园艺学报 ›› 2023, Vol. 50 ›› Issue (2): 237-249.doi: 10.16420/j.issn.0513-353x.2021-1117
• 研究论文 • 下一篇
王晓晨1,2,3, 聂子页1,2,3, 刘先菊1,2, 段伟1,2, 范培格1,2,*(), 梁振昌1,2,*()
收稿日期:
2022-10-14
修回日期:
2022-12-05
出版日期:
2023-02-25
发布日期:
2023-03-06
通讯作者:
*(E-mail:基金资助:
WANG Xiaochen1,2,3, NIE Ziye1,2,3, LIU Xianju1,2, DUAN Wei1,2, FAN Peige1,2,*(), LIANG Zhenchang1,2,*()
Received:
2022-10-14
Revised:
2022-12-05
Online:
2023-02-25
Published:
2023-03-06
Contact:
*(E-mail:摘要:
为探究脱落酸(Abscisic acid,ABA)对葡萄果实中单萜物质合成的影响,以玫瑰香型鲜食葡萄品种‘京香玉’为试材,在果实始熟前1周和始熟期用300 mg · L-1 ABA浸泡果实2次,测定处理后7、14、21、28和35 d果实中游离态单萜化合物含量以及ABA合成和信号转导通路、单萜合成通路中相关基因的表达量。在果实中共检测到28种单萜类化合物,并随果实的发育成熟不断积累。外源ABA处理的成熟果实中游离态单萜含量比对照提高45.20%。通过实时荧光定量PCR发现,ABA合成基因(VvNCED1、VvGT)在处理后7 d表达量明显高于对照,VvβG1相对表达量在处理后持续上升;ABA信号受体基因VvPYL1、信号转导相关基因VvPP2C2、VvSnRK2.1、VvABI5的转录水平分别在处理后21和35 d明显高于对照;单萜合成通路上游关键酶基因(VvDXS2、VvDXS3、VvDXR、VvGPPS)以及单萜合酶基因VvPNLinNer的表达水平在处理后7 d明显高于对照。根据以上结果,推测外源ABA处理可增强果实内部ABA信号的转导,进而引起单萜合酶底物水平的提升,加快向单萜类化合物的转变,改善玫瑰香型葡萄的品质。
中图分类号:
王晓晨, 聂子页, 刘先菊, 段伟, 范培格, 梁振昌. 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249.
WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, LIANG Zhenchang. Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries[J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249.
基因 Gene | 基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|---|
VvACTIN7 | VIT_04s0044g00580 | CTTGCATCCCTCAGCACCTT | TCCTGTGGACAATGGATGGA |
VvNCED1 | VIT_19s0093g00550 | CCACACTCCCAAAAGAGAAGGA | CGGAGCAAAATTACCGGCG |
VvGT | VIT_03s0063g00050 | CGTCAACTGCTCATCCAACG | GGCAGAACAAAGACCTCCGA |
VvβG1 | VIT_01s0011g00760 | AGGTGCTCCATCCCCCTATT | AGTGGCTTCAATGTCCTCTGT |
VvPYL1 | VIT_02s0012g01270 | CTCAGCCGGAGTTCCAAGAG | GAGTAGGGAGGAGCATTGGC |
VvPP2C2 | VIT_04s0008g01420 | CGTAGGAGATGGGAAGTGGC | TTGTTTGAGTCCCTCGGCAG |
VvSnRK2.1 | VIT_02s0236g00130 | GGCAGCTCCTTTCCCGTATT | ATCCTTCCCCTGGTGTCCTT |
VvSnRK2.6 | VIT_03s0063g01080 | CAGTGAGGATGAGGCACGTT | GGAGCAATGTATGCAGGGGT |
VvABI5 | VIT_08s0007g03420 | GCAGGTCAGTTCGGTTTGGA | CTGCCAGAGCCTGTTGAAGA |
VvABF2 | VIT_18s0001g10450 | CGGGATGGGAATGGTTGGTT | ACCTTCTCTACAGCCCCACT |
VvDXS2 | VIT_11s0052g01780 | CTGCTGCCCAGGACAACAAT | CAGCCAACGTCTCAAGCTCC |
VvDXS3 | VIT_04s0008g04970 | TTGAAAGGGAAACGGGAAC | TGGGTGTAAAGAATGACGACTG |
VvDXR | VIT_17s0000g08390 | TGCTGGGGGTCCTTTTGTCCTTCC | TCAACGGGCCAATCCCTGAATGC |
VvHDR | VIT_03s0063g02030 | CGTTATGTTAGTAGTTGGTGGGTG | CTTATTCTGTTTCCTGGACCTATTC |
VvGPPS | VIT_15s0024g00850 | ATGGTGGTTGCTGAGGTCC | CAACAATAGGACTGTGGGACG |
VvPNLinNer1 | VIT_00s0385g00010 | AGATGGGATTTGTCTGCTTTCA | CTTATGCTCCTTGTGGACCTTG |
表1 实时荧光定量PCR引物序列
Table 1 The primer sequences used for qRT-PCR analysis
基因 Gene | 基因ID Gene ID | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|---|
VvACTIN7 | VIT_04s0044g00580 | CTTGCATCCCTCAGCACCTT | TCCTGTGGACAATGGATGGA |
VvNCED1 | VIT_19s0093g00550 | CCACACTCCCAAAAGAGAAGGA | CGGAGCAAAATTACCGGCG |
VvGT | VIT_03s0063g00050 | CGTCAACTGCTCATCCAACG | GGCAGAACAAAGACCTCCGA |
VvβG1 | VIT_01s0011g00760 | AGGTGCTCCATCCCCCTATT | AGTGGCTTCAATGTCCTCTGT |
VvPYL1 | VIT_02s0012g01270 | CTCAGCCGGAGTTCCAAGAG | GAGTAGGGAGGAGCATTGGC |
