园艺学报 ›› 2023, Vol. 50 ›› Issue (4): 864-874.doi: 10.16420/j.issn.0513-353x.2022-0026
李玉梅1, 娄玉穗2, 王小龙1, 马玉全1, 王海波1,*(), 吕中伟2,*(
)
收稿日期:
2022-06-25
修回日期:
2022-11-26
出版日期:
2023-04-25
发布日期:
2023-04-27
通讯作者:
*(E-mail:haibo8316@163.com,nkylzw@126.com)
基金资助:
LI Yumei1, LOU Yusui2, WANG Xiaolong1, MA Yuquan1, WANG Haibo1,*(), LÜ Zhongwei2,*(
)
Received:
2022-06-25
Revised:
2022-11-26
Online:
2023-04-25
Published:
2023-04-27
Contact:
*(E-mail:haibo8316@163.com,nkylzw@126.com)
摘要:
以豫东地区主栽的4 ~ 5年生‘夏黑’葡萄为试材,选取32个主产园作为试验园,于2018—2019年对其进行土壤和叶片矿质养分分析,并对成熟期的果实品质进行综合评价,利用组分营养诊断法(CND)建立果实综合品质与土壤和叶片矿质养分的函数模型,对土壤和叶片进行营养诊断分析,初步建立土壤和叶片营养诊断标准。土壤矿质元素分析结果表明,土壤中有效态的N、P、K、Ca和Mg元素含量均处于丰富及以上水平,微量元素除有效Mo处于较低水平外,有效Cu、Fe、Mn均处于很丰富水平,有效B和有效Zn也都在丰富水平,且各微量元素含量因土层引起的差异较小,变异系数也处于中等水平。营养诊断结果为:土壤营养诊断得到4个高质园,诊断标准为速效氮39.23 ~ 205.20、速效磷11.47 ~ 31.53、速效钾106.38 ~ 436.62、交换性钙6 599.83 ~ 7 513.33、交换性镁550.52 ~ 592.15、有效铁162.32 ~ 220.87、有效锰86.52 ~ 93.89、有效铜2.18 ~ 2.54、有效锌1.15 ~ 1.91、有效硼1.03 ~ 1.29、有效钼0.13 ~ 0.14 mg · kg-1。叶营养诊断获得5个高质园,其诊断标准为氮18.46 ~ 23.33、磷4.19 ~ 5.85、钾10.91 ~ 12.46、钙20.85 ~ 25.95和镁3.68 ~ 4.30 g · kg-1,铁198.58 ~ 382.25、锰67.23 ~ 119.25、铜93.23 ~ 231.67、锌29.16 ~ 52.13、硼22.14 ~ 33.88、钼0.71 ~ 1.11 mg · kg-1。因此对于诊断得到的高质园按常规施肥即可,而相应低质园的施肥建议为,对于含量较低的B、Fe、Mo等元素首先考虑在早秋施基肥时以土施的方式补充;对于Mg元素土壤按常规施肥管理,叶面肥则应少施或不施;而Mn元素应在葡萄主要生育期进行叶面喷施;对于P、K、Ca、Zn等元素栽培管理中应适度控制施肥量。
中图分类号:
李玉梅, 娄玉穗, 王小龙, 马玉全, 王海波, 吕中伟. ‘夏黑’葡萄高品质果园植株叶片和土壤营养诊断研究[J]. 园艺学报, 2023, 50(4): 864-874.
LI Yumei, LOU Yusui, WANG Xiaolong, MA Yuquan, WANG Haibo, LÜ Zhongwei. Research on Nutritional Diagnosis of Leaves and Soil in High Quality Grape Orchard of‘Summer Black’[J]. Acta Horticulturae Sinica, 2023, 50(4): 864-874.
元素 Element | 0 ~ 20 cm土层Soil layer | 20 ~ 40 cm 土层Soil layer | 40 ~ 60 cm 土层Soil layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
含量范围/ (mg · kg-1) Content range | 均值Mean | CV/% | 含量范围/ (mg · kg-1) Content range | 均值Mean | CV/% | 含量范围/ (mg · kg-1) Content range | 平均值Mean | CV/% | |||
N | 31.2 ~ 291.8 | 160.9 ± 22.0 | 54.63 | 22.6 ~ 206.8 | 140.0 ± 6.0 | 45.65 | 17.2 ~ 183.2 | 118.8 ± 12.3 | 41.44 | ||
P | 6.4 ~ 85.7 | 32.9 ± 5.7 | 68.89 | 5.3 ~ 48.7 | 22.4 ± 3.3 | 59.25 | 4.0 ~ 22.1 | 11.2 ± 1.7 | 59.63 | ||
K | 60.3 ~ 968.8 | 486.5 ± 63.1 | 51.85 | 81.0 ~ 686.2 | 353.8 ± 45.9 | 51.86 | 105.6 ~ 415.4 | 226.3 ± 27.3 | 48.20 | ||
Ca | 5 285.3 ~ 10 328.8 | 7 524.7 ± 399.4 | 21.23 | 5 765 ~ 10 534.3 | 7 139.8 ± 290.0 | 16.25 | 4 982.5 ~ 11 953.8 | 7 443.8 ± 461.8 | 24.81 | ||
Mg | 387.1 ~ 606.3 | 498.1 ± 16.7 | 13.39 | 352.4 ~ 696.8 | 528.4 ± 20.0 | 15.16 | 434.6 ~ 764.8 | 564.6 ± 20.8 | 14.74 | ||
B | 0.92 ~ 2.11 | 1.13 ± 0.07 | 25.04 | 0.56 ~ 2.53 | 1.10 ± 0.1 | 38.14 | 0.67 ~ 1.21 | 1.00 ± 0.04 | 17.41 | ||
Cu | 1.78 ~ 4.97 | 2.75 ± 0.2 | 29.19 | 1.82 ~ 4.3 | 2.57 ± 0.15 | 23.22 | 1.55 ~ 3.86 | 2.52 ± 0.14 | 22.89 | ||
Fe | 112.58 ~ 277.75 | 161.24 ± 10.58 | 26.25 | 117.81 ~ 283.88 | 161.06 ± 9.5 | 23.59 | 80.07 ~ 218.65 | 146.99 ± 8.81 | 23.96 | ||
Mn | 83.97 ~ 116.98 | 100.48 ± 2.16 | 8.58 | 83.82 ~ 104.7 | 96.41 ± 1.39 | 5.77 | 76.48 ~ 13.7 | 99.75 ± 2.41 | 9.66 | ||
Mo | 0.07 ~ 0.08 | 0.073 ± 0.00 | 6.83 | 0.07 ~ 0.09 | 0.075 ± 0.00 | 8.49 | 0.01 ~ 0.14 | 0.068 ± 0.01 | 45.02 | ||
