园艺学报 ›› 2023, Vol. 50 ›› Issue (1): 197-208.doi: 10.16420/j.issn.0513-353x.2021-1130
邵凤清1, 罗秀荣1, 王奇1, 张宪智2, 王文彩1,*()
收稿日期:
2022-06-10
修回日期:
2022-09-28
出版日期:
2023-01-25
发布日期:
2023-01-18
通讯作者:
*(E-mail:基金资助:
SHAO Fengqing1, LUO Xiurong1, WANG Qi1, ZHANG Xianzhi2, WANG Wencai1,*()
Received:
2022-06-10
Revised:
2022-09-28
Online:
2023-01-25
Published:
2023-01-18
Contact:
*(E-mail:摘要:
DNA甲基化是一种常见的表观遗传修饰,对植物果实的成熟具有重要的作用,本文中综述了果实成熟过程中DNA甲基化水平的变化及其调控机制。基于已有研究发现,大部分果实在成熟过程存在总体DNA甲基化水平降低的情况,也有部分果实的总体DNA甲基化水平随果实成熟呈现升高趋势。此外,在果实成熟过程中特定基因尤其是与成熟相关的基因在去甲基化酶作用下发生去甲基化进而影响果实成熟。引起果实成熟过程中DNA甲基化水平变化的机制总体而言是受到甲基化酶、去甲基化酶以及植物特有的RdDM途径的综合调控。本文为深入解析果实发育与成熟的分子机制提供理论参考,并对以后的研究提出可行的建议。
中图分类号:
邵凤清, 罗秀荣, 王奇, 张宪智, 王文彩. 果实成熟过程中的DNA甲基化调控研究进展[J]. 园艺学报, 2023, 50(1): 197-208.
SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening[J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208.
类别 Category | 名称 Name | 代表成员 Representative | 主要功能 Major function | 参考文献 Reference |
---|---|---|---|---|
DNA甲基化酶 DNA methylase | 甲基转移酶 Methyl-transferase,MET | MET1 | 主要催化并维持对称位点CG胞嘧啶的甲基化 MET1 mainly catalyzes and maintains the methylation of CG cytosine at symmetric sites | Zubko et al., |
染色质甲基化酶 Chromomethylase,CMT | CMT3/2 | CMT3主要对着丝粒附近重复区和转座子序列的CHG进行甲基化修饰 CMT3 mainly methylates CHGS in repeat regions near centromeres and transposon sequences | Lindroth et al., | |
CMT2催化非对称位点CHH的从头甲基化 CMT2 catalyzes de novo methylation of CHH at asymmetric sites | Stroud et al., | |||
结构域重排甲基转移酶 Domains rearranged methylase,DRM | DRM1/2 | DRM1和DRM2催化非对称位点CHH的从头 甲基化 DRM1 and DRM2 catalyze de novo methylation of CHH at asymmetric sites | Cao & Jacobsen, | |
DNA去甲基化酶 DNA demethylase | DNA糖苷酶-裂解酶(DEMETER-like DNA去甲基化酶) DNA Glycosylase-lyases(DEMETER-like DNA demethylases,DMLs) | ROS1(Repressor of silencing 1) | 识别并去除双链DNA寡核苷酸中的甲基化胞 嘧啶 ROS1 recognizes and removes cytosines methylation in double-stranded DNA oligonucleotides | Gong et al., |
DML1/2/3/4 | 番茄中的DNA去甲基化酶具有DNA糖苷化酶/裂解酶的功能区 DMLs in tomatoes has a functional region for DNA glycosidase/lyase | Liu et al., | ||
SlDML1/2/3/4 | 番茄SlDML1和SlDML2是拟南芥ROS1(AtROS1)的同源基因,SlDML3是拟南芥AtDME(DEMETER)的同源基因,SlDML2能促进番茄成熟 SlDML1 and SlDML2,SlDML3 in tomato are homologous genes of ROS1(AtROS1)and AtDME(DEMETER)in Arabidopsis Thaliana respectively;SlDML2 promotes tomato ripening | Liu et al., |
表1 植物中的DNA甲基化酶和去甲基化酶
Table 1 DNA methylase and demethylase in plants
类别 Category | 名称 Name | 代表成员 Representative | 主要功能 Major function | 参考文献 Reference |
---|---|---|---|---|
DNA甲基化酶 DNA methylase | 甲基转移酶 Methyl-transferase,MET | MET1 | 主要催化并维持对称位点CG胞嘧啶的甲基化 MET1 mainly catalyzes and maintains the methylation of CG cytosine at symmetric sites | Zubko et al., |