VvPP2C2 | VIT_04s0008g01420 | CGTAGGAGATGGGAAGTGGC | TTGTTTGAGTCCCTCGGCAG |
VvSnRK2.1 | VIT_02s0236g00130 | GGCAGCTCCTTTCCCGTATT | ATCCTTCCCCTGGTGTCCTT |
VvSnRK2.6 | VIT_03s0063g01080 | CAGTGAGGATGAGGCACGTT | GGAGCAATGTATGCAGGGGT |
VvABI5 | VIT_08s0007g03420 | GCAGGTCAGTTCGGTTTGGA | CTGCCAGAGCCTGTTGAAGA |
VvABF2 | VIT_18s0001g10450 | CGGGATGGGAATGGTTGGTT | ACCTTCTCTACAGCCCCACT |
VvDXS2 | VIT_11s0052g01780 | CTGCTGCCCAGGACAACAAT | CAGCCAACGTCTCAAGCTCC |
VvDXS3 | VIT_04s0008g04970 | TTGAAAGGGAAACGGGAAC | TGGGTGTAAAGAATGACGACTG |
VvDXR | VIT_17s0000g08390 | TGCTGGGGGTCCTTTTGTCCTTCC | TCAACGGGCCAATCCCTGAATGC |
VvHDR | VIT_03s0063g02030 | CGTTATGTTAGTAGTTGGTGGGTG | CTTATTCTGTTTCCTGGACCTATTC |
VvGPPS | VIT_15s0024g00850 | ATGGTGGTTGCTGAGGTCC | CAACAATAGGACTGTGGGACG |
VvPNLinNer1 | VIT_00s0385g00010 | AGATGGGATTTGTCTGCTTTCA | CTTATGCTCCTTGTGGACCTTG |
图1 ABA处理对‘京香玉’果实体积、单果质量、可滴定酸、葡萄糖和果糖含量的影响 *,** 表示同一时间处理组和对照组在0.05、0.01水平上存在显著差异。下同。
Fig. 1 The effects of ABA on the volume,single berry weight,titratable acid,glucose and fructose of‘Jingxiangyu’grape *,** indicated significant difference between treatment and the control at the same time at 0.05,0.01 levels respectively. The same below.
游离态单萜化合物 Free monoter-penes | 处理后7 d 7 days after treatment | 处理后14 d 14 days after treatment | 处理后21 d 21 days after treatment | |||
---|---|---|---|---|---|---|
对照 Control | ABA | 对照 Control | ABA | 对照 Control | ABA | |
游离态单萜物质总量 Total content of free monoterpenes | 20.93 ± 3.75 | 7.96 ± 2.25* | 56.99 ± 1.31 | 26.26 ± 2.86* | 69.92 ± 2.02 | 80.56 ± 2.22* |
里那醇 Linalool | 3.28 ± 0.75 | 1.37 ± 0.51* | 36.79 ± 2.22 | 14.40 ± 4.55* | 41.21 ± 3.07 | 52.43 ± 3.23* |
π 蒎烯 π Pinene | 0.49 ± 0.28 | 0.15 ± 0.13 | 2.99 ± 0.11 | 1.28 ± 0.29* | 3.58 ± 0.34 | 5.47 ± 0.57* |
脱氢里那醇 Hotrienol | 1.72 ± 0.51 | 0.57 ± 0.58 | 2.46 ± 0.55 | 1.54 ± 0.65 | 3.62 ± 0.41 | 4.64 ± 0.52* |
顺式里那醇氧化物 cis-Linalool Oxide | 4.81 ± 2.17 | 0.79 ± 0.94* | 3.25 ± 0.07 | 2.07 ± 0.10* | 5.53 ± 0.14 | 3.04 ± 0.27* |
顺式罗勒烯 cis-Ocimene | 0.25 ± 0.11 | 0.38 ± 0.05 | 0.76 ± 0.09 | 0.31 ± 0.08* | 1.07 ± 0.13 | 1.30 ± 0.11* |
右旋柠檬烯d-Limonene | 0.71 ± 0.49 | 1.06 ± 0.10 | 1.23 ± 0.08 | 0.45 ± 0.14* | 1.33 ± 0.06 | 1.82 ± 0.18* |
别罗勒烯Allocimene B | 0.06 ± 0.05 | 0 ± 0 | 0.40 ± 0.03 | 0.17 ± 0.03* | 0.53 ± 0.03 | 0.73 ± 0.08* |
右旋π蒎烯1R-πPinene | 0.09 ± 0.05 | 0.18 ± 0.03 | 0.32 ± 0.04 | 0.13 ± 0.03* | 0.43 ± 0.06 | 0.57 ± 0.10 |
反式罗勒烯 trans-Ocimene | 0.10 ± 0.06 | 0.17 ± 0.03 | 0.29 ± 0.06 | 0.13 ± 0.03* | 0.41 ± 0.05 | 0.59 ± 0.11* |
反式香叶醇trans-Geraniol | 2.07 ± 1.05 | 0.60 ± 0.29 | 1.33 ± 0.39 | 1.34 ± 0.45 | 1.94 ± 0.44 | 1.23 ± 0.15* |
π水芹烯 π Phellandrene | Nd | Nd | 0.35 ± 0.03 | 0.09 ± 0.07* | 0.44 ± 0.03 | 0.57 ± 0.04* |
顺式松油醇π Terpieol | 0.08 ± 0.01 | 0.09 ± 0.02 | 0.25 ± 0.04 | 0.10 ± 0.07* | 0.25 ± 0.04 | 0.51 ± 0.07* |
3-蒈烯 3-Carene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
侧柏烯2-Thujene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
萜品油烯Terpinolene | Nd | Nd | 0.20 ± 0.01 | 0.02 ± 0.05* | 0.25 ± 0.02 | 0.37 ± 0.02* |