Zn | 1.77 ~ 5.36 | 2.59 ± 0.23 | 35.35 | 1.20 ~ 4.34 | 1.83 ± 0.18 | 39.73 | 1.30 ~ 2.87 | 1.80 ± 0.12 | 27.72 |
表1 不同土层的土壤矿质养分含量及其变异系数
Table 1 Content and coefficient of variation of soil mineral nutrients in different soil layers
元素 Element | 0 ~ 20 cm土层Soil layer | 20 ~ 40 cm 土层Soil layer | 40 ~ 60 cm 土层Soil layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
含量范围/ (mg · kg-1) Content range | 均值Mean | CV/% | 含量范围/ (mg · kg-1) Content range | 均值Mean | CV/% | 含量范围/ (mg · kg-1) Content range | 平均值Mean | CV/% | |||
N | 31.2 ~ 291.8 | 160.9 ± 22.0 | 54.63 | 22.6 ~ 206.8 | 140.0 ± 6.0 | 45.65 | 17.2 ~ 183.2 | 118.8 ± 12.3 | 41.44 | ||
P | 6.4 ~ 85.7 | 32.9 ± 5.7 | 68.89 | 5.3 ~ 48.7 | 22.4 ± 3.3 | 59.25 | 4.0 ~ 22.1 | 11.2 ± 1.7 | 59.63 | ||
K | 60.3 ~ 968.8 | 486.5 ± 63.1 | 51.85 | 81.0 ~ 686.2 | 353.8 ± 45.9 | 51.86 | 105.6 ~ 415.4 | 226.3 ± 27.3 | 48.20 | ||
Ca | 5 285.3 ~ 10 328.8 | 7 524.7 ± 399.4 | 21.23 | 5 765 ~ 10 534.3 | 7 139.8 ± 290.0 | 16.25 | 4 982.5 ~ 11 953.8 | 7 443.8 ± 461.8 | 24.81 | ||
Mg | 387.1 ~ 606.3 | 498.1 ± 16.7 | 13.39 | 352.4 ~ 696.8 | 528.4 ± 20.0 | 15.16 | 434.6 ~ 764.8 | 564.6 ± 20.8 | 14.74 | ||
B | 0.92 ~ 2.11 | 1.13 ± 0.07 | 25.04 | 0.56 ~ 2.53 | 1.10 ± 0.1 | 38.14 | 0.67 ~ 1.21 | 1.00 ± 0.04 | 17.41 | ||
Cu | 1.78 ~ 4.97 | 2.75 ± 0.2 | 29.19 | 1.82 ~ 4.3 | 2.57 ± 0.15 | 23.22 | 1.55 ~ 3.86 | 2.52 ± 0.14 | 22.89 | ||
Fe | 112.58 ~ 277.75 | 161.24 ± 10.58 | 26.25 | 117.81 ~ 283.88 | 161.06 ± 9.5 | 23.59 | 80.07 ~ 218.65 | 146.99 ± 8.81 | 23.96 | ||
Mn | 83.97 ~ 116.98 | 100.48 ± 2.16 | 8.58 | 83.82 ~ 104.7 | 96.41 ± 1.39 | 5.77 | 76.48 ~ 13.7 | 99.75 ± 2.41 | 9.66 | ||
Mo | 0.07 ~ 0.08 | 0.073 ± 0.00 | 6.83 | 0.07 ~ 0.09 | 0.075 ± 0.00 | 8.49 | 0.01 ~ 0.14 | 0.068 ± 0.01 | 45.02 | ||
Zn | 1.77 ~ 5.36 | 2.59 ± 0.23 | 35.35 | 1.20 ~ 4.34 | 1.83 ± 0.18 | 39.73 | 1.30 ~ 2.87 | 1.80 ± 0.12 | 27.72 |
元素 | 累计方差函数FCi(Vy)与品质指数(Y)的函数式 | R2 | 品质指数拐点值 |
---|---|---|---|
Element | Function between FCi(Vy)and quality index(Y) | Quality index at inflection point | |
N | FCi(V_N)= 52.799 y3-108.07y2-85.951y + 120.18 | 0.9755 | 0.6823 |
P | FCi(V_P)=-516.38y3 + 947.15y2-668.33y + 207.54 | 0.9806 | 0.6114 |
K | FCi(V_K)=-1368.8y3 + 2418.6y2-1371.9y + 252.09 | 0.5475 | 0.5890 |
Ca | FCi(V_Ca)=-2038y3 + 3635.8y2-2082.2y + 386.43 | 0.8163 | 0.5947 |
Mg | FCi(V_Mg)=-1785.2y3 + 3140.4y2-1752.9y + 308.32 | 0.5508 | 0.5864 |
Fe | FCi(V_Fe)=-1348.4y3 + 2376.3y2-1330.9y + 235.57 | 0.4502 | 0.5874 |
Mn | FCi(V_Mn)=-2332.8y3 + 4113.9y2-2300.2y + 404.44 | 0.6518 | 0.5878 |
Cu | FCi(V_Cu)=-1611.4x3 + 2939.5x2-1746.4x + 342.94 | 0.8976 | 0.6081 |
Zn | FCi(V_Zn)=-2101.7y3 + 3855.5y2-2278.4y + 434.12 | 0.9258 | 0.6115 |
B | FCi(V_B)=-1802.1y3 + 3188y2-1802.8y + 326.74 | 0.6910 | 0.5897 |
Mo | FCi(V_Mo)=-2425.9y3 + 4308.7y2-2423.8y + 426.04 | 0.7526 | 0.5920 |
分析参数R Analysis parameter | FCi(V_R)=-1456.5y3 + 2545.4y2-1407.1y + 244.08 | 0.4002 | 0.5825 |
表2 土壤各矿质元素分析参数与品质指数的函数模型
Table 2 Function model of analytical parameters and quality index of various mineral elements in soil
元素 | 累计方差函数FCi(Vy)与品质指数(Y)的函数式 | R2 | 品质指数拐点值 |
---|---|---|---|