染色质甲基化酶 Chromomethylase,CMT | CMT3/2 | CMT3主要对着丝粒附近重复区和转座子序列的CHG进行甲基化修饰 CMT3 mainly methylates CHGS in repeat regions near centromeres and transposon sequences | Lindroth et al., | |
CMT2催化非对称位点CHH的从头甲基化 CMT2 catalyzes de novo methylation of CHH at asymmetric sites | Stroud et al., | |||
结构域重排甲基转移酶 Domains rearranged methylase,DRM | DRM1/2 | DRM1和DRM2催化非对称位点CHH的从头 甲基化 DRM1 and DRM2 catalyze de novo methylation of CHH at asymmetric sites | Cao & Jacobsen, | |
DNA去甲基化酶 DNA demethylase | DNA糖苷酶-裂解酶(DEMETER-like DNA去甲基化酶) DNA Glycosylase-lyases(DEMETER-like DNA demethylases,DMLs) | ROS1(Repressor of silencing 1) | 识别并去除双链DNA寡核苷酸中的甲基化胞 嘧啶 ROS1 recognizes and removes cytosines methylation in double-stranded DNA oligonucleotides | Gong et al., |
DML1/2/3/4 | 番茄中的DNA去甲基化酶具有DNA糖苷化酶/裂解酶的功能区 DMLs in tomatoes has a functional region for DNA glycosidase/lyase | Liu et al., | ||
SlDML1/2/3/4 | 番茄SlDML1和SlDML2是拟南芥ROS1(AtROS1)的同源基因,SlDML3是拟南芥AtDME(DEMETER)的同源基因,SlDML2能促进番茄成熟 SlDML1 and SlDML2,SlDML3 in tomato are homologous genes of ROS1(AtROS1)and AtDME(DEMETER)in Arabidopsis Thaliana respectively;SlDML2 promotes tomato ripening | Liu et al., |
DNA甲基化变化 DNA demethylation changes | 物种 Species | 机制 Mechanism | 参考文献 Reference |
---|---|---|---|
去甲基化 Demethylation | 番茄 Tomato | SlDML2去甲基化酶介导DNA去甲基化 DNA demethylation mediated by SlDML2 demethylase | Teyssier et al., |
桑葚 Mulberry | / | 方立静, | |
‘巨峰’葡萄 ‘Kyoho’grape berry | / | 李琼, | |
辣椒 Pepper | / | 李宁 等, | |
水稻、拟南芥 Rice,Arabidopsis | / | Zemach et al., | |
草莓 Strawberry | RdDM下调介导的DNA去甲基化 DNA demethylation mediated by RdDM downregulation | Cheng et al., | |
苹果 Apple | / | Telias et al., | |
温州蜜柑 Satsuma | / | 陈志友, | |
番木瓜 Papaya fruit | 周陈平 等, | ||
甲基化升高 Increasing methylation | 紫玉米 Purple corn | / | 李廷春 等, |
柑橘 Citrus | / | 徐记迪, | |
甜橙 Orange | DNA去甲基化酶表达下降 Decreased expression of DNA demethylase | Huang et al., |
表2 多种果实成熟过程中总体DNA甲基化变化
Table 2 Global DNA methylation changes during ripening in multiple fruit
DNA甲基化变化 DNA demethylation changes | 物种 Species | 机制 Mechanism | 参考文献 Reference |
---|---|---|---|
去甲基化 Demethylation | 番茄 Tomato | SlDML2去甲基化酶介导DNA去甲基化 DNA demethylation mediated by SlDML2 demethylase | Teyssier et al., |
桑葚 Mulberry | / | 方立静, | |
‘巨峰’葡萄 ‘Kyoho’grape berry | / | 李琼, | |
辣椒 Pepper | / | 李宁 等, | |
水稻、拟南芥 Rice,Arabidopsis | / | Zemach et al., | |
草莓 Strawberry | RdDM下调介导的DNA去甲基化 DNA demethylation mediated by RdDM downregulation | Cheng et al., | |
苹果 Apple | / | Telias et al., | |
温州蜜柑 Satsuma | / | 陈志友, | |
番木瓜 Papaya fruit | 周陈平 等, | ||
甲基化升高 Increasing methylation | 紫玉米 Purple corn | / | 李廷春 等, |
柑橘 Citrus | / | 徐记迪, | |
甜橙 Orange | DNA去甲基化酶表达下降 Decreased expression of DNA demethylase | Huang et al., |
[1] |
Balibrea P S, Moreno D A, Viguera G C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture, 88 (5):904-910.