顺式香叶醇cis-Geraniol | 0.30 ± 0.14 | 0.10 ± 0.06 | 0.19 ± 0.04 | 0.17 ± 0.05 | 0.30 ± 0.05 | 0.26 ± 0.02 |
玫瑰醚 Rose oxide | 1.18 ± 0.17 | 0.76 ± 0.23 | 0.58 ± 0.02 | 0.66 ± 0.19 | 0.69 ± 0.03 | 0.50 ± 0.02* |
顺式萜品醇 π Terpineol | 0.14 ± 0.02 | 0.12 ± 0.04 | 0.24 ± 0.02 | 0.12 ± 0.02 | 0.22 ± 0.02 | 0.25 ± 0.01* |
环氧芳樟醇Epoxylinalol | 0.17 ± 0.03 | 0.09 ± 0.03 | 0.40 ± 0.09 | 0.19 ± 0.01* | 0.25 ± 0.01 | 0.25 ± 0.02 |
莰酮 Camphor | 0.02 ± 0.03 | Nd | 0.02 ± 0.03 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
香茅醇Citronellol | 0.17 ± 0.00 | 0.10 ± 0.03 | 0.12 ± 0.04 | 0.11 ± 0.03 | 0.15 ± 0.07 | 0.16 ± 0.10 |
香茅醛 Citral | 0.10 ± 0.01 | 0.06 ± 0.01* | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
左旋薄荷醇l-(-)-Menthol | 0.11 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.02 | 0.12 ± 0.02 | 0.15 ± 0.03 | 0.17 ± 0.02 |
左旋4-萜品醇 l-4-terpineol | Nd | Nd | Nd | Nd | Nd | Nd |
薄荷醇 Menthol | 0.04 ± 0.03 | 0.04 ± 0.04 | 0.05 ± 0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 |
异香叶醇Isogeraniol | Nd | 0.03 ± 0.05 | Nd | 0.05 ± 0.04 | Nd | Nd |
游离态单萜化合物 Free monoter-penes | 处理后28 d 28 days after treatment | 处理后35 d 35 days after treatment | ||||
对照 Control | ABA | 对照 Control | ABA | |||
游离态单萜物质总量 Total contents of free monoterpenes | 153.64 ± 4.23 | 194.23 ± 3.74** | 214.71 ± 8.01 | 311.74 ± 12.72** | ||
里那醇 Linalool | 98.29 ± 4.56 | 122.89 ± 4.39* | 149.48 ± 11.88 | 206.58 ± 10.64* | ||
π 蒎烯 π Pinene | 9.69 ± 1.12 | 12.83 ± 0.71* | 14.48 ± 1.05 | 24.36 ± 2.66* | ||
脱氢里那醇 Hotrienol | 7.11 ± 0.84 | 13.82 ± 0.97* | 6.59 ± 1.47 | 12.96 ± 2.19* | ||
顺式里那醇氧化物 cis-Linalool Oxide | 6.92 ± 0.66 | 7.43 ± 0.24 | 5.49 ± 0.55 | 8.38 ± 0.54* | ||
顺式罗勒烯 cis-Ocimene | 3.14 ± 0.45 | 4.02 ± 0.22* | 4.62 ± 0.23 | 8.37 ± 1.10* | ||
右旋柠檬烯d-Limonene | 2.96 ± 0.26 | 3.67 ± 0.16* | 4.41 ± 0.30 | 6.99 ± 0.92* | ||
别罗勒烯Allocimene B | 1.32 ± 0.21 | 1.75 ± 0.08* | 2.08 ± 0.21 | 3.55 ± 0.52* | ||
右旋π蒎烯1R-π Pinene | 1.11 ± 0.10 | 1.52 ± 0.13* | 2.07 ± 0.10 | 3.51 ± 0.58* | ||
反式罗勒烯trans-Ocimene | 1.15 ± 0.10 | 1.53 ± 0.16* | 2.06 ± 0.08 | 3.50 ± 0.58* | ||
反式香叶醇trans-Geraniol | 4.83 ± 0.39 | 3.70 ± 0.70* | 3.88 ± 1.05 | 2.40 ± 2.03 | ||
π水芹烯 π Phellandrene | 0.90 ± 0.30 | 1.23 ± 0.05* | 1.46 ± 0.13 | 2.33 ± 0.29* | ||
顺式松油醇 π Terpieol | 0.67 ± 0.11 | 1.34 ± 0.18* | 0.95 ± 0.28 | 2.13 ± 0.42* | ||
3-蒈烯3-Carene | 0.87 ± 0.11 | 1.03 ± 0.04* | 1.40 ± 0.08 | 2.03 ± 0.17* | ||
侧柏烯2-Thujene | 0.86 ± 0.10 | 1.01 ± 0.04* | 1.32 ± 0.13 | 1.92 ± 0.17* | ||
萜品油烯Terpinolene | 0.55 ± 0.10 | 0.86 ± 0.06* | 0.86 ± 0.13 | 1.52 ± 0.22* | ||
顺式香叶醇cis-Geraniol | 0.90 ± 0.10 | 0.97 ± 0.18 | 0.82 ± 0.21 | 1.20 ± 0.26 | ||
玫瑰醚Rose oxide | 1.01 ± 0.03 | 1.11 ± 0.03* | 0.72 ± 0.01 | 1.04 ± 0.07* | ||
顺式萜品醇 π Terpineol | 0.43 ± 0.03 | 0.54 ± 0.01* | 0.60 ± 0.05 | 0.92 ± 0.16* | ||
环氧芳樟醇Epoxylinalol | 0.43 ± 0.07 | 0.49 ± 0.17 | 0.48 ± 0.07 | 0.66 ± 0.13 | ||
莰酮 Camphor | 0.10 ± 0.03 | 0.25 ± 0.02* | 0.10 ± 0.03 | 0.25 ± 0.08* | ||
香茅醇Citronellol | 0.24 ± 0.02 | 0.44 ± 0.21 | 0.35 ± 0.25 | 0.22 ± 0.14 | ||
香茅醛Citral | 0.16 ± 0.03 | 0.14 ± 0.02 | 0.12 ± 0.03 | 0.15 ± 0.02 | ||