Element | Function between FCi(Vy)and quality index(Y) | Quality index at inflection point | |
N | FCi(V_N)= 52.799 y3-108.07y2-85.951y + 120.18 | 0.9755 | 0.6823 |
P | FCi(V_P)=-516.38y3 + 947.15y2-668.33y + 207.54 | 0.9806 | 0.6114 |
K | FCi(V_K)=-1368.8y3 + 2418.6y2-1371.9y + 252.09 | 0.5475 | 0.5890 |
Ca | FCi(V_Ca)=-2038y3 + 3635.8y2-2082.2y + 386.43 | 0.8163 | 0.5947 |
Mg | FCi(V_Mg)=-1785.2y3 + 3140.4y2-1752.9y + 308.32 | 0.5508 | 0.5864 |
Fe | FCi(V_Fe)=-1348.4y3 + 2376.3y2-1330.9y + 235.57 | 0.4502 | 0.5874 |
Mn | FCi(V_Mn)=-2332.8y3 + 4113.9y2-2300.2y + 404.44 | 0.6518 | 0.5878 |
Cu | FCi(V_Cu)=-1611.4x3 + 2939.5x2-1746.4x + 342.94 | 0.8976 | 0.6081 |
Zn | FCi(V_Zn)=-2101.7y3 + 3855.5y2-2278.4y + 434.12 | 0.9258 | 0.6115 |
B | FCi(V_B)=-1802.1y3 + 3188y2-1802.8y + 326.74 | 0.6910 | 0.5897 |
Mo | FCi(V_Mo)=-2425.9y3 + 4308.7y2-2423.8y + 426.04 | 0.7526 | 0.5920 |
分析参数R Analysis parameter | FCi(V_R)=-1456.5y3 + 2545.4y2-1407.1y + 244.08 | 0.4002 | 0.5825 |
元素 Element | 累计方差函数FCi(Vy)与品质指数(Y)的函数式 Function between FCi(Vy)and quality index(Y) | R2 | 品质指数拐点值 Quality index at inflection point |
---|---|---|---|
N | FCi(V_N)=-1540.8y3 + 2841.2y2-1707.2y + 337.83 | 0.8955 | 0.6147 |
P | FCi(V_P)=-350.07y3 + 898.11y2-721.97y + 217 | 0.9802 | 0.8552 |
K | FCi(V_K)=-1523.7y3 + 2774.8y2-1630.3y + 309.87 | 0.8191 | 0.6070 |
Ca | FCi(V_Ca)=-1759.7y3 + 3136.3y2-1785.8y + 324.4 | 0.7237 | 0.5941 |
Mg | FCi(V_Mg)=-1910.3y3 + 3336.3y2-1836y + 313.21 | 0.4264 | 0.5822 |
Fe | FCi(V_Fe)=-1499.3y3 + 2622.1y2-1446.5y + 248.02 | 0.3534 | 0.5830 |
Mn | FCi(V_Mn)=-2301.6y3 + 4149.2y2-2394.1y + 441.54 | 0.8668 | 0.6009 |
Cu | FCi(V_Cu)=-1241.3y3 + 2179.9y2-1207.6y + 207.66 | 0.3397 | 0.5854 |
Zn | FCi(V_Zn)=-596.54y3 + 1047.4y2-697.8y + 198.78 | 0.9430 | 0.5853 |
B | FCi(V_B)=-1176.3y3 + 2134.3y2-1272y + 254.44 | 0.7465 | 0.6048 |
Mo | FCi(V_Mo)=-1254.6y3 + 2223.9y2-1255.5y + 224.45 | 0.4761 | 0.5909 |
分析参数R Analysis parameter | FCi(V_R)=-914.24y3 + 1813.5y2-1232y + 293.42 | 0.9698 | 0.6612 |
表3 叶片各矿质元素分析参数与品质指数的函数模型
Table 3 Function model of analytical parameters and quality index of various mineral elements in leaf
元素 Element | 累计方差函数FCi(Vy)与品质指数(Y)的函数式 Function between FCi(Vy)and quality index(Y) | R2 | 品质指数拐点值 Quality index at inflection point |
---|---|---|---|
N | FCi(V_N)=-1540.8y3 + 2841.2y2-1707.2y + 337.83 | 0.8955 | 0.6147 |
P | FCi(V_P)=-350.07y3 + 898.11y2-721.97y + 217 | 0.9802 | 0.8552 |
K | FCi(V_K)=-1523.7y3 + 2774.8y2-1630.3y + 309.87 | 0.8191 | 0.6070 |
Ca | FCi(V_Ca)=-1759.7y3 + 3136.3y2-1785.8y + 324.4 | 0.7237 | 0.5941 |
Mg | FCi(V_Mg)=-1910.3y3 + 3336.3y2-1836y + 313.21 | 0.4264 | 0.5822 |
Fe | FCi(V_Fe)=-1499.3y3 + 2622.1y2-1446.5y + 248.02 | 0.3534 | 0.5830 |
Mn | FCi(V_Mn)=-2301.6y3 + 4149.2y2-2394.1y + 441.54 | 0.8668 | 0.6009 |
Cu | FCi(V_Cu)=-1241.3y3 + 2179.9y2-1207.6y + 207.66 | 0.3397 | 0.5854 |
Zn | FCi(V_Zn)=-596.54y3 + 1047.4y2-697.8y + 198.78 | 0.9430 | 0.5853 |
B | FCi(V_B)=-1176.3y3 + 2134.3y2-1272y + 254.44 | 0.7465 | 0.6048 |
Mo | FCi(V_Mo)=-1254.6y3 + 2223.9y2-1255.5y + 224.45 | 0.4761 | 0.5909 |
分析参数R Analysis parameter | FCi(V_R)=-914.24y3 + 1813.5y2-1232y + 293.42 | 0.9698 | 0.6612 |