doi: 10.1002/jsfa.3169 URL |
[2] | Böhmdorfer G, Sethuraman S, Rowley M J, Krzyszton M, Rothi M H, Bouzit L, Wierzbicki A T. 2016. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife, 5:1-24. |
[3] |
Cao X, Jacobsen S E. 2002. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Current Biology, 12:1138:1144.
doi: 10.1016/S0960-9822(02)00925-9 URL |
[4] |
Chan S W, Henderson I R, Jacobsen S E. 2005. Gardening the genome:DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 6 (5):351-360.
doi: 10.1038/nrg1601 URL |
[5] |
Chen T, Qin G, Tian S. 2020. Regulatory network of fruit ripening:current understanding and future challenges. New Phytologist, 228:1219-1226.
doi: 10.1111/nph.16822 URL |
[6] | Chen Zhiyou. 2014. Study on DNA methylation patterns of early and late satsuma with MSAP analysis[M. D. Dissertation]. Chongqing: Southwest University. (in Chinese) |
陈志友. 2014. 早晚熟温州蜜柑的MSAP分析[硕士论文]. 重庆: 西南大学. | |
[7] |
Cheng J F, Niu Q F, Zhang B, Chen K S, Yang R H, Zhu J K, Zhang Y J, Lang Z B. 2018. Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 19:212.
doi: 10.1186/s13059-018-1587-x pmid: 30514401 |
[8] |
Deng W, Yang Y W, Ren Z X, Audran-Delalande C, Mila I, Wang X Y, Song H L, Hu Y H, Bouzayen M, Li Z G. 2012. The tomato Sl IAA 15 is involved in trichome formation and axillary shoot development. New Phytologist, 194 (2):379-390.
doi: 10.1111/j.1469-8137.2012.04053.x pmid: 22409484 |
[9] |
Duan C G, Zhu J K, Cao X. 2018. Retrospective and perspective of plant epigenetics in China. Journal of Genetics and Genomics, 45 (11):621-638.
doi: 10.1016/j.jgg.2018.09.004 URL |
[10] |
Egger G, Liang G N, Jones P A. 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429:457-463.
doi: 10.1038/nature02625 URL |
[11] |
El-Sharkawy I, Liang D, Xu K. 2015. Transcriptome analysis of an apple(Malus × domestica)yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. Journal of Experimental Botany, 66:7359-7376.
doi: 10.1093/jxb/erv433 pmid: 26417021 |
[12] |
Eriksson E M, Bovy A, Manning K, Harrison L, Andrews J, de Silva J, Tucker G A, Seymour G B. 2004. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiology, 136:4184-4197.