左旋薄荷醇l-(-)-Menthol | 0.13 ± 0.01 | 0.15 ± 0.01* | 0.13 ± 0.01 | 0.13 ± 0.02 | ||
左旋4-萜品醇 l-4-terpineol | Nd | Nd | 0.02 ± 0.03 | 0.09 ± 0.02* | ||
薄荷醇Menthol | 0.04 ± 0.03 | 0.05 ± 0.03 | 0.06 ± 0.00 | 0.04 ± 0.03 | ||
异香叶醇Isogeraniol | Nd | Nd | Nd | Nd |
表2 ABA处理对‘京香玉’葡萄果实中自由态单萜物质含量的影响
Table 2 The effects of ABA on free monoterpenoids content in‘Jingxiangyu’berries μg · kg-1 FW
游离态单萜化合物 Free monoter-penes | 处理后7 d 7 days after treatment | 处理后14 d 14 days after treatment | 处理后21 d 21 days after treatment | |||
---|---|---|---|---|---|---|
对照 Control | ABA | 对照 Control | ABA | 对照 Control | ABA | |
游离态单萜物质总量 Total content of free monoterpenes | 20.93 ± 3.75 | 7.96 ± 2.25* | 56.99 ± 1.31 | 26.26 ± 2.86* | 69.92 ± 2.02 | 80.56 ± 2.22* |
里那醇 Linalool | 3.28 ± 0.75 | 1.37 ± 0.51* | 36.79 ± 2.22 | 14.40 ± 4.55* | 41.21 ± 3.07 | 52.43 ± 3.23* |
π 蒎烯 π Pinene | 0.49 ± 0.28 | 0.15 ± 0.13 | 2.99 ± 0.11 | 1.28 ± 0.29* | 3.58 ± 0.34 | 5.47 ± 0.57* |
脱氢里那醇 Hotrienol | 1.72 ± 0.51 | 0.57 ± 0.58 | 2.46 ± 0.55 | 1.54 ± 0.65 | 3.62 ± 0.41 | 4.64 ± 0.52* |
顺式里那醇氧化物 cis-Linalool Oxide | 4.81 ± 2.17 | 0.79 ± 0.94* | 3.25 ± 0.07 | 2.07 ± 0.10* | 5.53 ± 0.14 | 3.04 ± 0.27* |
顺式罗勒烯 cis-Ocimene | 0.25 ± 0.11 | 0.38 ± 0.05 | 0.76 ± 0.09 | 0.31 ± 0.08* | 1.07 ± 0.13 | 1.30 ± 0.11* |
右旋柠檬烯d-Limonene | 0.71 ± 0.49 | 1.06 ± 0.10 | 1.23 ± 0.08 | 0.45 ± 0.14* | 1.33 ± 0.06 | 1.82 ± 0.18* |
别罗勒烯Allocimene B | 0.06 ± 0.05 | 0 ± 0 | 0.40 ± 0.03 | 0.17 ± 0.03* | 0.53 ± 0.03 | 0.73 ± 0.08* |
右旋π蒎烯1R-πPinene | 0.09 ± 0.05 | 0.18 ± 0.03 | 0.32 ± 0.04 | 0.13 ± 0.03* | 0.43 ± 0.06 | 0.57 ± 0.10 |
反式罗勒烯 trans-Ocimene | 0.10 ± 0.06 | 0.17 ± 0.03 | 0.29 ± 0.06 | 0.13 ± 0.03* | 0.41 ± 0.05 | 0.59 ± 0.11* |
反式香叶醇trans-Geraniol | 2.07 ± 1.05 | 0.60 ± 0.29 | 1.33 ± 0.39 | 1.34 ± 0.45 | 1.94 ± 0.44 | 1.23 ± 0.15* |
π水芹烯 π Phellandrene | Nd | Nd | 0.35 ± 0.03 | 0.09 ± 0.07* | 0.44 ± 0.03 | 0.57 ± 0.04* |
顺式松油醇π Terpieol | 0.08 ± 0.01 | 0.09 ± 0.02 | 0.25 ± 0.04 | 0.10 ± 0.07* | 0.25 ± 0.04 | 0.51 ± 0.07* |
3-蒈烯 3-Carene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
侧柏烯2-Thujene | Nd | Nd | 0.28 ± 0.03 | 0.13 ± 0.04* | 0.39 ± 0.03 | 0.53 ± 0.12 |
萜品油烯Terpinolene | Nd | Nd | 0.20 ± 0.01 | 0.02 ± 0.05* | 0.25 ± 0.02 | 0.37 ± 0.02* |
顺式香叶醇cis-Geraniol | 0.30 ± 0.14 | 0.10 ± 0.06 | 0.19 ± 0.04 | 0.17 ± 0.05 | 0.30 ± 0.05 | 0.26 ± 0.02 |
玫瑰醚 Rose oxide | 1.18 ± 0.17 | 0.76 ± 0.23 | 0.58 ± 0.02 | 0.66 ± 0.19 | 0.69 ± 0.03 | 0.50 ± 0.02* |
顺式萜品醇 π Terpineol | 0.14 ± 0.02 | 0.12 ± 0.04 | 0.24 ± 0.02 | 0.12 ± 0.02 | 0.22 ± 0.02 | 0.25 ± 0.01* |
环氧芳樟醇Epoxylinalol | 0.17 ± 0.03 | 0.09 ± 0.03 | 0.40 ± 0.09 | 0.19 ± 0.01* | 0.25 ± 0.01 | 0.25 ± 0.02 |
莰酮 Camphor | 0.02 ± 0.03 | Nd | 0.02 ± 0.03 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
香茅醇Citronellol | 0.17 ± 0.00 | 0.10 ± 0.03 | 0.12 ± 0.04 | 0.11 ± 0.03 | 0.15 ± 0.07 | 0.16 ± 0.10 |
香茅醛 Citral | 0.10 ± 0.01 | 0.06 ± 0.01* | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
左旋薄荷醇l-(-)-Menthol | 0.11 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.02 | 0.12 ± 0.02 | 0.15 ± 0.03 | 0.17 ± 0.02 |
