园艺学报 ›› 2023, Vol. 50 ›› Issue (5): 1073-1084.doi: 10.16420/j.issn.0513-353x.2022-0057
李中瀚1, 唐美玲2, 郑秋玲2, 刘明慧1, 康慧1, 高振1, 杜远鹏1,*()
收稿日期:
2022-08-08
修回日期:
2023-02-06
出版日期:
2023-05-25
发布日期:
2023-05-31
通讯作者:
*(E-mail:duyuanpeng001@163.com)基金资助:
LI Zhonghan1, TANG Meiling2, ZHENG Qiuling2, LIU Minghui1, KANG Hui1, GAO Zhen1, DU Yuanpeng1,*()
Received:
2022-08-08
Revised:
2023-02-06
Published:
2023-05-25
Online:
2023-05-31
摘要:
以欧美杂交种葡萄‘蜜光’为试材,探究聚乙烯(PE)编织物Coverlys TF150®材质的避雨棚膜对树冠和果实微域环境及果实品质的影响。连续两年的试验结果表明:Coverlys TF150®透光率比聚烯烃(PO)膜低11.91%,降低了果面微域温湿度,缓解了高温和强光胁迫。Coverlys TF150®覆盖提高了成熟期果实大小、可溶性固形物、花色苷、总酚、类黄酮和黄烷醇含量,降低了可滴定酸含量。2020和2021年果实百粒质量分别增加2.15%和2.46%,果实可溶性固形物含量分别提高3.70%和3.04%,果实可滴定酸分别降低17.90%和10.53%,果实花色苷含量分别提高18.33%和11.91%,总酚含量分别提高23.30%和13.07%,类黄酮含量分别提高24.00%和19.43%,黄烷醇含量分别提高18.20%和15.58%。CoverlysTF150®覆盖提高了葡萄果实中萜烯类香气物质含量,尤其是里那醇含量,降低了C6醛类如己醛的含量。
中图分类号:
李中瀚, 唐美玲, 郑秋玲, 刘明慧, 康慧, 高振, 杜远鹏. 聚乙烯编织物Coverlys TF150®覆盖对‘蜜光’葡萄果实品质的影响[J]. 园艺学报, 2023, 50(5): 1073-1084.
LI Zhonghan, TANG Meiling, ZHENG Qiuling, LIU Minghui, KANG Hui, GAO Zhen, DU Yuanpeng. The Effect of Rain Shelter Material Coverlys TF150® on the Fruit Quality of‘Miguang’Grape[J]. Acta Horticulturae Sinica, 2023, 50(5): 1073-1084.
图4 Coverlys TF150®和PO膜覆盖对‘蜜光’葡萄果实百粒质量、果粒横径和果粒纵径的影响 *表示有显著性差异(P < 0.05)。
Fig. 4 Effect of Coverlys TF150® and PO film on 100-grain weight,transverse diameter and longitudinal diameter of fruit of‘Miguang’grape * represents significant difference at 0.05 level.
图5 Coverlys TF150®和PO膜覆盖对葡萄果实可溶性固形物和可滴定酸的影响 *代表有显著性差异(P < 0.05)。
Fig. 5 Effect of Coverlys TF150® and PO film on soluble solids and titratable acids content of grape fruits * represents significant difference at 0.05 level.
年 Year | 花后周数 Weeks after flwoering | 处理 Treatment | 花色苷/(mg · g-1) Anthocyanin | 类黄酮/(mg · g-1) Flavonoid | 黄烷醇/(mg · g-1) Flavanol | 总酚/(mg · g-1) Total phenolic |
---|---|---|---|---|---|---|
2020 | 12 | Coverlys TF150® | 1.20 a | 6.04 a | 4.12 a | 8.37 a |
PO | 0.98 b | 4.59 b | 3.37 b | 6.42 b | ||
2021 | 9 | Coverlys TF150® | 0.04 b | 2.22 a | 1.75 a | 3.09 a |
PO | 0.05 a | 2.42 a | 1.63 a | 3.18 a | ||
10 | Coverlys TF150® | 0.13 b | 2.54 b | 2.00 a | 3.57 b | |
PO | 0.26 a | 2.87 a | 2.18 a | 4.16 a | ||
11 | Coverlys TF150® | 0.51 a | 3.14 a | 3.00 a | 4.99 a | |
PO | 0.45 b | 3.10 a | 2.92 b | 4.94 a | ||
12 | Coverlys TF150® | 0.84 a | 4.89 a | 4.43 a | 6.81 a | |
PO | 0.74 b | 3.94 b | 3.74 b | 5.92 b |
表1 Coverlys TF150®和PO膜覆盖对‘蜜光’葡萄果实酚类物质含量的影响
Table 1 Effect of Coverlys TF150® and PO film on the accumulation of phenols in‘Miguang’grape fruits
年 Year | 花后周数 Weeks after flwoering | 处理 Treatment | 花色苷/(mg · g-1) Anthocyanin | 类黄酮/(mg · g-1) Flavonoid | 黄烷醇/(mg · g-1) Flavanol | 总酚/(mg · g-1) Total phenolic |