doi: 10.1104/pp.104.045765 pmid: 15563627 |
[13] | Fang Lijing. 2020. DNA methylation and transcriptome analysis of mulberry fruits at different development stages and functional study of bZIP 60 gene[M. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
方立静. 2020. 桑椹不同发育时期DNA甲基化和转录组联合分析及bZIP60基因的功能研究[硕士论文]. 泰安: 山东农业大学. | |
[14] | Fan Zhongqi, Kuang Jianfei, Lu Wangjin, Chen Jianye. 2015. Advances in research of the mechanism of transcription factors involving in regulating fruit ripening and senescence. Acta Horticulturae Sinica, 42 (9):1649-1663. |
范中奇, 邝健飞, 陆旺金, 陈建业. 2015. 转录因子调控果实成熟和衰老机制研究进展. 园艺学报, 42 (9):1649-1663. | |
[15] |
Feng S, Jacobsen S E, Reik W. 2010. Epigenetic reprogramming in plant and animal development. Science, 330:622-627.
doi: 10.1126/science.1190614 pmid: 21030646 |
[16] |
Gapper N E, McQuinn R P, Giovannoni J J. 2013. Molecular and genetic regulation of fruit ripening. Plant Molecular Biology, 82:575-591.
doi: 10.1007/s11103-013-0050-3 pmid: 23585213 |
[17] |
Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. 2017. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology, 68:20.1-20.24.
doi: 10.1146/annurev-arplant-042916-040829 URL |
[18] |
Gong Z, Morales-Ruiz T, Ariza R R, Roldan-Arjona T, David L, Zhu J K. 2002. ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylase/lyase. Cell, 111:803-814.
doi: 10.1016/S0092-8674(02)01133-9 URL |
[19] |
Hadfield K A, Dandekar A M, Romani R J. 1993. Demethylation of ripening specific genes in tomato fruit. Plant Science, 92:13-18.
doi: 10.1016/0168-9452(93)90061-4 URL |
[20] |
He G, Elling A A, Deng X W. 2011a. The epigenome and plant development. Annual Review of Plant Biology, 62:411-435.
doi: 10.1146/annurev-arplant-042110-103806 URL |
[21] |
He X J, Chen T, Zhu J K. 2011b. Regulation and function of DNA methylation in plants and animals. Cell Research, 21:442-465.
doi: 10.1038/cr.2011.23 URL |
[22] |
He X J, Ma Z Y, Liu Z W. 2014. Non-coding RNA transcription and RNA-directed DNA methylation in Arabidopsis. Molecular Plant, 7 (9):1406-1414.
doi: 10.1093/mp/ssu075 URL |
[23] | He Yanxia, Wang Zicheng. 2009. Variation of DNA methylation in Arabidopsis thaliana seedlings after the cryopreservation. Chinese Bulletin of Botany, 44 (3):317-322. (in Chinese) |
何艳霞, 王子成. 2009. 拟南芥幼苗超低温保存后DNA甲基化的遗传变异. 植物学报, 44 (3):317-322. | |
[24] | Huang H, Liu R, Niu Q F. 2019. Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America, 16 (4):1430-1436. |
[25] |
Huang X M, Huang H B, Gao F F. 2000. The growth potential generated in citrus fruit under water stress and its relevant mechanisms. Scientia Horticulture, 83 (3-4):227-240.
doi: 10.1016/S0304-4238(99)00083-7 URL |
[26] |
Klee H J, Giovannoni J J. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45:41-59.
doi: 10.1146/annurev-genet-110410-132507 pmid: 22060040 |
[27] | Kopsell D A, Kopsell D A. 2008. Genetic and environmental factors affecting plant lutein/zeaxanthin. Agro Food Industry Hi-Tech, 19 (2):44-46. |
[28] | Lang Z B, Wang Y H, Tang Kai, Tang D G, Datsenka T, Cheng J F, Zhang Y J, Handa A K, Zhu J K. 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 114:E4511-E4519. |
[29] |
Law J A, Jacobsen S E. 2010. Establishing,maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11 (3):204-220.