左旋4-萜品醇 l-4-terpineol | Nd | Nd | Nd | Nd | Nd | Nd |
薄荷醇 Menthol | 0.04 ± 0.03 | 0.04 ± 0.04 | 0.05 ± 0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 |
异香叶醇Isogeraniol | Nd | 0.03 ± 0.05 | Nd | 0.05 ± 0.04 | Nd | Nd |
游离态单萜化合物 Free monoter-penes | 处理后28 d 28 days after treatment | 处理后35 d 35 days after treatment | ||||
对照 Control | ABA | 对照 Control | ABA | |||
游离态单萜物质总量 Total contents of free monoterpenes | 153.64 ± 4.23 | 194.23 ± 3.74** | 214.71 ± 8.01 | 311.74 ± 12.72** | ||
里那醇 Linalool | 98.29 ± 4.56 | 122.89 ± 4.39* | 149.48 ± 11.88 | 206.58 ± 10.64* | ||
π 蒎烯 π Pinene | 9.69 ± 1.12 | 12.83 ± 0.71* | 14.48 ± 1.05 | 24.36 ± 2.66* | ||
脱氢里那醇 Hotrienol | 7.11 ± 0.84 | 13.82 ± 0.97* | 6.59 ± 1.47 | 12.96 ± 2.19* | ||
顺式里那醇氧化物 cis-Linalool Oxide | 6.92 ± 0.66 | 7.43 ± 0.24 | 5.49 ± 0.55 | 8.38 ± 0.54* | ||
顺式罗勒烯 cis-Ocimene | 3.14 ± 0.45 | 4.02 ± 0.22* | 4.62 ± 0.23 | 8.37 ± 1.10* | ||
右旋柠檬烯d-Limonene | 2.96 ± 0.26 | 3.67 ± 0.16* | 4.41 ± 0.30 | 6.99 ± 0.92* | ||
别罗勒烯Allocimene B | 1.32 ± 0.21 | 1.75 ± 0.08* | 2.08 ± 0.21 | 3.55 ± 0.52* | ||
右旋π蒎烯1R-π Pinene | 1.11 ± 0.10 | 1.52 ± 0.13* | 2.07 ± 0.10 | 3.51 ± 0.58* | ||
反式罗勒烯trans-Ocimene | 1.15 ± 0.10 | 1.53 ± 0.16* | 2.06 ± 0.08 | 3.50 ± 0.58* | ||
反式香叶醇trans-Geraniol | 4.83 ± 0.39 | 3.70 ± 0.70* | 3.88 ± 1.05 | 2.40 ± 2.03 | ||
π水芹烯 π Phellandrene | 0.90 ± 0.30 | 1.23 ± 0.05* | 1.46 ± 0.13 | 2.33 ± 0.29* | ||
顺式松油醇 π Terpieol | 0.67 ± 0.11 | 1.34 ± 0.18* | 0.95 ± 0.28 | 2.13 ± 0.42* | ||
3-蒈烯3-Carene | 0.87 ± 0.11 | 1.03 ± 0.04* | 1.40 ± 0.08 | 2.03 ± 0.17* | ||
侧柏烯2-Thujene | 0.86 ± 0.10 | 1.01 ± 0.04* | 1.32 ± 0.13 | 1.92 ± 0.17* | ||
萜品油烯Terpinolene | 0.55 ± 0.10 | 0.86 ± 0.06* | 0.86 ± 0.13 | 1.52 ± 0.22* | ||
顺式香叶醇cis-Geraniol | 0.90 ± 0.10 | 0.97 ± 0.18 | 0.82 ± 0.21 | 1.20 ± 0.26 | ||
玫瑰醚Rose oxide | 1.01 ± 0.03 | 1.11 ± 0.03* | 0.72 ± 0.01 | 1.04 ± 0.07* | ||
顺式萜品醇 π Terpineol | 0.43 ± 0.03 | 0.54 ± 0.01* | 0.60 ± 0.05 | 0.92 ± 0.16* | ||
环氧芳樟醇Epoxylinalol | 0.43 ± 0.07 | 0.49 ± 0.17 | 0.48 ± 0.07 | 0.66 ± 0.13 | ||
莰酮 Camphor | 0.10 ± 0.03 | 0.25 ± 0.02* | 0.10 ± 0.03 | 0.25 ± 0.08* | ||
香茅醇Citronellol | 0.24 ± 0.02 | 0.44 ± 0.21 | 0.35 ± 0.25 | 0.22 ± 0.14 | ||
香茅醛Citral | 0.16 ± 0.03 | 0.14 ± 0.02 | 0.12 ± 0.03 | 0.15 ± 0.02 | ||
左旋薄荷醇l-(-)-Menthol | 0.13 ± 0.01 | 0.15 ± 0.01* | 0.13 ± 0.01 | 0.13 ± 0.02 | ||
左旋4-萜品醇 l-4-terpineol | Nd | Nd | 0.02 ± 0.03 | 0.09 ± 0.02* | ||
薄荷醇Menthol | 0.04 ± 0.03 | 0.05 ± 0.03 | 0.06 ± 0.00 | 0.04 ± 0.03 | ||
异香叶醇Isogeraniol | Nd | Nd | Nd | Nd |
图2 ABA处理后‘京香玉’果实中ABA合成及信号转导通路基因表达量的变化
Fig. 2 The relative expression changes of genes related to ABA synthesis and signal transduction in‘Jingxiangyu’grape after ABA treatment
图3 ABA处理后‘京香玉’果实中单萜合成通路基因表达量的变化
Fig. 3 The relative expression changes of genes related to monoterpene synthesis in‘Jingxiangyu’grape after ABA treatment
[1] |
Abbas F, Ke Y G, Yu R C, Yue Y C, Amanullah S, Jahangir M M, Fan Y P. 2017. Volatile terpenoids:multiple functions,biosynthesis,modulation and manipulation by genetic engineering. Planta, 246:803-816.
