[1] |
Balasubramanian R, Karve A, Moore B D. 2008. Actin-based cellular framework for glucose signaling by Arabidopsis hexokinase 1. Plant Signaling & Behavior, 3 (5):322-324.
|
[2] |
Britto D T, Coskun D, Kronzucker H J. 2021. Potassium physiology from Archean to Holocene:a higher-plant perspective. Journal of Plant Physiology, 262:153432.
doi: 10.1016/j.jplph.2021.153432
URL
|
[3] |
Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G. 2015. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell and Environment, 38 (12):2747-2765.
doi: 10.1111/pce.12585
URL
|
[4] |
Chen Guang. 2015. Functional characterization of potassium transpoter OsHAK1 and generating potassium efficient rice by using promoters of potassium-dfficient responsive OsHAK genes[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese)
|
|
陈光. 2015. 钾转运体OsHAK1的功能鉴定和利用缺钾响应OsHAK基因启动子培育钾高效水稻[博士论文]. 南京: 南京农业大学.
|
[5] |
Cheng Yinsheng, Chen Jianqiu, Chen Dan, Lü Jiahong, Zhang Jun, Zhang Shaoling, Wu Tao, Zhang Huping. 2019. Cloning and functional analysis of the promoter of PbTMT4 gene related sugar transport in pear. Acta Horticulturae Sinica, 46 (1):25-36. (in Chinese)
|
|
程寅胜, 陈健秋, 陈丹, 吕佳红, 张俊, 张绍铃, 伍涛, 张虎平. 2019. 梨糖转运相关基因PbTMT4启动子克隆及功能分析. 园艺学报, 46 (1):25-36.
doi: 10.16420/j.issn.0513-353x.2017-0786
|
[6] |
Dreyer I, Vergara-Jaque A, Riedelsberger J, Gonzalez W. 2019. Exploring the fundamental role of potassium channels in novel model plants. Journal of Experimental Botany, 70 (21):5985-5989.
doi: 10.1093/jxb/erz413
pmid: 31738434
|
[7] |
Grabov A. 2007. Plant KT/KUP/HAK potassium transporters:single family——multiple functions. Annals of Botany, 99 (6):1035-1041.
doi: 10.1093/aob/mcm066
URL
|
[8] |
Lara A, Rodenas R, Andres Z, Martinez V, Quintero F J, Nieves-Cordones M, Angeles Botella M, Rubio F. 2020. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9. Journal of Experimental Botany, 71 (16):5053-5060.
doi: 10.1093/jxb/eraa212
URL
|
[9] |
Lhamo D, Wang C, Gao Q F, Luan S. 2021. Recent advances in genome-wide analyses of plant potassium transporter families. Current Genomics, 22 (3):164-180.
doi: 10.2174/1389202922666210225083634
pmid: 34975289
|
[10] |
Li W, Xu G, Alli A, Yu L. 2018. Plant HAK/KUP/KT K+transporters:function and regulation. Seminars in Cell & Developmental Biology, 74:133-141.
|
[11] |
Ming W le Gourrierec José, Fuchao J, Sabine D, MariaDolores P, Laurent O, Latifa H, Laurent C, Jessica B, Jingtang C, Philippe G, Soulaiman S. 2021. Convergence and divergence of sugar and cytokinin signaling in plant development. International Journal of Molecular Sciences, 22 (3),doi:10.3390/IJMS22031282.
doi: 10.3390/IJMS22031282
|
[12] |
Santa-Maria G E, Oliferuk S, Moriconi J I. 2018. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms:a twenty years tale. Journal of Plant Physiology, 226:77-90.
doi: S0176-1617(18)30102-0
pmid: 29704646
|
[13] |
Senn M E, Rubio F, Banuelos M A, Rodriguez-Navarro A. 2001. Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. Journal of Biological Chemistry, 276 (48):44563-44569.
doi: 10.1074/jbc.M108129200
pmid: 11562376
|
[14] |
Shen C W, Shi X Q, Xie C Y, Li Y, Yang H, Mei X L, Xu Y C, Dong C X. 2019. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. Journal of Plant Physiology, 232:320-333.
doi: S0176-1617(18)30774-0
pmid: 30553968
|
[15] |
Shen Zhangwei. 2017. Physiological and molecular mechanism of affecting sugar biosynthesis and distribution in pear leaves and fruit by potassium supply[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese)
|
|
申长卫. 2017. 施钾影响梨叶片和果实糖合成及分配的生理与分子机制[博士论文]. 南京: 南京农业大学.