元素 Element | 高质园High-quality plots | 低质园Low-quality plots | ||||
---|---|---|---|---|---|---|
含量范围/(mg · kg-1) Content range | 均值/(mg · kg-1) Mean | 变异系数/% CV | 含量范围/(mg · kg-1) Content range | 均值/(mg · kg-1) Mean | 变异系数/% CV | |
N | 18 464.50 ~ 23 330.00 | 20 314.20 | 10.50 | 16 623.00 ~ 24 096.50 | 20 602.91 | 11.01 |
P | 4 185.00 ~ 5 851.67 | 5 239.17 | 12.64 | 3 420.00 ~ 7 410.83 | 5 680.22 | 16.23 |
K | 10 910.83 ~ 12 456.67 | 11 449.50 | 5.16 | 9 877.50 ~ 20 000.00 | 13 562.16 | 16.63 |
Ca | 20 850.00 ~ 25 950.00 | 22 748.33 | 8.40 | 17 458.33 ~ 62 666.67 | 29 601.85 | 45.65 |
Mg | 3 676.67 ~ 4 296.67 | 3 994.00 | 5.81 | 3 246.67 ~ 17 191.67 | 5 987.75 | 72.93 |
Fe | 198.58 ~ 382.25 | 326.23 | 22.62 | 133.87 ~ 466.25 | 269.15 | 29.80 |
Mn | 67.23 ~ 119.25 | 99.95 | 20.51 | 41.74 ~ 149.73 | 92.31 | 29.53 |
Cu | 93.23 ~ 231.67 | 179.61 | 30.03 | 2.57 ~ 224.92 | 52.71 | 132.34 |
Zn | 29.16 ~ 52.13 | 44.79 | 20.10 | 22.50 ~ 53.95 | 33.07 | 28.97 |
B | 22.14 ~ 33.88 | 30.24 | 15.47 | 7.98 ~ 35.05 | 20.98 | 36.65 |
Mo | 0.71 ~ 1.11 | 0.98 | 16.65 | 0.05 ~ 1.30 | 0.53 | 63.77 |
表4 高质园、低质园叶片矿质元素含量情况
Table 4 Contents of leaf mineral nutrients at high-quaility polts and low-quality polts
元素 Element | 高质园High-quality plots | 低质园Low-quality plots | ||||
---|---|---|---|---|---|---|
含量范围/(mg · kg-1) Content range | 均值/(mg · kg-1) Mean | 变异系数/% CV | 含量范围/(mg · kg-1) Content range | 均值/(mg · kg-1) Mean | 变异系数/% CV | |
N | 18 464.50 ~ 23 330.00 | 20 314.20 | 10.50 | 16 623.00 ~ 24 096.50 | 20 602.91 | 11.01 |
P | 4 185.00 ~ 5 851.67 | 5 239.17 | 12.64 | 3 420.00 ~ 7 410.83 | 5 680.22 | 16.23 |
K | 10 910.83 ~ 12 456.67 | 11 449.50 | 5.16 | 9 877.50 ~ 20 000.00 | 13 562.16 | 16.63 |
Ca | 20 850.00 ~ 25 950.00 | 22 748.33 | 8.40 | 17 458.33 ~ 62 666.67 | 29 601.85 | 45.65 |
Mg | 3 676.67 ~ 4 296.67 | 3 994.00 | 5.81 | 3 246.67 ~ 17 191.67 | 5 987.75 | 72.93 |
Fe | 198.58 ~ 382.25 | 326.23 | 22.62 | 133.87 ~ 466.25 | 269.15 | 29.80 |
Mn | 67.23 ~ 119.25 | 99.95 | 20.51 | 41.74 ~ 149.73 | 92.31 | 29.53 |
Cu | 93.23 ~ 231.67 | 179.61 | 30.03 | 2.57 ~ 224.92 | 52.71 | 132.34 |
Zn | 29.16 ~ 52.13 | 44.79 | 20.10 | 22.50 ~ 53.95 | 33.07 | 28.97 |
B | 22.14 ~ 33.88 | 30.24 | 15.47 | 7.98 ~ 35.05 | 20.98 | 36.65 |
Mo | 0.71 ~ 1.11 | 0.98 | 16.65 | 0.05 ~ 1.30 | 0.53 | 63.77 |
项目 Project | 高质园High-quality plots | 低质园Low-quality plots | |||||
---|---|---|---|---|---|---|---|
含量范围 Content range | 均值 Mean | 变异系数/% CV | 含量范围 Content range | 均值 Mean | 变异系数/% CV | ||
单粒质量/g Single grain weight | 7.97 ~ 8.86 | 8.32 | 4.57 | 7.35 ~ 9.25 | 8.27 | 5.77 | |
可溶性固形物/% Total soluble solid | 17.10 ~ 18.70 | 17.98 | 3.84 | 17.80 ~ 23.37 | 19.90 | 7.35 | |
可溶性糖/% Soluble sugar | 15.78 ~ 17.68 | 16.97 | 5.05 | 15.52 ~ 19.63 | 17.51 | 5.23 | |
可滴定酸/% Titratable acid | 0.07 ~ 0.10 | 0.09 | 11.04 | 0.10 ~ 0.44 | 0.23 | 41.76 | |
综合品质指数 Comprehensive quality index | 0.6946 ~ 0.8521 | 0.7505 | 9.36 | 0.1802 ~ 0.6683 | 0.3654 | 39.78 |
表5 果实品质指标与综合品质指数
Table 5 Fruit quality index and comprehensive quality index
项目 Project | 高质园High-quality plots | 低质园Low-quality plots | |||||