doi: 10.1007/s00425-017-2749-x URL |
[2] |
Bahena S M, Ohama T, Suehiro Y, Hata Y, Isogai A, Iwashita K, Goto-Yamamoto N, Koyama K. 2019. The potential aroma and flavor compounds in Vitis sp. cv. Koshu and V. vinifera L. cv. Chardonnay under different environmental conditions. Journal of Science of Food and Agriculture, 99 (4):1926-1937.
doi: 10.1002/jsfa.2019.99.issue-4 URL |
[3] |
Boneh U, Biton I, Schwartz A, Ben-Ari G. 2012. Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 187:89-96.
doi: 10.1016/j.plantsci.2012.01.015 pmid: 22404836 |
[4] |
Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, Bitz O, Schwab W. 2014. A UDP-glucose:monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiology, 165 (2):561-581.
pmid: 24784757 |
[5] | Chen Kun-song, Li Fang, Zhang Shang-long. 1999. Regulation of ABA and IAA on fruit ripening process of kiwifruit. Acta Horticulturae Sinica, 26 (2):81-86. (in Chinese) |
陈昆松, 李方, 张上隆. 1999. ABA和IAA对猕猴桃果实成熟进程的调控. 园艺学报, 26 (2):81-86. | |
[6] |
Coombe B G, Mccarthy M G. 2000. Dynamics of grape berry growth and physiology of ripening. Australian Journal of Grape and Wine Research, 6:131-135.
doi: 10.1111/j.1755-0238.2000.tb00171.x URL |
[7] |
Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. 2010. Abscisic acid:emergence of a core signaling network. Annual Review of Plant Biology, 61:651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755 |
[8] |
Gao Z, Li Q, Li J, Chen Y J, Luo M, Li H, Wang J Y, Wu Y S, Duan S Y, Wang L, Song S R, Xu W P, Zhang C X, Wang S P, Ma C. 2018. Characterization of the ABA receptor VlPYL 1 that regulates anthocyanin accumulation in grape berry skin. Frontiers in Plant Science, 9:592.
doi: 10.3389/fpls.2018.00592 URL |
[9] |
Gómez M J, Gómez-Míguez M, Vicario I M, Heredia F J. 2007. Assessment of colour and aroma in white wines vinifications:effects of grape maturity and soil type. Journal of Food Engineering, 79 (3):758-764.
doi: 10.1016/j.jfoodeng.2006.02.038 URL |
[10] | Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, Li J J, Ding Y L, Shi Y T, Wang Y, Yang Y Q, Guo Y, Zhu J K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China, 63 (5):635-674. |
[11] |
Li H, Gao Z, Chen Q J, Li Q, Luo M, Wang J Y, Hu L P, Zahid M S, Wang L, Zhao L P, Song S R, Xu W P, Zhang C X, Ma C, Wang S P. 2020. Grapevine ABA receptor VvPYL1 regulates root hair development in transgenic Arabidopsis. Plant Physiology and Biochemistry, 149:190-200.
doi: 10.1016/j.plaphy.2020.02.008 URL |
[12] |
Li J J, Liu B Y, Li X Y, Li D M, Han J Y, Zhang Y, Ma C, Xu W P, Wang L, Jiu S T, Zhang C X, Wang S P. 2021. Exogenous abscisic acid mediates berry quality improvement by altered endogenous plant hormones level in“Ruiduhongyu”grapevine. Frontiers in Plant Science, 12:739964.
doi: 10.3389/fpls.2021.739964 URL |
[13] |
Li W, Li W F, Yang S J, Ma Z H, Zhou Q, Mao J, Han S Y, Chen B H. 2020. Transcriptome and metabolite conjoint analysis reveals that exogenous methyl jasmonate regulates monoterpene synthesis in grape berry skin. Journal of Agricultural and Food Chemistry, 68 (18):5270-5281.
doi: 10.1021/acs.jafc.0c00476 pmid: 32338508 |
[14] |
Li X Y, Wen Y Q, Meng N, Qian X, Pan Q H. 2017. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Frontiers in Plant Science, 8:1226.
doi: 10.3389/fpls.2017.01226 URL |
[15] | Li Xiao-hong, Li Yun-jing, Ma Xiao-qing, Guo Jun, Liu Hai-jiao, Zheng Guo-qing, Tao Jian-min. 2021. Current situation and prospect of grape industry development in China. Fruit in South of China, 50 (5):161-166. (in Chinese) |
李小红, 李运景, 马晓青, 郭军, 刘海礁, 郑国清, 陶建敏. 2021. 我国葡萄产业发展现状及展望. 中国南方果树, 50 (5):161-166. | |
[16] |
Liu J Y, Chen N N, Chen F, Cai B, Santo S D, Tornielli G B, Pezzotti M, Cheng Z M. 2014. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine(Vitis vinifera). BMC Genomics, 15:281.