---|---|---|---|---|---|---|
2020 | 12 | Coverlys TF150® | 1.20 a | 6.04 a | 4.12 a | 8.37 a |
PO | 0.98 b | 4.59 b | 3.37 b | 6.42 b | ||
2021 | 9 | Coverlys TF150® | 0.04 b | 2.22 a | 1.75 a | 3.09 a |
PO | 0.05 a | 2.42 a | 1.63 a | 3.18 a | ||
10 | Coverlys TF150® | 0.13 b | 2.54 b | 2.00 a | 3.57 b | |
PO | 0.26 a | 2.87 a | 2.18 a | 4.16 a | ||
11 | Coverlys TF150® | 0.51 a | 3.14 a | 3.00 a | 4.99 a | |
PO | 0.45 b | 3.10 a | 2.92 b | 4.94 a | ||
12 | Coverlys TF150® | 0.84 a | 4.89 a | 4.43 a | 6.81 a | |
PO | 0.74 b | 3.94 b | 3.74 b | 5.92 b |
化合物种类/ (µg · g-1) Type | 化合物名称 Compound | 处理 Treatment | 2020 | 2021 | |||
---|---|---|---|---|---|---|---|
12 WAF | 9 WAF | 10 WAF | 11 WAF | 12 WAF | |||
萜烯类 Terpene | α-蒎烯α-Pinene | Coverlys TF150® | 0.85 a | 4.64 a | 2.37 a | 1.88 a | 0.61 a |
PO | 0.85 a | 3.92 b | 3.20 a | 1.69 b | 0.55 a | ||
β-月桂烯 β-Myrcene | Coverlys TF150® | 16.98 a | 5.25 b | 13.16 a | 10.45 b | 19.88 a | |
PO | 15.08 a | 6.44 a | 10.35 b | 14.74 a | 17.70 a | ||
柠檬烯 Limonene | Coverlys TF150® | 8.38 a | 9.37 a | 13.27 a | 13.01 a | 15.14 a | |
PO | 5.72 a | 9.32 a | 12.41 a | 14.53 a | 15.48 a | ||
反式-β-罗勒烯 trans-β-Ocimene | Coverlys TF150® | 4.84 a | 0.73 b | 1.54 a | 1.59 b | 2.32 a | |
PO | 2.98 a | 1.46 a | 2.08 a | 2.16 a | 2.30 a | ||
γ-松油烯 γ-Terpinene | Coverlys TF150® | 1.57 a | 0.74 | — | 0.66 a | 2.15 | |
PO | 1.70 a | — | 2.49 | 0.85 a | 2.55 | ||
里那醇 Linalool | Coverlys TF150® | 155.01 a | 3.90 | 21.56 | 26.53 a | 52.19 a | |
PO | 120.42 b | 4.17 | 15.17 b | 23.75 a | 42.17 b | ||
α-松油烯 α-Terpinene | Coverlys TF150® | — | 0.49 a | 1.68 a | 0.45 b | 0.83 a | |
PO | 0.76 a | 1.68 a | 1.10 a | 0.97 a | |||
顺式-β-罗勒烯 cis-β-Ocimene | Coverlys TF150® | 8.68 a | 1.27 | — | 0.53 | — | |
PO | 5.32 a | 3.23 | 5.00 | — | 0.46 | ||
醇类 Alcohol | 1-辛烯-3-醇 1-Octen-3-ol | Coverlys TF150® | 0.87 | 0.20 | 0.26 a | 0.50 a | 0.33 a |
PO | 0.80 a | 0.46 a | 0.49 a | 0.19 a | 0.35 a | ||
6-甲基-2-庚醇 | Coverlys TF150® | — | 15.44 | 119.38 | 116.49 a | 116.21 a | |
6-Methyl-2-heptanol | PO | — | — | 116.77 | 95.83 b | 133.86 a | |
反式-2-癸烯-1-醇 | Coverlys TF150® | — | 0.27 | 0.78 | — | 0.68 a | |
(E)-2-Decen-1-ol | PO | — | 0.84 a | 0.54 | 0.75 a | ||
醛类 Aldehydes | 己醛 Hexanal | Coverlys TF150® | 226.33 b | 165.40 a | 150.77 a | 164.00 a | 150.70 b |
PO | 250.90 a | 144.43 b | 132.30 b | 150.09 a | 177.09 a | ||
反式-2-己烯醛 (E)--2-Hexenal | Coverlys TF150® | 348.94 b | 236.61 a | 241.72 a | 244.63 a | 262.62 a | |
PO | 385.78 a | 155.71 b | 205.62 b | 206.49 b | 261.53 a | ||
壬醛 Nonanal | Coverlys TF150® | 26.38 a | 5.94 b | 13.31 a | 7.37 a | 0.33 | |
PO | 25.11 a | 12.84 a | 0.68 b | 7.13 a | 0.33 | ||