---|---|---|---|---|---|---|---|
含量范围 Content range | 均值 Mean | 变异系数/% CV | 含量范围 Content range | 均值 Mean | 变异系数/% CV | ||
单粒质量/g Single grain weight | 7.97 ~ 8.86 | 8.32 | 4.57 | 7.35 ~ 9.25 | 8.27 | 5.77 | |
可溶性固形物/% Total soluble solid | 17.10 ~ 18.70 | 17.98 | 3.84 | 17.80 ~ 23.37 | 19.90 | 7.35 | |
可溶性糖/% Soluble sugar | 15.78 ~ 17.68 | 16.97 | 5.05 | 15.52 ~ 19.63 | 17.51 | 5.23 | |
可滴定酸/% Titratable acid | 0.07 ~ 0.10 | 0.09 | 11.04 | 0.10 ~ 0.44 | 0.23 | 41.76 | |
综合品质指数 Comprehensive quality index | 0.6946 ~ 0.8521 | 0.7505 | 9.36 | 0.1802 ~ 0.6683 | 0.3654 | 39.78 |
[1] | Bao Shi-dan. 2000. Soil agro-chemistrical analysis. 3rd ed. Beijing: China Agriculture Press. (in Chinese) |
鲍士旦. 2000. 土壤农化分析. 3版. 北京: 中国农业出版社 | |
[2] | Beaufils E R. 1973. Diagnosis and recommendation integrated system(DRIS). Soil Science Bulletin,(1):1. |
[3] | Eduardo R D, Betania V D P, George W B D M. 2020. Compositional Nutrient Diagnosis(CND)applied to grapevines grown in subtropical climate region. Horticultural, 6 (3):56. |
[4] |
Egozcue J J, Pawlowsky-Glahn V. 2005. Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37 (7):795-828.
doi: 10.1007/s11004-005-7381-9 URL |
[5] | Fan Yuan-guang. 2014. Nutrient diagnosis of‘Fuji’apple in west Liaoning Province using compositional nutrient diagnosis(CND)method[M. D. Dissertation]. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese) |
范元广. 2014. 辽西地区‘富士’苹果叶矿质元素含量适宜值及叶营养诊断初步研究[硕士论文]. 北京: 中国农业科学院. | |
[6] | Fan Zhi-yi, Liu Jia-jia. 2020. Research progress on nutritional diagnosis methods of fruit tree leaves. Journal of Shanxi Agricultural Sciences, 48 (12):2017-2022. (in Chinese) |
范志懿, 刘佳嘉. 2020. 果树叶片营养诊断方法研究进展. 山西农业科学, 48 (12):2017-2022. | |
[7] | García-Hernández J R D, Valdez-Cepeda B, Murillo-Amador F, Beltrán-Morales E T D J. 2006. Preliminary compositional nutrient diagnosis norms in Aloe vera L. grown on calcareous soil in an arid environment. Environmental and Botany, 58 (1):244-252. |
[8] |
Gilmara P D S, Lucas J C H. 2021. Limitation due to nutritional deficiency and excess in sugarcane using the Integral Diagnosis and Recommendation System(DRIS)and Nutritional Composition Diagnosis(CND). Communications in Soil Science and Plant Analysis, 52 (12):1458-1467
doi: 10.1080/00103624.2021.1885690 URL |
[9] | He Feng-jie, Xu Xiao-ju, Jin Wei, Huang Xue-yan, Gao Hong-qin, Xu Chun-yan, Chen Lian-fen, Jia Hui-juan. 2022. Effects of different organic fertilizers on soil properties and fruit quality of grape in greenhouse. Soil and Fertilizer Sciences in China,(5):92-98. (in Chinese) |
何风杰, 徐小菊, 金伟, 黄雪燕, 高洪勤, 徐春燕, 陈莲芬, 贾惠娟. 2022. 不同有机肥对大棚葡萄土壤理化性质及果实品质的影响. 中国土壤与肥料,(5):92-98. | |
[10] | Kang Zhuan-miao. 2015. Study on the nutritional characteristics and the methods of nutrition diagnosis for Palayinda mango[M. D. Dissertation]. Haikou: Hainan University. (in Chinese) |
康专苗. 2015. ‘帕拉英达’杧果叶片矿质营养特性与诊断方法研究[硕士论文]. 海口: 海南大学. | |
[11] | Khiari L, Parent L T, Tremblay N. 2002. Selecting the high‐yield subpopulation for diagnosing nutrient imbalance in crops. Agronomy Journal, 94 (1):172. |