doi: 10.1186/1471-2164-15-281 |
[17] |
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324 (5930):1064-1068.
doi: 10.1126/science.1172408 pmid: 19407143 |
[18] |
Martin D M, Aubourg S, Schouwey M B, Daviet L, Schalk M, Toub O, Lund S T, Bohlmann J. 2010. Functional annotation,genome organization and phylogeny of the grapevine(Vitis vinifera)terpene synthase gene family based on genome assembly,FLcDNA cloning,and enzyme assays. BMC Plant Biology, 10:226.
doi: 10.1186/1471-2229-10-226 pmid: 20964856 |
[19] |
Murcia G, Fontana a, Pontin M, Baraldi R, Bertazza G, Piccoli P N. 2017. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry, 135:34-52.
doi: 10.1016/j.phytochem.2016.12.007 URL |
[20] |
Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324 (5930):1068-1071.
doi: 10.1126/science.1173041 URL |
[21] | Quan Gui-rong, Gao Xiang, Hui Zhu-mei. 2020. Effects of exogenous plant hormones on aroma components of grapes and dry red wine. Journal of Northwest A & F University(Nat Sci Ed), 48 (1):126-133. (in Chinese) |
权桂蓉, 高翔, 惠竹梅. 2020. 外源激素处理对葡萄及葡萄酒香气成分的影响. 西北农林科技大学学报(自然科学版), 48 (1):126-133. | |
[22] |
Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. 2004. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3,an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiology, 136 (2):3134-3147.
doi: 10.1104/pp.104.046169 pmid: 15466233 |
[23] |
Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Eileen Tan M H, Suino-Powell K M, He Y Z, Xu Y, Chalmers M J, Brunzelle J S, Zhang H M, Yang H Y, Jiang H L, Li J, Yong E L, Cutler S, Zhu J K, Griffin P R, Melcher K, Xu H E. 2012. Molecular mimicry regulates ABA signaling by SnRK 2 kinases and PP2C phosphatases. Science, 335 (6064):85-88.
doi: 10.1126/science.1215106 URL |
[24] | Sun Lei, Qian Xu, Zhang Guojun, Yan Ailing, Wang Xiaoyue, Wang Huiling, Ren Jiancheng, Xu Haiying. 2018. Differential monoterpenes accumulation of‘Xiangfei’and‘Zao Meiguixiang’grape between greenhouse and open-field cultivation. Acta Horticulturae Sinica, 45 (8):1467-1478. (in Chinese) |
孙磊, 钱旭, 张国军, 闫爱玲, 王晓玥, 王慧玲, 任建成, 徐海英. 2018. ‘香妃’和‘早玫瑰香’葡萄温室与露地栽培单萜积累差异分析. 园艺学报, 45 (8):1467-1478.
doi: 10.16420/j.issn.0513-353x.2017-0843 |
|
[25] |
Sun Y F, Chen P, Duan C R, Tao P, Wang Y P, Ji K, Hu Y, Li Q, Dai S J, Wu Y, Luo H, Sun L, Leng P. 2012. Transcriptional regulation of genes encoding key enzymes of abscisic acid metabolism during melon(Cucumis melo L.)fruit development and ripening. Journal of Plant Growth Regulation, 32 (2):233-244.
doi: 10.1007/s00344-012-9293-5 URL |
[26] | Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. Biotechnology of Isoprenoids, 148:63-106. |
[27] | Wang Li-ting, Gao Jiang-man, Zhou Ya-li, Jiang Yue, Duan Bing-bing, Hui Zhu-mei. 2018. Effects of exogenous ABA and EBR on growth and maturation of wine grape“Cabernet Sauvignon”and endogenous hormones. Northern Horticulture,(3):38-45. (in Chinese) |
王利廷, 高江曼, 周亚丽, 姜越, 段冰冰, 惠竹梅. 2018. 外源ABA和EBR处理对酿酒葡萄“赤霞珠”生长成熟的调控及内源激素的影响. 北方园艺,(3):38-45. | |
[28] |
Wheeler S, Loveys B,Ford, Davies C. 2009. The relationship between the expression of abscisic acid biosynthesis genes,accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Australian Journal of Grape and Wine Research, 15 (3):195-204.
doi: 10.1111/ajgw.2009.15.issue-3 URL |
[29] | Xu Xian-bin, Li Hui, Geng Xiao-yue, Zheng Huan, Tao Jian-min. 2021. Regulation mechanism of ABA pathway genes on anthocyanin biosynthesis in grape skins. Acta Botanica Boreali-Occidentalla Sinica, 41 (3):406-415. (in Chinese) |
徐献斌, 李慧, 耿晓月, 郑焕, 陶建敏. 2021. ABA信号通路对葡萄果皮花青苷生物合成的调控机制研究. 西北植物学报, 41 (3):406-415. | |
[30] |
Yang Weihai, Zeng Lizhen, Xiao Qiusheng, Shi Shengyou. 2021. Changes of fruit abscission and carbohydrate,ABA and related genes expression in the pericarp and fruit abscission zone of longan under starvation stress. Acta Horticulturae Sinica, 48 (8):1457-1469. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0538 |
杨为海, 曾利珍, 肖秋生, 石胜友. 2021. 饥饿胁迫下龙眼落果与果皮和离区糖、ABA及相关基因表达的变化. 园艺学报, 48 (8):1457-1469.
doi: 10.16420/j.issn.0513-353x.2020-0538 |
|
[31] |
Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie A R. 2019. Revisiting the basal role of ABA-roles outside of stress. Trends in Plant Science, 24 (7):625-635.
doi: S1360-1385(19)30104-9 pmid: 31153771 |
[32] |
Zhang E P, Chai F M, Zhang H H, Li S H, Liang Z C, Fan P G. 2017. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry, 237:379-389.