癸醛 Decanal | Coverlys TF150® | 4.25 a | — | 2.83 a | 0.07 | 0.17 | |
PO | 5.81 a | 2.00 b | — | 0.20 | |||
酯类Ester | 4-甲基戊酸乙酯 | Coverlys TF150® | 0.88 | 4.08 a | 2.38 a | 0.90 a | 1.25 b |
Ethyl 4-methylpentanoate | PO | 0.71 | 3.20 b | 2.56 a | 0.64 b | 1.66 a | |
2-己烯酸乙酯 | Coverlys TF150® | 1.26 | 0.32 a | 2.78 a | 1.31 a | 1.63 a | |
Ethyl 2-hexenoate | PO | 1.48 | 1.07 b | 2.53 a | 0.97 a | 1.31 a | |
戊酸乙酯 Ethyl valerate | Coverlys TF150® | 3.69 | 4.70 a | 3.66 a | 1.34 a | 1.23 a | |
PO | — | 4.88 a | 3.56 a | 1.62 a | 1.49 a | ||
乙酸乙酯 Ethyl acetate | Coverlys TF150® | 36.44 | 11.94 | 2.49 | — | — | |
PO | — | 5.53 | — | — | 3.37 | ||
庚酸乙酯 | Coverlys TF150® | — | 2.71 b | 0.50 | 2.10 | 2.21 | |
Ethyl heptanoate | PO | — | 4.84 a | — | 1.51 | 2.13 | |
反式-4-庚烯酸乙酯 | Coverlys TF150® | — | 0.29 b | 0.18 a | 0.3 | 42.19 a | |
Ethyl (E)-4-heptenoate | PO | — | 0.41 a | 0.78 a | 0.34 | 43.51 a | |
酮类Ketone | 甲基庚烯酮 Methyl heptenone | Coverlys TF150® | 1.02 a | 0.66 | 0.64 | 0.41 a | 1.40 |
PO | 0.86 a | 0.75 | 1.05 | 0.36 a | — | ||
苯的衍生物 | 甲苯 Toluene | Coverlys TF150® | 4.99 | 0.56 | 0.52 a | 0.48 a | 2.95 |
Benzene | PO膜 | 5.69 | 0.50 | 0.39 a | 0.23 a | 2.61 | |
erivatives | 芴 Fluorene | Coverlys TF150® | — | 0.10 | 0.30 | 123.3 | 0.31 |
PO | 5.93 | 0.35 | 0.37 | 142.5 | 0.22 | ||
邻伞花烃 o-Cymene | Coverlys TF150® | 0.30 | 3.46 | 2.72 a | 3.16 | 2.03 | |
PO | 0.46 | 4.73 | 2.25 a | 1.52 | 1.36 |
表2 Coverlys TF150®和PO膜覆盖对‘蜜光’葡萄果实主要的挥发性物质积累的影响
Table 2 Effect of Coverlys TF150® on accumulation of major volatile substances in‘Miguang’grape fruits
化合物种类/ (µg · g-1) Type | 化合物名称 Compound | 处理 Treatment | 2020 | 2021 | |||
---|---|---|---|---|---|---|---|
12 WAF | 9 WAF | 10 WAF | 11 WAF | 12 WAF | |||
萜烯类 Terpene | α-蒎烯α-Pinene | Coverlys TF150® | 0.85 a | 4.64 a | 2.37 a | 1.88 a | 0.61 a |
PO | 0.85 a | 3.92 b | 3.20 a | 1.69 b | 0.55 a | ||
β-月桂烯 β-Myrcene | Coverlys TF150® | 16.98 a | 5.25 b | 13.16 a | 10.45 b | 19.88 a | |
PO | 15.08 a | 6.44 a | 10.35 b | 14.74 a | 17.70 a | ||
柠檬烯 Limonene | Coverlys TF150® | 8.38 a | 9.37 a | 13.27 a | 13.01 a | 15.14 a | |
PO | 5.72 a | 9.32 a | 12.41 a | 14.53 a | 15.48 a | ||
反式-β-罗勒烯 trans-β-Ocimene | Coverlys TF150® | 4.84 a | 0.73 b | 1.54 a | 1.59 b | 2.32 a | |
PO | 2.98 a | 1.46 a | 2.08 a | 2.16 a | 2.30 a | ||
γ-松油烯 γ-Terpinene | Coverlys TF150® | 1.57 a | 0.74 | — | 0.66 a | 2.15 | |
PO | 1.70 a | — | 2.49 | 0.85 a | 2.55 | ||
里那醇 Linalool | Coverlys TF150® | 155.01 a | 3.90 | 21.56 | 26.53 a | 52.19 a | |
PO | 120.42 b | 4.17 | 15.17 b | 23.75 a | 42.17 b | ||
α-松油烯 α-Terpinene | Coverlys TF150® | — | 0.49 a | 1.68 a | 0.45 b | 0.83 a | |
PO | 0.76 a | 1.68 a | 1.10 a | 0.97 a | |||