doi: 10.1038/nrg2719 URL |
[30] |
Li Ning, Patiguli Aisimutuola, Yang Shengbao, Wang Baike, Tang Yaping, Yang Tao, Yu Qinghui. 2018. MSAP analysis of DNA methylation in different Capsicum annuum L. varieties during fruit development. Xinjiang Agricultural Sciences, 55 (9):1601-1607. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2018.09.004 |
李宁, 帕提古丽·艾斯木托拉, 杨生保, 王柏柯, 唐亚萍, 杨涛, 余庆辉. 2018. 不同辣椒品种果实发育过程中DNA甲基化的MSAP分析. 新疆农业科学, 55 (9):1601-1607.
doi: 10.6048/j.issn.1001-4330.2018.09.004 |
|
[31] | Li Qiong. 2019. Effects of 5-aza C on the developing profiles of‘Kyoho’grape berry[M. D. Dissertation]. Luoyang: Henan University of Science and Technology. (in Chinese) |
李琼. 2019. 5-azaC对‘巨峰’葡萄果实发育的影响[硕士论文]. 洛阳: 河南科技大学. | |
[32] | Li Tingchun, Yang Huaying, Zhang Wei, Zhou Yingbing, Chen Hongjian. 2014. MSAP analysis of DNA methylation variations during coloring process for purple corn seed. Journal of Nuclear Agricultural Sciences, 28 (11):1978-1984. (in Chinese) |
李廷春, 杨华应, 张玮, 周应兵, 陈洪俭. 2014. 紫玉米籽粒呈色过程中DNA甲基化变化的 MSAP分析. 核农学报, 28 (11):1978-1984.
doi: 10.11869/j.issn.100-8551.2014.11.1978 |
|
[33] |
Lindroth A M, Cao X F, Jackson J P, Zilberman D, McCallum C M, Henikoff S, Jacobsen S E. 2001. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 292:2077-2080.
doi: 10.1126/science.1059745 pmid: 11349138 |
[34] | Liu R, How-Kit A, Stammitti L, Teyssier E, Rolin D, Mortain-Bertrand A, Halle S, Liu M C, Kong J H, Wu C Q, Degraeve-Guibault C, Chapman N H, Maucourt M, Hodgman T C, Jörg T, Bouzayen M, Hong Y G, Seymour G B, Giovannoni J J, Gallusci P. 2015. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences of the United States of America, 112:10804-10809. |
[35] |
Lü P T, Yu S, Zhu N, Chen Y R, Zhou B Y, Pan Y, Tzeng D, Fabi J P, Argyris J, Garcia-Mas J, Ye N H, Zhang J H, Donald G, Xiang J, Fei Z J, Giovannoni J, Zhong S L. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plant, 4 (10):784-791.
doi: 10.1038/s41477-018-0249-z URL |
[36] |
Manning K, Tor M, Poole M, Hong Y, Thompson A J, King G J, Giovannoni J J, Seymour G B. 2006 A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38:948-952.
doi: 10.1038/ng1841 pmid: 16832354 |
[37] |
Matzke M A, Mosher R A. 2014. RNA-directed DNA methylation:an epigenetic pathway of increasing complexity. Nature Reviews Genetics, 15:394-408.
doi: 10.1038/nrg3683 URL |
[38] |
Messeguer R, Ganal M W, Steffens J C, Tanksley S D. 1991. Characterization of the level,target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology, 16:753-770.
pmid: 1859863 |
[39] |
Meyer P, Niedenhof I, ten Lohuis M. 1994. Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO Journal, 13:2084-2088.