doi: S0308-8146(17)30941-X pmid: 28764010 |
[33] | Zhang Er-peng. 2017. The accumulation and distribution of monoterpenes in table grape berries and their responses to sunlight[M. D. Dissertation]. Beijing: Institute of Botany,the Chinese Academy of Sciences. (in Chinese) |
张二朋. 2017. 鲜食葡萄果实萜类物质合成、分布特点及其对光响应的研究[硕士论文]. 北京: 中国科学院植物研究所. | |
[34] |
Zhang H H, Fan P G, Liu C X, Wu B H, Li S H, Liang Z C. 2014a. Sunlight exclusion from muscat grape alters volatile profiles during berry development. Food Chemistry, 164:242-250.
doi: 10.1016/j.foodchem.2014.05.012 URL |
[35] |
Zhang Y J, Wang X J, Wu J X, Chen S Y, Chen H, Chai L J, Yi H L. 2014b. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA,sucrose and JA during citrus fruit ripening. PLoS ONE, 9 (12):e116056.
doi: 10.1371/journal.pone.0116056 URL |
[36] |
Zhang Z, Zou L M, Ren C, Ren F R, Wang Y, Fan P G, Li S H, Liang Z C. 2019. VvSWEET 10 mediates sugar accumulation in grapes. Genes, 10 (4):255.
doi: 10.3390/genes10040255 URL |
[37] | Zhao De-qing, Gao Zhao-yin, Hu Mei-jiao, Li Min, Li Chun-xia, Gong De-qiang, Zhao Chao. 2019. Effects of tiphenon and gibberellin on mango fruit yield and quality after treatments in young period. Fruits in south of China, 48 (3):63-66. (in Chinese) |
赵德庆, 高兆银, 胡美姣, 李敏, 李春霞, 弓德强, 赵超. 2019. 幼果期喷施噻苯隆和赤霉素对杧果果实产量和品质的影响. 中国南方果树, 48 (3):63-66. | |
[38] |
Zhu B Q, Cai J, Wang Z Q, Xu X Q, Duan C Q, Pan Q H. 2014. Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries. International Journal of Molecular Sciences, 15:21992-22010.
doi: 10.3390/ijms151221992 URL |
[39] |
Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167 (2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[1] | 饶智雄, 安玉艳, 曹荣祥, 唐泉, 汪良驹. 外源ALA缓解ABA抑制草莓根系伸长生长的机理研究[J]. 园艺学报, 2023, 50(3): 461-474. |
[2] | 俞沁含, 李俊铎, 崔莹, 王佳慧, 郑巧玲, 徐伟荣. 山葡萄转录因子VaMYB4a互作蛋白的筛选与鉴定[J]. 园艺学报, 2023, 50(3): 508-522. |
[3] | 马帅辉, 何光琪, 程一哲, 郭大龙. 5-azaC对‘巨峰’葡萄果实发育阶段mRNA可变剪接的影响[J]. 园艺学报, 2023, 50(3): 523-533. |
[4] | 黄蓉, 董超, 姜娇, 秦义, 刘延琳, 宋育阳. 避雨栽培对‘赤霞珠’葡萄果表微生物多样性的影响[J]. 园艺学报, 2023, 50(3): 635-646. |
[5] | 孙磊, 闫爱玲, 张国军, 王慧玲, 王晓玥, 任建成, 徐海英. 鲜食葡萄新品种‘瑞都摩指’[J]. 园艺学报, 2023, 50(3): 685-686. |
[6] | 翟含含, 翟宇杰, 田义, 张叶, 杨丽, 温陟良, 陈海江. 桃SAUR家族基因分析及PpSAUR5功能鉴定[J]. 园艺学报, 2023, 50(1): 1-14. |
[7] | 王宝亮, 刘凤之, 冀晓昊, 王孝娣, 史祥宾, 张艺灿, 李 鹏, 王海波. 早熟鲜食葡萄新品种‘华葡早玉’[J]. 园艺学报, 2022, 49(S2): 33-34. |
[8] | 王宝亮, 王海波, 冀晓昊, 王孝娣, 史祥宾, 王志强, 王小龙, 刘凤之. 中熟鲜食葡萄新品种‘华葡黄玉’[J]. 园艺学报, 2022, 49(S2): 35-36. |
[9] | 牛早柱, 赵艳卓, 陈 展, 宣立锋, 牛帅科, 魏建国, 褚凤杰, 杨丽丽. 晚熟无核葡萄新品种‘紫龙珠’[J]. 园艺学报, 2022, 49(S2): 37-38. |
[10] | 师校欣, 杜国强, 杨丽丽, 乔月莲, 黄成立, 王素月, 赵跃欣, 魏晓慧, 王 莉, 齐向丽. 晚熟无核葡萄新品种‘红峰无核’[J]. 园艺学报, 2022, 49(S2): 39-40. |
[11] | 吴月燕, 陈天池, 王立如, 韩善琪, 付 涛. 鲜食葡萄新品种‘甬早红’[J]. 园艺学报, 2022, 49(S2): 41-42. |
[12] | 王晓玥, 闫爱玲, 张国军, 王慧玲, 任建成, 刘振华, 孙 磊, 徐海英, . 葡萄新品种‘瑞都晚红’[J]. 园艺学报, 2022, 49(S1): 29-30. |
[13] | 王勇健, 孔俊花, 范培格, 梁振昌, 金秀良, 刘布春, 代占武. 葡萄表型组高通量获取及分析方法研究进展[J]. 园艺学报, 2022, 49(8): 1815-1832. |
[14] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[15] | 魏晓羽, 王跃进. 中国野生葡萄果皮解剖结构与白粉病抗性的相关性研究[J]. 园艺学报, 2022, 49(6): 1200-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司