顺式-β-罗勒烯 cis-β-Ocimene | Coverlys TF150® | 8.68 a | 1.27 | — | 0.53 | — | |
PO | 5.32 a | 3.23 | 5.00 | — | 0.46 | ||
醇类 Alcohol | 1-辛烯-3-醇 1-Octen-3-ol | Coverlys TF150® | 0.87 | 0.20 | 0.26 a | 0.50 a | 0.33 a |
PO | 0.80 a | 0.46 a | 0.49 a | 0.19 a | 0.35 a | ||
6-甲基-2-庚醇 | Coverlys TF150® | — | 15.44 | 119.38 | 116.49 a | 116.21 a | |
6-Methyl-2-heptanol | PO | — | — | 116.77 | 95.83 b | 133.86 a | |
反式-2-癸烯-1-醇 | Coverlys TF150® | — | 0.27 | 0.78 | — | 0.68 a | |
(E)-2-Decen-1-ol | PO | — | 0.84 a | 0.54 | 0.75 a | ||
醛类 Aldehydes | 己醛 Hexanal | Coverlys TF150® | 226.33 b | 165.40 a | 150.77 a | 164.00 a | 150.70 b |
PO | 250.90 a | 144.43 b | 132.30 b | 150.09 a | 177.09 a | ||
反式-2-己烯醛 (E)--2-Hexenal | Coverlys TF150® | 348.94 b | 236.61 a | 241.72 a | 244.63 a | 262.62 a | |
PO | 385.78 a | 155.71 b | 205.62 b | 206.49 b | 261.53 a | ||
壬醛 Nonanal | Coverlys TF150® | 26.38 a | 5.94 b | 13.31 a | 7.37 a | 0.33 | |
PO | 25.11 a | 12.84 a | 0.68 b | 7.13 a | 0.33 | ||
癸醛 Decanal | Coverlys TF150® | 4.25 a | — | 2.83 a | 0.07 | 0.17 | |
PO | 5.81 a | 2.00 b | — | 0.20 | |||
酯类Ester | 4-甲基戊酸乙酯 | Coverlys TF150® | 0.88 | 4.08 a | 2.38 a | 0.90 a | 1.25 b |
Ethyl 4-methylpentanoate | PO | 0.71 | 3.20 b | 2.56 a | 0.64 b | 1.66 a | |
2-己烯酸乙酯 | Coverlys TF150® | 1.26 | 0.32 a | 2.78 a | 1.31 a | 1.63 a | |
Ethyl 2-hexenoate | PO | 1.48 | 1.07 b | 2.53 a | 0.97 a | 1.31 a | |
戊酸乙酯 Ethyl valerate | Coverlys TF150® | 3.69 | 4.70 a | 3.66 a | 1.34 a | 1.23 a | |
PO | — | 4.88 a | 3.56 a | 1.62 a | 1.49 a | ||
乙酸乙酯 Ethyl acetate | Coverlys TF150® | 36.44 | 11.94 | 2.49 | — | — | |
PO | — | 5.53 | — | — | 3.37 | ||
庚酸乙酯 | Coverlys TF150® | — | 2.71 b | 0.50 | 2.10 | 2.21 | |
Ethyl heptanoate | PO | — | 4.84 a | — | 1.51 | 2.13 | |
反式-4-庚烯酸乙酯 | Coverlys TF150® | — | 0.29 b | 0.18 a | 0.3 | 42.19 a | |
Ethyl (E)-4-heptenoate | PO | — | 0.41 a | 0.78 a | 0.34 | 43.51 a | |
酮类Ketone | 甲基庚烯酮 Methyl heptenone | Coverlys TF150® | 1.02 a | 0.66 | 0.64 | 0.41 a | 1.40 |
PO | 0.86 a | 0.75 | 1.05 | 0.36 a | — | ||
苯的衍生物 | 甲苯 Toluene | Coverlys TF150® | 4.99 | 0.56 | 0.52 a | 0.48 a | 2.95 |
Benzene | PO膜 | 5.69 | 0.50 | 0.39 a | 0.23 a | 2.61 | |
erivatives | 芴 Fluorene | Coverlys TF150® | — | 0.10 | 0.30 | 123.3 | 0.31 |
PO | 5.93 | 0.35 | 0.37 | 142.5 | 0.22 | ||
邻伞花烃 o-Cymene | Coverlys TF150® | 0.30 | 3.46 | 2.72 a | 3.16 | 2.03 | |
PO | 0.46 | 4.73 | 2.25 a | 1.52 | 1.36 |
年 Year | WAF | 处理 Treatment | 萜烯类 Terpene | 醇类 Alcohol | 醛类 Aldehydes | 酯类 Ester | 酮类 Ketone | 苯的衍生物 Benzene erivatives | ||
---|---|---|---|---|---|---|---|---|---|---|
2020 | 12 | Coverlys TF150® | 213.64 ± 6.65 a | 20.12 ± 0.31 a | 614.03 ± 8.12 b | 7.87 ± 3.19 a | 1.49 ± 0.59 a | 33.19 ± 5.61 a | ||