[12] | Li Gang-li. 1987. Application of leaf analysis in mineral nutrition diagnosis of fruit trees. Chinese Agricultural Science Bulletin,(2):12-14. (in Chinese) |
李港丽. 1987. 叶分析在果树矿质营养诊断中的应用. 中国农学通报,(2):12-14. | |
[13] | Li Si-jia. 2017. Design and implementation circulation information surveying system of table grape[M. D. Dissertation]. Beijing: China Agricultural University. (in Chinese) |
李思佳. 2017. 鲜食葡萄流通信息监测系统研究[硕士论文]. 北京: 中国农业大学. | |
[14] | Li Yu-ding, Zhang Jun-xiang, Zhang Guang-di, Wang Fa-qing, Ren Li-dong, Zhang Hai-jun, Guo Hui-ping, Ma Yong-ming, Chen Guang-hua, Zhai Pei-xian, Jiang Lian-qin, Ma Cheng-bin, Zhang Xin-ning. 2004. Soil nutritional diagnosis and leaf analysis at the eastern foot of‘Huo Lan’mountain. Sino-Overseas Grapevine & Wine,(3):17-21. (in Chinese) |
李玉鼎, 张军翔, 张光弟, 王发清, 任立冬, 张海军, 郭惠萍, 马永明, 陈光华, 翟培显, 蒋廉勤, 马成斌, 张新宁. 2004. 宁夏贺兰山东麓酿酒葡萄基地土壤营养诊断与叶分析. 中外葡萄与葡萄酒,(3):17-21. | |
[15] | Liu Xiao-yong, Wang Fa-lin, Zhang Kun, Dong Tie, Zhang Hui-yuan, Ma Ming. 2014. Study on the annual variations of foliar nutrient contents from different branches and nutrition diagnosis methods of two apple cultivars. Journal of Plant Nutrition and Fertilizer, 20 (2):481-489. (in Chinese) |
刘小勇, 王发林, 张坤, 董铁, 张辉元, 马明. 2014. 两个苹果品种不同枝类叶营养含量年周期变化及营养诊断方法研究. 植物营养与肥料学报, 20 (2):481-489. | |
[16] | Lu Ru-kun. 2000. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press. (in Chinese) |
鲁如坤. 2000. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社. | |
[17] | Luo Meng, Wu Guo-hong, Xu Wen-ping, Luo Qiang-wei, Lou Yu-sui, Sun Feng, Wang Shi-ping. 2017. Water and mineral elements uptake patterns of‘Thompson Seedless’grapevine in Turpan,Xinjiang. Acta Horticulturae Sinica, 44 (10):1849-1860. (in Chinese) |
骆萌, 伍国红, 许文平, 骆强伟, 娄玉穗, 孙锋, 王世平. 2017. 新疆吐鲁番地区‘无核白’葡萄水分和矿质元素周年吸收规律研究. 园艺学报, 44 (10):1849-1860.
doi: 10.16420/j.issn.0513-353x.2016-0875 URL |
|
[18] |
Montaés L, Heras L, Abadía J. 1993. Plant analysis interpretation based on a new index:deviation from optimum percentage(DOP). Journal of Plant Nutrition, 16 (7):1289-1308.
doi: 10.1080/01904169309364613 URL |
[19] | National Soil Survey Office. 1979. Nutrient classification standard for the second national soil survey. Beijing: China Agriculture Press. (in Chinese) |
中国土壤调查办公室. 1979. 全国第二次土壤普查养分分级标准. 北京: 中国农业出版社. | |
[20] |
Oliveira-Stefanello L, Schwalbert R, De-Conti L. 2019. Yield and must composition of‘Cabernet Sauvignon’grapevines subjected to nitrogen application in soil with high organic matter content. Idesia, 37 (2):27-36.
doi: 10.4067/S0718-34292019000200027 URL |
[21] | Pang Guo-cheng. 2019. Study on fertilizer and water requirement characteristics and efficient utilization technology of grape in protected cultivation[M. D. Disseration]. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese) |
庞国成. 2019. 葡萄在设施栽培中的肥水需求特性与高效利用技术研究[硕士论文]. 北京: 中国农业科学院. | |
[22] |
Parent L E, Dafir M. 1992. Theoretical concept of compositional nutrient diagnosis. Journal of the American Society for Horticultural Science, 117 (2):239-242.
doi: 10.21273/JASHS.117.2.239 URL |
[23] |
Parent L E, Karam A, Visser S A. 1993. Compositional nutrient diagnosis of the greenhouse tomato. HortScience, 28 (10):1041-1042.