|
[16] |
Shi Xiangbin, Wang Xiaodi, Wang Baoliang, Wang Zhiqiang, Ji Xiaohao, Wang Xiaolong, Liu Fengzhi, Wang Haibo. 2021. Requirement rule of nitrogen,phosphorus,potassium,calcium and magnesium of‘Red Globe’grapevine. Acta Horticulturae Sinica, 48 (11):2146-2160. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0785
|
|
史祥宾, 王孝娣, 王宝亮, 王志强, 冀晓昊, 王小龙, 刘凤之, 王海波. 2021. ‘红地球’葡萄氮、磷、钾、钙、镁的年需求特性研究. 园艺学报, 48 (11):2146-2160.
doi: 10.16420/j.issn.0513-353x.2020-0785
|
[17] |
Song Zhi-zhong, Guo Shao-lei, Ma Rui-juan, Yu Ming-liang. 2015. Expression of KT/HAK/KUP family genes at flowering stage of peach and their response to potassium fertilizer application. Scientia Agricultura Sinica, 48 (6):1177-1185. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.06.13
|
|
宋志忠, 郭绍雷, 马瑞娟, 俞明亮. 2015. KT/HAK/KUP家族基因在桃开花期的表达及对钾肥施用的响应. 中国农业科学, 48 (6):1177-1185.
doi: 10.3864/j.issn.0578-1752.2015.06.13
|
[18] |
Srivastava A K, Shankar A, Chandran A K N, Sharma M, Jung K, Suprasanna P, Pandey G K. 2020. Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany, 71 (2):608-619.
doi: 10.1093/jxb/erz458
pmid: 31624829
|
[19] |
van Dingenen J, Vermeersch M, de Milde L, Hulsmans S, de Winne N, van Leene J, Gonzalez N, Dhondt S, de Jaeger G, Rolland F, Inze D. 2019. The role of HEXOKINASE 1 in Arabidopsis leaf growth. Plant Molecular Biology, 99 (1-2):79-93.
doi: 10.1007/s11103-018-0803-0
pmid: 30511331
|
[20] |
Vijay V, Dalal R P S, Beniwal B S, Saini H. 2017. Effect of foliar application of potassium and its spray schedule on yield and yield parameters of sweet orange(Citrus sinensis Osbeck)cv. Jaffa. Journal of Applied and Natural Science, 9 (2),doi:10.31018/jans.v9i2.1276.
doi: 10.31018/jans.v9i2.1276
|
[21] |
Wang Y, Xu J, Zhang M, Tian X, Li Z. 2018b. GhKT2:a novel K+ transporter gene in cotton(Gossypium hirsutum). Frontiers of Agricultural Science and Engineering, 5 (2):226-235.
|
[22] |
Wang Y Z, Lu J H, Chen D, Zhang J, Qi K J, Cheng R, Zhang H P, Zhang S L. 2018a. Genome-wide identification,evolution,and expression analysis of the KT/HAK/KUP family in pear. Genome, 61 (10):755-765.
doi: 10.1139/gen-2017-0254
URL
|
[23] |
Yang T, Feng H, Zhang S, Xiao H, Hu Q, Chen G, Xuan W, Moran N, Murphy A, Yu L, Xu G. 2020. The potassium transporter OsHAK5alters rice architecture via ATP-dependent transmembrane auxin fluxes. Plant Communications, 1:100052.
doi: 10.1016/j.xplc.2020.100052
URL
|
[24] |
Zhang H, Yang Z, You X, Heng Y, Wang Y. 2021. The potassium transporter AtKUP12 enhances tolerance to salt stress through the maintenance of the K+/Na+ ratio in Arabidopsis. Phyton-International Journal of Experimental Botany, 90 (2):389-402.
|
[25] |
Zhang M, Huang P, Ji Y, Wang S, Wang S, Li Z, Guo Y, Ding Z, Wu W, Wang Y. 2020. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K+. Embo Reports, 21 (6),doi:10.15252/embr.202050164.
doi: 10.15252/embr.202050164
|
[26] |
Zhang Wen, Zhang Di, Chen Deng-wen. 2022. Effects of potassium on sugar accumulation in apple fruits. Journal of Northeast Agricultural Sciences, 47 (5):98-101,160. (in Chinese)
|
|
张雯, 张迪, 陈登文. 2022. 钾元素在苹果果实糖积累中的作用. 东北农业科学, 47 (5):98-101,160.
|
[27] |
Zhao Jianrong, Yang Yuan, Qin Gaihua, Liu Chunyan, Yu Qing, Jia Botao, Su Ying, Cao Zhen, Li Jiyu. 2022. Identification and functional analysis of HAK/KUP/KT family genes in pomegranate. Acta Horticulturae Sinica, 49 (4):758-768. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0202
URL
|
|
赵建荣, 杨圆, 秦改花, 刘春燕, 于晴, 贾波涛, 苏颖, 曹榛, 黎积誉. 2022. 石榴HAK/KUP/KT家族基因鉴定及钾转运功能分析. 园艺学报, 49 (4):758-768.
doi: 10.16420/j.issn.0513-353x.2021-0202
URL
|