PO | 167.79 ± 7.12 b | 16.06 ± 4.80 a | 680.19 ± 6.61 a | 7.55 ± 1.21 a | 1.09 ± 0.09 a | 42.36 ± 28.44 a | ||||
2021 | 9 | Coverlys TF150® | 27.86 ± 1.36 a | 17.87 ± 4.00 a | 409.53 ± 5.74 a | 25.80 ± 2.80 a | 0.69 ± 0.15 a | 8.07 ± 0.51 a | ||
PO | 30.21 ± 2.90 a | 1.63 ± 1.20 b | 314.29 ± 13.26 b | 18.06 ± 2.15 b | 0.75 ± 0.09 a | 8.54 ± 3.70 a | ||||
10 | Coverlys TF150® | 58.09 ± 4.38 a | 121.49 ± 3.65 a | 411.31 ± 25.19 a | 10.97 ± 1.21 a | 0.74 ± 0.11 a | 4.27 ± 1.96 a | |||
PO | 55.50 ± 2.61 a | 121.24 ± 5.98 a | 343.24 ± 10.15 b | 9.70 ± 1.19 a | 0.73 ± 0.64 a | 4.28 ± 0.45 a | ||||
11 | Coverlys TF150® | 58.32 ± 3.07 a | 117.53 ± 1.69 a | 417.95 ± 23.71 a | 6.82 ± 4.62 a | 0.42 ± 0.28 a | 4.19 ± 1.02 a | |||
PO | 59.25 ± 8.51 a | 97.18 ± 6.00 b | 365.38 ± 12.00 b | 8.34 ± 0.63 a | 0.53 ± 0.11 a | 3.11 ± 0.25 a | ||||
12 | Coverlys TF150® | 100.75 ± 2.35 a | 117.64 ± 17.81 a | 425.01 ± 19.97 a | 7.24 ± 0.34 a | 2.03 | 6.48 ± 2.02 a | |||
PO | 89.70 ± 2.66 b | 135.13 ± 5.17 a | 447.80 ± 15.12 a | 8.96 ± 1.79 a | — | 7.65 ± 7.25 a |
表3 Coverlys TF150®和PO膜覆盖对‘蜜光’葡萄果实发育过程中挥发性物质含量的比较
Table 3 Comparison of volatile substance contents in‘Miguang’grapes during fruit development under Coverlys TF150® and PO film
年 Year | WAF | 处理 Treatment | 萜烯类 Terpene | 醇类 Alcohol | 醛类 Aldehydes | 酯类 Ester | 酮类 Ketone | 苯的衍生物 Benzene erivatives | ||
---|---|---|---|---|---|---|---|---|---|---|
2020 | 12 | Coverlys TF150® | 213.64 ± 6.65 a | 20.12 ± 0.31 a | 614.03 ± 8.12 b | 7.87 ± 3.19 a | 1.49 ± 0.59 a | 33.19 ± 5.61 a | ||
PO | 167.79 ± 7.12 b | 16.06 ± 4.80 a | 680.19 ± 6.61 a | 7.55 ± 1.21 a | 1.09 ± 0.09 a | 42.36 ± 28.44 a | ||||
2021 | 9 | Coverlys TF150® | 27.86 ± 1.36 a | 17.87 ± 4.00 a | 409.53 ± 5.74 a | 25.80 ± 2.80 a | 0.69 ± 0.15 a | 8.07 ± 0.51 a | ||
PO | 30.21 ± 2.90 a | 1.63 ± 1.20 b | 314.29 ± 13.26 b | 18.06 ± 2.15 b | 0.75 ± 0.09 a | 8.54 ± 3.70 a | ||||
10 | Coverlys TF150® | 58.09 ± 4.38 a | 121.49 ± 3.65 a | 411.31 ± 25.19 a | 10.97 ± 1.21 a | 0.74 ± 0.11 a | 4.27 ± 1.96 a | |||
PO | 55.50 ± 2.61 a | 121.24 ± 5.98 a | 343.24 ± 10.15 b | 9.70 ± 1.19 a | 0.73 ± 0.64 a | 4.28 ± 0.45 a | ||||
11 | Coverlys TF150® | 58.32 ± 3.07 a | 117.53 ± 1.69 a | 417.95 ± 23.71 a | 6.82 ± 4.62 a | 0.42 ± 0.28 a | 4.19 ± 1.02 a | |||
PO | 59.25 ± 8.51 a | 97.18 ± 6.00 b | 365.38 ± 12.00 b | 8.34 ± 0.63 a | 0.53 ± 0.11 a | 3.11 ± 0.25 a | ||||
12 | Coverlys TF150® | 100.75 ± 2.35 a | 117.64 ± 17.81 a | 425.01 ± 19.97 a | 7.24 ± 0.34 a | 2.03 | 6.48 ± 2.02 a | |||
PO | 89.70 ± 2.66 b | 135.13 ± 5.17 a | 447.80 ± 15.12 a | 8.96 ± 1.79 a | — | 7.65 ± 7.25 a |
[1] |
Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 236 (4):1067-1080.