doi: 10.21273/HORTSCI.28.10.1041 URL |
[24] | Pei Shuai. 2017. Study on the dry matter and accumulation of nutrient elements in different organs of two kinds of grapevine[M. D. Dissertation]. Ningxia: Ningxia University. (in Chinese) |
裴帅. 2017. 两种酿酒葡萄不同器官干物质和营养元素积累规律研究[硕士论文]. 宁夏: 宁夏大学. | |
[25] | Reyhanitabar A, Najafi N. 2021. Critical indexes of compositional nutrient diagnosis(CND)and its validation in wheat fields. Revista De La facultad De Agronomia De La Universidad Del Zulia, 38 (3):480-504. |
[26] | Shi Xiang-bin, Wang Xiao-di, Wang Bao-liang, Wang Zhi-qiang, Ji Xiao-hao, Wang Xiao-long, Liu Feng-zhi, Wang Hai-bo. 2021. The requirement rule of nitrogen,phosphorus,potassium,calcium and magnesium of Vitis vinifera‘Red Globe’grapevine. Acta Horticulturae Sinica, 48 (11):2146-2160. (in Chinese) |
史祥宾, 王孝娣, 王宝亮, 王志强, 冀晓昊, 王小龙, 刘凤之, 王海波. 2021. ‘红地球’葡萄氮磷钾钙镁的年需求特性研究. 园艺学报, 48 (11):2146-2160.
doi: 10.16420/j.issn.0513-353x.2020-0785 |
|
[27] | Tao. 1990. Leaf and soil diagnosis and fertilization. Agriculture in Taiwan,(1):40. (in Chinese) |
涛. 1990. 叶片、土壤诊断施肥. 台湾农业情况,(1):40. | |
[28] | Tian Xue-li, Zhang Qi, Huang Jun-xuan, Yang Jing-hui, Qiao Bo-chao, Zhang Chao, Wang Zhi-xue. 2020. Relationship between soil nutrition and yield of Muscat grape in Tianjin. Tianjin Agricultural Sciences, 26 (9):61-63. (in Chinese) |
田雪利, 张琦, 黄俊轩, 杨静慧, 乔博超, 张超, 王芝学. 2020. 天津玫瑰香葡萄产地土壤营养诊断与产量的关系. 天津农业科学, 26 (9):61-63. | |
[29] | Tong Xin, Ma Zhen-zhao, Zhang Zi-tao, Wang Zhi-hui, Zhang Li-juan, Ji Yan-zhi. 2021. Analysis of soil nutrients and leaf nutrition diagnosis of Chixia bead grapes in Hebei Province. Jiangsu Agricultural Sciences, 49 (13):146-151. (in Chinese) |
佟鑫, 马振朝, 张子涛, 王志慧, 张丽娟, 吉艳芝. 2021. 河北省赤霞珠葡萄土壤养分情况与叶片营养诊断分析. 江苏农业科学, 49 (13):146-151. | |
[30] | Vanapalli S K, Pufahl D E, Fredlund D G. 1998. The effect of stress state on the soil-water characteristic behavior of a compacted sandy clay till. Stress, 1 (10):100. |
[31] | Wang Bo-bo, Wang Xiao-long, Shi Xiang-bin, Ji Xiao-hao, Wang Hai-bo, Liu Feng-zhi. 2021. Effects of different rows of endophytic grasses on grape fruit quality. China Fruits,(8):58-61. (in Chinese) |
王波波, 王小龙, 史祥宾, 冀晓昊, 王海波, 刘凤之. 2021. 不同行内生草对葡萄果实品质的影响. 中国果树,(8):58-61. | |
[32] |
Wang Fu-lin, Men Yong-ge, Ge Shun-feng, Chen Ru, Ding Ning, Peng Fu-tian, Wei Shao-chong, Jiang Yuan-mao. 2013. Research on soil and leaf nutrient diagnosis of‘Red Fuji’apple orchard in two-dominant producing areas. Scientia Agricultura Sinica, 46 (14):2970-2978. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.14.013 |
王富林, 门永阁, 葛顺峰, 陈汝, 丁宁, 彭福田, 魏绍冲, 姜远茂. 2013. 两大优势产区‘红富士’苹果园土壤和叶片营养诊断研究. 中国农业科学, 46 (14):2970-2978.
doi: 10.3864/j.issn.0578-1752.2013.14.013 |
|
[33] | Wang Shu-zhuan. 2016. Availability and chemical characteristics of trace elements in soils under long-term fertilization[Ph. D. Dissertation]. Beijing: Graduate School of Chinese Academy of Sciences. (in Chinese) |
王书转. 2016. 长期施肥条件下土壤微量元素化学特性及有效性研究[博士论文]. 北京: 中国科学院研究生院. | |
[34] |
Wang Xiao-long, Liu Feng-zhi, Shi Xiang-bin, Wang Xiao-di, Ji Xiao-hao, Wang Zhi-qiang, Wang Bao-liang, Zheng Xiao-cui, Wang Hai-bo. 2018. Effects of grass cover in vineyard on the vine root growth and soil nutrition. Acta Agriculturae Boreali-Sinica, 33 (S1):230-237. (in Chinese)
doi: 10.7668/hbnxb.2018.S1.037 |
王小龙, 刘凤之, 史祥宾, 王孝娣, 冀晓昊, 王志强, 王宝亮, 郑晓翠, 王海波. 2018. 行内生草对葡萄根系生长和土壤营养状况的影响. 华北农学报, 33 (S1):230-237.
