006. Emended classification of xanthomonad pathogens on citrus. Syst Appl Microbiol, 29 (8):690-695.
doi: 10.1016/j.syapm.2006.08.001 URL |
[31] | Schubert T S, Rizvi S A, Sun X A, Gottwald T R, Graham J H, Dixon W N. 2001. Meeting the challenge of eradicating citrus canker in Florida-Again. Plant Disease, 85 (4):340-356. |
[32] |
Slewinski T L. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants:a physiological perspective. Molecular Plant, 4 (4):641-662.
doi: 10.1093/mp/ssr051 pmid: 21746702 |
[33] |
Smeekens S, Ma J K, Hanson J, Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 13 (3):274-279.
doi: 10.1016/j.pbi.2009.12.002 pmid: 20056477 |
[34] |
Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist, 200 (3):808-819.
doi: 10.1111/nph.12411 pmid: 23879865 |
[35] |
Swarup S, Yinong Y, Kingsley M T, Gabriel D W. 1992. An Xanthomonas citri pathogenicity gene,pthA,pleiotropically encodes gratuitous avirulence on Nonhosts. Molecular Plant-Microbe Interactions, 5 (3):204-213.
pmid: 1421509 |
[36] |
Tang D J, He Y Q, Feng J X, He B R, Jiang B L, Lu G T, Chen B S, Tang J L. 2005. Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. Journal of bacteriology, 187 (17):6231-6237.
doi: 10.1128/JB.187.17.6231-6237.2005 URL |
[37] |
Yang B, Sugio A, White F F. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci, 103 (27):10503-10508.
doi: 10.1073/pnas.0604088103 URL |
[38] |
Zhou J H, Peng Z, Long J Y, Sosso D, Liu B, Eom J S, Huang S, Liu S Z, Cruz C V, Frommer W B, White F F, Yang B. 2015. Gene targeting by the TAL effector pthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant Journal, 82:632-643.
doi: 10.1111/tpj.12838 URL |
[39] | Zhu Zhi-mei, Tan Li-mei, Xu Jing, Fu Hong-yan, Hu Zhe, Gong Lei, Yang Gui-bing, Wang Ping, Ma Xian-feng, Deng Zi-niu. 2021. Evaluation of citron genotypes for the resistance to citrus canker. China Fruits,(1):43-49. (in Chinese) |
朱志媚, 谭李梅, 徐静, 符红艳, 胡哲, 龚蕾, 杨贵兵, 王萍, 马先锋, 邓子牛. 2021. 枸橼种质对柑橘溃疡病的抗性鉴定. 中国果树,(1):43-49. |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 蒋靖东, 韦壮敏, 王楠, 朱晨桥, 叶俊丽, 谢宗周, 邓秀新, 柴利军. 山金柑四倍体资源的发掘与鉴定[J]. 园艺学报, 2023, 50(1): 27-35. |
[3] | 杜玉玲, 杨凡, 赵娟, 刘书琪, 龙超安. 新鱼腥草素钠对柑橘指状青霉的抑菌作用[J]. 园艺学报, 2023, 50(1): 145-152. |
[4] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[5] | 朱凯杰, 张哲惠, 曹立新, 向舜德, 叶俊丽, 谢宗周, 柴利军, 邓秀新, . 棕色晚熟脐橙新品种‘宗橙’[J]. 园艺学报, 2022, 49(S1): 41-42. |
[6] | 朱世平, 文荣中, 王媛媛, 曾 杨. 特晚熟柑橘新品种‘金乐柑’[J]. 园艺学报, 2022, 49(S1): 43-44. |
[7] | 黄玲, 胡先梅, 梁泽慧, 王艳平, 产祝龙, 向林. 郁金香花青素合成酶基因TgANS的克隆与功能鉴定[J]. 园艺学报, 2022, 49(9): 1935-1944. |
[8] | 杨禹妍, 段新圆, 何治霖, 邴起浩, 陈锁英, 刘晓曼, 曾明, 刘小刚. 金柑UDP-鼠李糖合成酶基因的克隆与功能解析[J]. 园艺学报, 2022, 49(8): 1663-1672. |
[9] | 陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440. |
[10] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
[11] | 杨海健, 张云贵, 周心智. 柑橘新品种‘云贵脆橙’[J]. 园艺学报, 2022, 49(7): 1611-1612. |
[12] | 张凯, 麻明英, 王萍, 李益, 金燕, 盛玲, 邓子牛, 马先锋. 柑橘HSP20家族基因鉴定及其响应溃疡病菌侵染表达分析[J]. 园艺学报, 2022, 49(6): 1213-1232. |
[13] | 李文婷, 李翠晓, 林小清, 郑永钦, 郑正, 邓晓玲. 基于STR位点对广东省柑橘溃疡病菌种群遗传结构的分析[J]. 园艺学报, 2022, 49(6): 1233-1246. |
[14] | 贾亚敏, 徐浩, 胡文朗, 王玉雯, 叶欣, 陈立松, 李延, 郭九信. 缺镁对柑橘苗铁的吸收及亚细胞分布和化学形态的影响[J]. 园艺学报, 2022, 49(5): 973-983. |
[15] | 韦壮敏, 魏斯佳, 陈鹏, 胡健兵, 汤雨晴, 叶俊丽, 李先信, 邓秀新, 柴利军. 63份柚类资源S基因型鉴定[J]. 园艺学报, 2022, 49(5): 1111-1120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司