doi: 10.1007/s00425-012-1650-x pmid: 22569920 |
[2] | Cao Meng, Guo Jing-nan, Wei Zhi-feng, Gao Deng-tao, Cheng Da-wei, Sun Xiao-wen. 2015. Effects of rain-shelter cultivation on development and aromatic component of‘Gold Finger’grape. Journal of Fruit Science, 32 (5):894-902. (in Chinese) |
曹锰, 郭景南, 魏志峰, 高登涛, 程大伟, 孙晓文. 2015. 避雨栽培对‘金手指’葡萄果实生长及香气物质组分的影响. 果树学报, 32 (5):894-902. | |
[3] |
Camejo D, Rodríguez P, Morales M A, Dell’Amico J M, Torrecillas A, Alarcón J J. 2005. High temperature effects on photosynthetic activity of two tomato cultivars withdifferent heat susceptibility. J Plant Physiol, 162 (3):281-289.
doi: 10.1016/j.jplph.2004.07.014 URL |
[4] |
Crafts-Brandner S J, Salvucci M E. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci U S A, 97 (24):13430-13435.
doi: 10.1073/pnas.230451497 URL |
[5] | Demirevska-Kepova K, Holzer R, Simova-Stoilova L, Feller U. 2005. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase,rubisco binding protein and rubisco activase in wheat leaves. Biologia Plantarum, 9 (4):521-525. |
[6] | Fu Ya-qun, Gao Yuan, Meng Nan, Pan Qiu-hong. 2017. Effects of rain-shelter cultivation on green leaf volatiles of‘Cabernet Sauvignon’grape. Journal of Fruit Science, 34 (12):1566-1579. (in Chinese) |
付亚群, 高媛, 孟楠, 潘秋红. 2016. 避雨栽培对‘赤霞珠’葡萄绿叶挥发性组分含量的影响. 果树学报, 34 (12):1566-1579. | |
[7] |
Genovese A, Lamorte S A, Gambuti A, Moio L. 2013. Aroma of Aglianico and Uva di troia grapes by aromatic series. Food Research International, 53 (1):15-23.
doi: 10.1016/j.foodres.2013.03.051 URL |
[8] |
Guan L, Dai Z, Wu B H, Wu J, Merlin I, Hilbert G, Delrot S. 2016. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta, 243 (1):23-41.
doi: 10.1007/s00425-015-2391-4 pmid: 26335854 |
[9] |
Ji T, Dami I E. 2010. Characterization of free flavor compounds in traminette grape and their relationship to vineyard training system and location. Journal of Food Science, 73 (4):C262-C267.
doi: 10.1111/j.1750-3841.2008.00736.x URL |
[10] |
Kim H K, Cheon B S, Kim Y. H, Kim S Y, Kim H P. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line raw 264.7 and their structure-activity relationships. Biochemical Pharmacology, 58 (5):759-765.
doi: 10.1016/s0006-2952(99)00160-4 pmid: 10449184 |
[11] | Li Jin-chao, Duan Luo-shun, Zhang Xiao-shen. 2009. Effect of rainproof cultivation on grape disease incidence and light intensity under the shelter. Journal of Fruit Science, 26 (6):847-850. (in Chinese) |
栗进朝, 段罗顺, 张晓申. 2009. 避雨对葡萄病害和光照强度的影响. 果树学报, 26 (6):847-850. | |
[12] |
Liu C, Liu X, Tian X, Zhang J, Ren X. 2021. Determination of volatile profiles inside apple fruit storage facilities using monotrap monolithic silica adsorbent and GC-MS. Horticultural Plant Journal, 7 (4):267-274.
doi: 10.1016/j.hpj.2020.12.003 URL |
[13] | Liu Meng-long, Yu Meng, Wang Wen-xia, Du Yuan-peng. 2021. The aroma difference of‘Muscat’grape in Penglai,Pingdu and Dongying of Shandong Province. China Fruits,(2):13-19. (in Chinese) |
刘孟龙, 于梦, 王文霞, 杜远鹏. 2021. 山东蓬莱、平度及东营‘玫瑰香’葡萄香气比较. 中国果树,(2):13-19. | |
[14] | Liu Xiao-hong, Xiao Qiu-hong, Sun Yong-jiang, Du Yuan-peng, Zhai Heng. 2018. Difference of bagged 'Moldova'Grapes' anthocyanin metabolism for two trellis systems. Acta Horticulturae Sinica, 45 (3):457-470. (in Chinese) |
刘笑宏, 肖秋红, 孙永江, 杜远鹏, 翟衡. 2018. 两种叶幕类型‘摩尔多瓦’葡萄套袋果实花色苷代谢的差异. 园艺学报, 45 (3):457-470.
doi: 10.16420/j.issn.0513-353x.2017-0454 |
|
[15] |
Luo H B, Ling M, Ma L, Xi H F, Xi H F, Duan W, Li S H, Wayne L, Wang J F, Wang L F, El-Shemy Hany A. 2011. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine(Vitis amurensis L.)leaves. PLoS ONE, 6 (8):e23033.