doi: 10.1002/j.1460-2075.1994.tb06483.x pmid: 8187761 |
[40] | Nie Wenfeng, Wang Jinyu, Gao Chunjuan, Chen Xuehao. 2022. A review on epigenetic modifications in regulating fruit development of horticultural crops. Acta Horticulturae Sinica, 49 (3):671-686. (in Chinese) |
聂文锋, 王金玉, 高春娟, 陈学好. 2022. 表观遗传修饰调控园艺植物果实发育研究进展. 园艺学报, 49 (3):671-686. | |
[41] | Qi Xingjiang, Zheng Xiliang, Li Xiaobai, Zhang Shuwen, Ren Haiying, Yu Zheping. 2021. Influence of different light quality formed by colored rainproof-films on bayberry fruit quality during ripening. Acta Horticulturae Sinica, 48 (9):1794-1804. (in Chinese) |
戚行江, 郑锡良, 李小白, 张淑文, 任海英, 俞浙萍. 2021. 避雨膜光质对杨梅果实成熟过程和品质的影响. 园艺学报, 48 (9):1794-1804. | |
[42] |
Quadrana L, Almeida J, Asís R, Duffy T, Dominguez P G, Bermúdez L, Conti G, Junia V Silva Corrêa da, Peralta I E, Colot E, Asurmendi S, Fernie A R. 2014. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communication, 5:4027.
doi: 10.1038/ncomms5027 URL |
[43] |
Saze H, Tsugane K, Kanno T, Nishimura T. 2012. DNA methylation in plants:relationship to small RNAs and histone modifications,and functions in transposon inactivation. Plant Cell Physiology, 53 (5):766-784.
doi: 10.1093/pcp/pcs008 URL |
[44] |
Seymour G B, Ostergaard L, Chapman N H, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review Plant Biology, 64:219-241.
doi: 10.1146/annurev-arplant-050312-120057 URL |
[45] | Shao F, Liu X, Zhang X, Wang Q, Wang W. 2021. Methylation of 45S ribosomal DNA(rDNA)is associated with cancer and aging in humans. International Journal of Genomics, https://doi.org/10.1155/2021/8818007. |
[46] |
Smaczniak C, Immik R G, Angenent G C, Kaufmann K. 2012. Development and evolutionary diversity of plant MADs domain factors:insights from recent studies. Development, 139:3081-3098.
doi: 10.1242/dev.074674 pmid: 22872082 |
[47] |
Stroud H, Do T, Du J M, Zhong X H, Feng S H, Johnson L, Patel D J, Jacobsen S E. 2014. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Structural and Molecular Biology, 21 (1):64-72.
doi: 10.1038/nsmb.2735 pmid: 24336224 |
[48] |
Tang D, Gallusci P, Lang Z B. 2020. Fruit development and epigenetic modifications. New Phytologist, 228:839-844.
doi: 10.1111/nph.16724 URL |
[49] | Telias A, Wang K L, Stevenson D E, Cooney J M, Hellens R P, Allan A C, Hoover E E, Bradeen J M. 2011. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 93 (11):1-14. |
[50] |
Teyssier E, Bernacchia G, Maury S, How K A, Stammitti-Bert L, Rolin D, Gallusci P. 2008. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta, 228:391-399.
doi: 10.1007/s00425-008-0743-z pmid: 18488247 |
[51] |
Thompson A J, Tor M, Barry C S, Vrebalov J, Orfila C, Jarvis M C, Giovannoni J J, Grierson D, Seymour G B. 1999. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiology, 120:383-390.
doi: 10.1104/pp.120.2.383 pmid: 10364389 |
[52] |
Tian Shiping. 2013. Molecular mechanisms of fruit ripening and senescence. Chinese Bulletin of Botany, 48 (5):481-488. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00481 URL |
田世平. 2013. 果实成熟和衰老的分子调控机制. 植物学报, 48 (5):481-488.
doi: 10.3724/SP.J.1259.2013.00481 |
|
[53] |
Tompa R, McCallum C M, Delrow J, Henikoff J G, Steensel B V, Henikoff S. 2002. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Current Biology, 12:65-68.
pmid: 11790305 |
[54] |
Tör M, Manning K, King G J, Thompson A J, Jones G H, Seymour G B, Armstrong S J. 2002. Genetic analysis and FISH mapping of the colourless non-ripening locus of tomato. Theoretical and Applied Genetics, 104:165-170.
pmid: 12582682 |
[55] |
Wang H, Jones B, Li Z G, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech J C, Bouzayen M. 2005. The tomato Aux/IAA transcription factor IAA 9 is involved in fruit development and leaf morphogenesis. The Plant Cell, 17 (10):2676-2692.