doi: 10.7668/hbnxb.2018.S1.037 |
|
[35] | Yu Qun-ying. 2002. Content of exchangeable magnesium in soil and effect of magnesium on soybean nutrition in Huaihe River area of Anhui Province. Anhui Agri Sci Bull, 8 (6):60-62. (in Chinese) |
于群英. 2002. 安徽沿淮地区土壤交换性镁含量及镁对大豆营养的影响. 安徽农学通报, 8 (6):60-62. | |
[36] | Zhang Fu-chun, Zhong Hai-xia, Liu Ming-bo, Hao Jing-zhe, Han Shou-an, Pan Ming-qi, Wu Xin-yu. 2020. Imbalance of essential trace element manganese in grape and its prevention and control. Rural Science Technology,(6):27-29. (in Chinese) |
张付春, 钟海霞, 刘明波, 郝敬喆, 韩守安, 潘明启, 伍新宇. 2020. 葡萄必需微量元素锰失衡及防控. 农村科技,(6):27-29. | |
[37] | Zhang Ji-zhou, Li Yun-ying, Yuan Lei, Lü Pin, Yu Zhi-min, Wang Li-min, Zhang Yue. 2019. A study on leaf mineral nutrition diagnosis in Vaccinium uliginosum L. at fruit ripening stage in the Greater Khingan Mountains. Journal of Fruit Science, 36 (9):1161-1170. (in Chinese) |
张继舟, 李云影, 袁磊, 吕品, 于志民, 王立民, 张悦. 2019. 大兴安岭地区笃斯越橘果实成熟期叶片矿质元素营养诊断. 果树学报, 36 (9):1161-1170. | |
[38] | Zhang Lei, Zhang Hong-jian, Sun Lin-lin, Chu Gui-kun, Liu Shuang-xi, Wang Jin-xing. 2019. Research on precision fertilization model in apple orchard based on leaf nutrition diagnosis. Soil and Fertilizer Sciences in China,(6):212-222. (in Chinese) |
张磊, 张宏建, 孙林林, 褚桂坤, 刘双喜, 王金星. 2019. 基于叶片营养诊断的苹果园果树精准施肥模型研究. 中国土壤与肥料,(6):212-222. |
[1] | 俞沁含, 李俊铎, 崔莹, 王佳慧, 郑巧玲, 徐伟荣. 山葡萄转录因子VaMYB4a互作蛋白的筛选与鉴定[J]. 园艺学报, 2023, 50(3): 508-522. |
[2] | 马帅辉, 何光琪, 程一哲, 郭大龙. 5-azaC对‘巨峰’葡萄果实发育阶段mRNA可变剪接的影响[J]. 园艺学报, 2023, 50(3): 523-533. |
[3] | 黄蓉, 董超, 姜娇, 秦义, 刘延琳, 宋育阳. 避雨栽培对‘赤霞珠’葡萄果表微生物多样性的影响[J]. 园艺学报, 2023, 50(3): 635-646. |
[4] | 孙磊, 闫爱玲, 张国军, 王慧玲, 王晓玥, 任建成, 徐海英. 鲜食葡萄新品种‘瑞都摩指’[J]. 园艺学报, 2023, 50(3): 685-686. |
[5] | 王晓晨, 聂子页, 刘先菊, 段伟, 范培格, 梁振昌. 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[6] | 蒋彧, 涂勋良, 何俊蓉. 国兰叶色突变体叶片差异表达基因分析[J]. 园艺学报, 2023, 50(2): 371-381. |
[7] | 王宝亮, 刘凤之, 冀晓昊, 王孝娣, 史祥宾, 张艺灿, 李 鹏, 王海波. 早熟鲜食葡萄新品种‘华葡早玉’[J]. 园艺学报, 2022, 49(S2): 33-34. |
[8] | 王宝亮, 王海波, 冀晓昊, 王孝娣, 史祥宾, 王志强, 王小龙, 刘凤之. 中熟鲜食葡萄新品种‘华葡黄玉’[J]. 园艺学报, 2022, 49(S2): 35-36. |
[9] | 牛早柱, 赵艳卓, 陈 展, 宣立锋, 牛帅科, 魏建国, 褚凤杰, 杨丽丽. 晚熟无核葡萄新品种‘紫龙珠’[J]. 园艺学报, 2022, 49(S2): 37-38. |
[10] | 师校欣, 杜国强, 杨丽丽, 乔月莲, 黄成立, 王素月, 赵跃欣, 魏晓慧, 王 莉, 齐向丽. 晚熟无核葡萄新品种‘红峰无核’[J]. 园艺学报, 2022, 49(S2): 39-40. |
[11] | 吴月燕, 陈天池, 王立如, 韩善琪, 付 涛. 鲜食葡萄新品种‘甬早红’[J]. 园艺学报, 2022, 49(S2): 41-42. |
[12] | 王晓玥, 闫爱玲, 张国军, 王慧玲, 任建成, 刘振华, 孙 磊, 徐海英, . 葡萄新品种‘瑞都晚红’[J]. 园艺学报, 2022, 49(S1): 29-30. |
[13] | 蒋亚君, 陈佳佳, 谭彬, 郑先波, 王伟, 张郎郎, 程钧, 冯建灿. 桃PpIDD11调控花发育的功能研究[J]. 园艺学报, 2022, 49(9): 1841-1852. |
[14] | 郭燕, 张树航, 李颖, 张馨方, 王英杰, 王广鹏. 燕山板栗种质资源叶片表型性状多样性研究[J]. 园艺学报, 2022, 49(8): 1673-1688. |
[15] | 王勇健, 孔俊花, 范培格, 梁振昌, 金秀良, 刘布春, 代占武. 葡萄表型组高通量获取及分析方法研究进展[J]. 园艺学报, 2022, 49(8): 1815-1832. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司