doi: 10.1371/journal.pone.0023033 URL |
[16] | Marais J. 1983. Terpenes in the aroma of grapes and wines:a review. South African Journal of Enology and Viticulture, 4 (2):49-58. |
[17] | Marais J, Calitz F, Haasbroek P D. 2001. Relationship between microclimatic data,aroma component concentrations and winequality parameters in the prediction of Sauvignon blanc wine quality. South African Journal of Enology & Viticulture, 22 (1):22-26. |
[18] |
Orak H H. 2007. Total antioxidant activities,phenolics,anthocyanins,polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111 (3):235-241.
doi: 10.1016/j.scienta.2006.10.019 URL |
[19] | Palma L D, Limosani P, Vox G, Schettini E, Antoniciello D, Laporta F, Novello V. 2020. Technical properties of new agrotextile fabrics improving vineyard microclimate,table grape yield and quality. Acta Horticulturae, 1276:271-278. |
[20] | Pang Yong. 2004. Study on physiological effect and heat-resistance induction of apple under high temperature stress[M. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
庞勇. 2004. 高温胁迫对苹果生理效应及耐热性诱导的研究[硕士论文]. 杨凌: 西北农林科技大学. | |
[21] |
Yu Shu-yi, Liu Chang-yuan, Wang Hui, Liu Li, Guan Tian-shu. 2016. Effect of rain-shelter cultivation on temporal and spatial dynamics of airborne sporangia of Plasmopara viticola. Scientia Agricultura Sinica, 49 (10):1892-1902. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.10.006 |
于舒怡, 刘长远, 王辉, 刘丽, 关天舒. 2016. 避雨栽培对葡萄霜霉病菌孢子囊飞散时空动态的影响. 中国农业科学, 49 (10):1892-1902.
doi: 10.3864/j.issn.0578-1752.2016.10.006 |
|
[22] |
Schultz H. 2000. Climate change and viticulture: a European perspective on climatology,carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6 (1):2-12.
doi: 10.1111/j.1755-0238.2000.tb00156.x URL |
[23] |
Song C Z, Liu M Y, Meng J F, Chi M, Xi Z M, Zhang Z W. 2015. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil. Molecules, 20 (2):2536-2554.
doi: 10.3390/molecules20022536 URL |
[24] | Sun Jian-xia, Zhang Yan, Hu Xiao-song, Wu Ji-hong, Liao Xiao-jun. 2009. Structural stability and degradation mechanisms of anthocyanins. Scientia Agricultura Sinica, 42 (3):996-1008. (in Chinese) |
孙建霞, 张燕, 胡小松, 吴继红, 廖小军. 2009. 花色苷的结构稳定性与降解机制研究进展. 中国农业科学, 42 (3):996-1008. | |
[25] | Sun Yong-jiang. 2016. The response mechanisms of photosystemⅡand photosynthetic carbon assimilation in grapevine leaves to high temperature and strong light[Ph. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
孙永江. 2016. 葡萄光系统Ⅱ及光合碳同化对高温强光的响应机理[博士论文]. 泰安: 山东农业大学. | |
[26] |
Sun Yong-jiang, Fu Yan-dong, Du Yuan-peng, Zhai heng. 2013. Effects of different temperature and light treatments on photosynthetic system Ⅱ in Vitis vinifera L. cv. Cabernet Sauvignon. Scientia Agricultura Sinica, 46 (6):1191-1200. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.06.012 |
孙永江, 付艳东, 杜远鹏, 翟衡. 2013. 不同温度/光照组合对‘赤霞珠’葡萄叶片光系统Ⅱ功能的影响. 中国农业科学, 46 (6):1191-1200.
doi: 10.3864/j.issn.0578-1752.2013.06.012 |
|
[27] | Wang Kai, Ju Yan-lun, Wei Xiao-feng, Tu Ting-yao, Fang Yu-lin. 2017. Effects of rain-shelter cultivation on quality of‘Hutai No.8’grape. Acta Agriculturae Boreali-occidentalis Sinica,(8):1202-1211. (in Chinese) |
王凯, 鞠延仑, 魏晓峰, 屠婷瑶, 房玉林. 2017. 避雨栽培对‘户太八号’葡萄果实品质的影响. 西北农业学报,(8):1202-1211. | |
[28] | Wang Ling. 2018. Effects of PMMA rain sheltered microenvironment on strawberry growth and fruit quality[M. D. Dissertation]. Chongqing: Southwest University. (in Chinese) |
王玲. 2018. PMMA避雨微环境对草莓生长及其果实品质的影响研究[硕士论文]. 重庆: 西南大学. | |
[29] | Wang Zi-han, Zhang Wei, Guan Li-ping, Shao Xiao-jie. 2015. Effects of rain-shelter cultivation on the microclimate and fruit quality of Zexiang(V. vinifera L). Sino-Overseas Grapevine & Wine,(3):14-17. (in Chinese) |
王紫寒, 张伟, 关利平, 邵小杰. 2015. 避雨栽培对泽香葡萄微环境和果实品质的影响. 中外葡萄与葡萄酒,(3):14-17. | |
[30] |
Waterhouse A L, Ignelzi S, Shirley J R. 2000. A comparison of methods for quantifying oligomeric proanthocyanidins from grape seed extracts. American Journal of Enology and Viticulture, 51 (4):383-389.