doi: 10.1105/tpc.105.033415 URL |
[56] | Xu Jidi. 2015. Genome-wide analysis of DNA methylation and its regulation in citrus[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
徐记迪. 2015. 柑橘全基因组DNA甲基化分析及调控作用研究[博士论文]. 武汉: 华中农业大学. | |
[57] | Xu Xiaodi, Li Boqiang, Qin Guozheng, Chen Tong, Zhang Zhanquan, Tian Shiping. 2020. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 47 (8):1595-1609. (in Chinese) |
徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 2020. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 47 (8):1595-1609. | |
[58] | Yang Linlin, Huang Yuntong, Fu Zeyuan, Xu Qijiang. 2022. Research progress on the epigenetic mechanisms of sex determination in horticultural plants. Acta Horticulturae Sinica, 49 (7):1602-1610. (in Chinese) |
杨琳琳, 黄云彤, 付泽元, 徐启江. 2022. 园艺植物性别决定的表观遗传机制研究进展. 园艺学报, 49 (7):1602-1610. | |
[59] | Zemach A, Kim M Y, Silva P, Rodrigues J A, Dotson B, Brooks M D., Zilberman D. 2010. Local DNA hypomethylation activates genes in rice endosperm. Proceedings of the National Academy of Sciences of the United States of America, 107 (43):18729-18734. |
[60] |
Zhang C M, Hao Y J. 2020. Advances in genomic,transcriptomic,and metabolomic analyses of fruit quality in fruit crops. Horticultural Plant Journal, 6 (6):361-371.
doi: 10.1016/j.hpj.2020.11.001 URL |
[61] |
Zhang H M, Lang Z B, Zhu J K. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19 (8):489-506.
doi: 10.1038/s41580-018-0016-z pmid: 29784956 |
[62] |
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan Simon W L, Chen H M, Henderson I R, Shinn P, Pellegrini M, Jacobsen S E, Joseph R E. 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126:1189-1201.
doi: 10.1016/j.cell.2006.08.003 URL |
[63] | Zhao Yuqing, Chen Tao, Yuan Ming. 2021. Application of melatonin in fruit development and postharvest preservation. Acta Horticulturae Sinica, 48 (6):1233-1249. (in Chinese) |
赵雨晴, 陈涛, 袁明. 2021. 褪黑素在果实发育和采后保鲜中的应用. 园艺学报, 48 (6):1233-1249. | |
[64] |
Zhong S L, Fei Z J, Chen Y R, Zheng Y, Huang M Y, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni J J. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31:154-159.
doi: 10.1038/nbt.2462 pmid: 23354102 |
[65] | Zhou Chenping, Yang Min, Guo Jinju, Kuang Ruibin, Yang Hu, Huang Bingxiong, Wei Yuerong. 2022. Dynamic changes in DNA methylome and transcriptome patterns during papaya fruit ripening. Acta Horticulturae Sinica, 49 (3):519-532. (in Chinese) |
周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 2022. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析. 园艺学报, 49 (3):519-532. | |
[66] | Zhu Wentao, Zhou Houcheng, Wang Zicheng. 2013. Cryopreservation of Fragaria pentapylla and analysis of genetic stability. Journal of Fruit Science, 30 (1):55-61. (in Chinese) |
朱文涛, 周厚成, 王子成. 2013. 五叶草莓超低温保存及遗传稳定性分析. 果树学报, 30 (1):55-61. | |
[67] |
Zubko E, Gentry M, Kunova A, Meyer P. 2012. De novo DNA methylation activity of METHYLTRANSFERASE 1(MET1) partially restores body methylation in Arabidopsis thaliana. The Plant Journal, 71 (6):1029-1037.
doi: 10.1111/j.1365-313X.2012.05051.x URL |
[68] |
Zuo J, Grierson D, Courtney L T. Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Qang Q, Giovannoni J J. 2020. Relationships between genome methylation,levels of non-coding RNAs,mRNAs and metabolites in ripening tomato fruit. The Plant Journal, 103:980-994.