doi: 10.5344/ajev.2000.51.4.383 URL |
[31] | Wise R R, Olson A J, Schrader S M, Sharkey T D. 2004. Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant Cell & Environment, 27 (6):717-724. |
[32] |
Wu Y S, Zhang W W, Yu W J, Zhao L P, Song S R, Xu W P, Zhang C X, Ma C, Wang L, Wang S P. 2019. Study on the volatile composition of table grapes of three aroma types. LWT-Food Science and Technology, 115:108450.
doi: 10.1016/j.lwt.2019.108450 URL |
[33] | Zhang Wenwen. 2018. Study on the characteristics of aroma and sensory evaluation of table grapes[M. D. Dissertation]. Shanghai: Shanghai Jiao Tong University. (in Chinese) |
张文文. 2018. 鲜食葡萄香气特征与感官品评的研究[硕士论文]. 上海: 上海交通大学. | |
[34] | Zhang Zhen-wen, Zhang Bao-yu, Tong Hai-feng, Fang Lin. 2010. Photosynthetic LCP and LSP of different grapevine cultivars. Journal of Northwest Forestry College, 25 (1):24-29. (in Chinese) |
张振文, 张保玉, 童海峰, 房林. 2010. 葡萄开花期光合作用光补偿点和光饱和点的研究. 西北林学院学报, 25 (1):24-29. |
[1] | 吴伟民 , 王壮伟, 钱亚明, 王西成, 王 博, 闫莉春. 早熟鲜食葡萄新品种‘紫金红霞’ [J]. 园艺学报, 2023, 50(S1): 25-26. |
[2] | 秦嗣军, 张阔, 齐边斌, 于波, 吕德国. 外源碳对苹果根区土壤活性有机碳及植株生长的影响[J]. 园艺学报, 2023, 50(6): 1295-1304. |
[3] | 王雯雯, 张强强, 李玲, 金婧, 王若彤, 顾沛雯. 葡萄白粉病菌潜伏侵染量Real-time PCR检测方法建立[J]. 园艺学报, 2023, 50(6): 1368-1376. |
[4] | 李玉梅, 娄玉穗, 王小龙, 马玉全, 王海波, 吕中伟. ‘夏黑’葡萄高品质果园植株叶片和土壤营养诊断研究[J]. 园艺学报, 2023, 50(4): 864-874. |
[5] | 俞沁含, 李俊铎, 崔莹, 王佳慧, 郑巧玲, 徐伟荣. 山葡萄转录因子VaMYB4a互作蛋白的筛选与鉴定[J]. 园艺学报, 2023, 50(3): 508-522. |
[6] | 马帅辉, 何光琪, 程一哲, 郭大龙. 5-azaC对‘巨峰’葡萄果实发育阶段mRNA可变剪接的影响[J]. 园艺学报, 2023, 50(3): 523-533. |
[7] | 黄蓉, 董超, 姜娇, 秦义, 刘延琳, 宋育阳. 避雨栽培对‘赤霞珠’葡萄果表微生物多样性的影响[J]. 园艺学报, 2023, 50(3): 635-646. |
[8] | 孙磊, 闫爱玲, 张国军, 王慧玲, 王晓玥, 任建成, 徐海英. 鲜食葡萄新品种‘瑞都摩指’[J]. 园艺学报, 2023, 50(3): 685-686. |
[9] | 王晓晨, 聂子页, 刘先菊, 段伟, 范培格, 梁振昌. 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[10] | 王宝亮, 刘凤之, 冀晓昊, 王孝娣, 史祥宾, 张艺灿, 李 鹏, 王海波. 早熟鲜食葡萄新品种‘华葡早玉’[J]. 园艺学报, 2022, 49(S2): 33-34. |
[11] | 王宝亮, 王海波, 冀晓昊, 王孝娣, 史祥宾, 王志强, 王小龙, 刘凤之. 中熟鲜食葡萄新品种‘华葡黄玉’[J]. 园艺学报, 2022, 49(S2): 35-36. |
[12] | 牛早柱, 赵艳卓, 陈 展, 宣立锋, 牛帅科, 魏建国, 褚凤杰, 杨丽丽. 晚熟无核葡萄新品种‘紫龙珠’[J]. 园艺学报, 2022, 49(S2): 37-38. |
[13] | 师校欣, 杜国强, 杨丽丽, 乔月莲, 黄成立, 王素月, 赵跃欣, 魏晓慧, 王 莉, 齐向丽. 晚熟无核葡萄新品种‘红峰无核’[J]. 园艺学报, 2022, 49(S2): 39-40. |
[14] | 吴月燕, 陈天池, 王立如, 韩善琪, 付 涛. 鲜食葡萄新品种‘甬早红’[J]. 园艺学报, 2022, 49(S2): 41-42. |
[15] | 王晓玥, 闫爱玲, 张国军, 王慧玲, 任建成, 刘振华, 孙 磊, 徐海英, . 葡萄新品种‘瑞都晚红’[J]. 园艺学报, 2022, 49(S1): 29-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司