doi: 10.1111/tpj.14778 URL |
[1] | 杨植, 张川疆, 杨芯芳, 董梦怡, 王振磊, 闫芬芬, 吴翠云, 王玖瑞, 刘孟军, 林敏娟. 枣与酸枣杂交后代果实遗传倾向及混合遗传分析[J]. 园艺学报, 2023, 50(1): 36-52. |
[2] | 王燕, 刘针杉, 张静, 杨鹏飞, 马蓝, 王旨意, 涂红霞, 杨绍凤, 王浩, 陈涛, 王小蓉. 中国樱桃杂交F1代花和果实若干性状遗传倾向分析[J]. 园艺学报, 2022, 49(9): 1853-1865. |
[3] | 蒙小玉, 穆悦, 胡杨, 吴潇, 朱辰, 王慧敏, 陶书田, 张绍铃, 殷豪. 几种果实表面积的三维激光扫描测定[J]. 园艺学报, 2022, 49(9): 1998-2006. |
[4] | 张悦, 索玉静, 孙鹏, 韩卫娟, 刁松锋, 李华威, 张嘉嘉, 傅建敏, 李芳东. 柿种质资源果实形态多样性分析[J]. 园艺学报, 2022, 49(7): 1473-1490. |
[5] | 魏晓羽, 王跃进. 中国野生葡萄果皮解剖结构与白粉病抗性的相关性研究[J]. 园艺学报, 2022, 49(6): 1200-1212. |
[6] | 路涛, 余宏军, 李强, 蒋卫杰. 叶果量调控对番茄生长发育、果实品质和产量的影响[J]. 园艺学报, 2022, 49(6): 1261-1274. |
[7] | 向妙莲, 吴帆, 李树成, 马巧利, 王印宝, 肖刘华, 陈金印, 陈明. 外源褪黑素调控活性氧代谢诱导梨果实抗采后黑斑病[J]. 园艺学报, 2022, 49(5): 1102-1110. |
[8] | 叶泗洪, 刘飞, 添长久. 黄秋葵新品种‘皖秋葵4号’[J]. 园艺学报, 2022, 49(5): 1175-1176. |
[9] | 李黎, 冯丹丹, 潘慧, 李文艺, 邓蕾, 汪祖鹏, 钟彩虹. 猕猴桃花粉灭菌方法比较及对果实品质的影响[J]. 园艺学报, 2022, 49(4): 769-777. |
[10] | 王莹, 艾鹏慧, 李帅磊, 康冬茹, 李忠爱, 王子成. 菊花和菊花脑DNA甲基化相关酶基因鉴定及表达分析[J]. 园艺学报, 2022, 49(4): 827-840. |
[11] | 王宏, 杨王莉, 蔺经, 杨青松, 李晓刚, 盛宝龙, 常有宏. 早熟砂梨‘苏翠1号’与其亲本‘翠冠’‘华酥’成熟果实差异代谢产物及差异基因比较分析[J]. 园艺学报, 2022, 49(3): 493-508. |
[12] | 刘文欢, 邱芳颖, 王娅, 陈朗, 马岩岩, 吕强, 易时来, 谢让金, 郑永强. 枯草芽孢杆菌液态肥对柑橘养分吸收和果实品质的影响[J]. 园艺学报, 2022, 49(3): 509-518. |
[13] | 周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析[J]. 园艺学报, 2022, 49(3): 519-532. |
[14] | 聂文锋, 王金玉, 高春娟, 陈学好. 表观遗传修饰调控园艺植物果实发育研究进展[J]. 园艺学报, 2022, 49(3): 671-686. |
[15] | 武红霞, 李星, 许文天, 郑斌, 马小卫, 苏穆清, 梁清志, 姚全胜, 王松标. 杧果‘金煌’ב热农1号’后代果实性状遗传分析[J]. 园艺学报, 2022, 49(2): 416-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司