园艺学报 ›› 2021, Vol. 48 ›› Issue (5): 873-882.doi: 10.16420/j.issn.0513-353x.2020-1829
杨锋, 杨钦淞, 高雨豪, 马云晶, 许英, 滕元文, 白松龄*()
收稿日期:
2020-10-10
修回日期:
2021-01-26
出版日期:
2021-05-25
发布日期:
2021-06-07
通讯作者:
白松龄
E-mail:songlingbai@zju.edu.cn
基金资助:
YANG Feng, YANG Qinsong, GAO Yuhao, MA Yunjing, XU Ying, TENG Yuanwen, BAI Songling*()
Received:
2020-10-10
Revised:
2021-01-26
Online:
2021-05-25
Published:
2021-06-07
Contact:
BAI Songling
E-mail:songlingbai@zju.edu.cn
摘要:
为了在梨愈伤组织中建立CRISPR/Cas9基因编辑体系,将proDAM3:GUS转入‘茄梨’愈伤组织,通过构建双靶点的CRISPR/Cas9基因编辑载体,利用农杆菌介导的遗传转化法侵染proDAM3:GUS转基因梨愈伤组织,通过测序及GUS染色的方法检验敲除效果,分析靶基因突变类型。结果表明,共有4个转基因株系在靶位点处发生了基因突变,编辑效率为66.7%。对所有基因编辑株系的有效克隆进行分析,结果显示sgRNA1在靶位点GUST1的突变频率达到71.4%,高于sgRNA2在靶位点GUST2突变频率的46.4%,说明sgRNA1可以更有效地与靶位点结合。测序结果表明,4个基因编辑株系中GUS基因均被敲除,基因突变的类型包含碱基缺失、插入及两个靶点之间大片段的缺失,不存在碱基替换。GUS染色结果显示,基因敲除后的GUS转基因愈伤完全呈白色,说明利用CRISPR/Cas9多靶点基因编辑系统可以在梨愈伤组织中实现高效的基因敲除。
中图分类号:
杨锋, 杨钦淞, 高雨豪, 马云晶, 许英, 滕元文, 白松龄. 梨愈伤组织双靶点CRISPR/Cas9基因编辑系统的建立[J]. 园艺学报, 2021, 48(5): 873-882.
YANG Feng, YANG Qinsong, GAO Yuhao, MA Yunjing, XU Ying, TENG Yuanwen, BAI Songling. Establishment of Dual-cut CRISPR/Cas9 Gene Editing System in Pear Calli[J]. Acta Horticulturae Sinica, 2021, 48(5): 873-882.
图1 GUS基因中CRISPR/Cas9靶位点的位置示意图及序列信息 蓝色方框为外显子,灰色方框为内含子,绿色和橙色方框分别代表两个靶位点,方框下方的数字为位置信息,不同颜色的方框宽度按照序列长度比例绘制。下方的序列为靶位点信息,方向均为5′-3′。红色字体代表PAM序列,括号中的+/-号表示核酸酶识别的DNA链。
Fig. 1 Illustration of the target sites and sequences of CRISPR/Cas9 in GUS gene The blue bars represent the exons,the gray bar represents the intron,the green and orange bars represent two target sites,the numbers below the bar are position information,and the width of the bars are drawn in proportion to the sequence length. The sequences below the bars are the sequences of the target sites,which are shown in the direction of 5′-3′. The red font represents the PAM sequences,and the“+/-”in parentheses represent the DNA strand recognized by the nuclease.
用途 Usage | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
靶点接头正反向引物 The sense and reverse primers for the target with the adapters | GUSAtU3dT1-F | GTCATTGAGGTCGAAGACGCCAC |
GUSAtU3dT1-R | AAACGTGGCGTCTTCGACCTCAA | |
GUSAtU3bT2-F | GTCACGATAGCACCCTCCCGGTG | |
GUSAtU3bT2-R | AAACCACCGGGAGGGTGCTATCG | |
第1轮PCR 1st PCR | U-F | CTCCGTTTTACCTGTGGAATCG |
gR-R | CGGAGGAAAATTCCATCCAC | |
第2轮PCR 2nd PCR | Pps-R | TTCAGAGGTCTCTACCGACTAGTATGGAATCGGCAGCAAAGG |
Pgs-2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC | |
Pps-2 | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG | |
Pgs-L | AGCGTGGGTCTCGCTCGACGCGTATCCATCCACTCCAAGCTC | |
载体测序引物 The sequencing primers for the vector | SP-R | TGCAATAACTTCGTATAGGCT |
SP-L2 | GTCGTGCTCCACATGTTGACCG | |
阳性转化体筛选引物 The screening primers for positive transformants | Cas9-F | CTGACGCTAACCTCGACAAG |
Cas9-R | CCGATCTAGTAACATAGATGACACC | |
基因编辑鉴定引物 The primers for identifying the gene editing events | GUS-F | ATGGTAGATCTGAGGGTAAATTTCTAGT |
GUS-R | GTTCTTGTAGCCGAAATCTGGAATG |
表1 本研究中所用的引物
Table 1 All primers used in this study
用途 Usage | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
靶点接头正反向引物 The sense and reverse primers for the target with the adapters | GUSAtU3dT1-F | GTCATTGAGGTCGAAGACGCCAC |
GUSAtU3dT1-R | AAACGTGGCGTCTTCGACCTCAA | |
GUSAtU3bT2-F | GTCACGATAGCACCCTCCCGGTG | |
GUSAtU3bT2-R | AAACCACCGGGAGGGTGCTATCG | |
第1轮PCR 1st PCR | U-F | CTCCGTTTTACCTGTGGAATCG |
gR-R | CGGAGGAAAATTCCATCCAC | |
第2轮PCR 2nd PCR | Pps-R | TTCAGAGGTCTCTACCGACTAGTATGGAATCGGCAGCAAAGG |
Pgs-2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC | |
Pps-2 | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG | |
Pgs-L | AGCGTGGGTCTCGCTCGACGCGTATCCATCCACTCCAAGCTC | |
载体测序引物 The sequencing primers for the vector | SP-R | TGCAATAACTTCGTATAGGCT |
SP-L2 | GTCGTGCTCCACATGTTGACCG | |
阳性转化体筛选引物 The screening primers for positive transformants | Cas9-F | CTGACGCTAACCTCGACAAG |
Cas9-R | CCGATCTAGTAACATAGATGACACC | |
基因编辑鉴定引物 The primers for identifying the gene editing events | GUS-F | ATGGTAGATCTGAGGGTAAATTTCTAGT |
GUS-R | GTTCTTGTAGCCGAAATCTGGAATG |
图2 GUS -pYLCRISPR/Cas9载体结构图 LB:左边界;RB:右边界;T35s:35S终止子;Tnos:nos终止子;HPT:潮霉素磷酸转移酶基因;35S:花椰菜花叶病毒 CaMV35S启动子;Cas9p:SpCas9基因;NLS:核定位信号;AtU3d、AtU3b:拟南芥U3d、U3b启动子;T1、T2:GUS突变靶位点序列。
Fig. 2 Schematic diagram of GUS -pYLCRISPR/Cas9 vector LB:Left border;RB:Right border;T35s:35S terminator;Tnos:nos terminator;HPT:hygromycin B phosphotransferase;35S:Cauliflower mosaic virus 35S promoter;Cas9p:SpCas9 gene;NLS:Nuclear localization signal;AtU3d,AtU3b:U3d,U3b promoter fromArabidopsis;T1,T2:GUS Target sequence.
图3 proDAM3:GUS转基因株系的DNA鉴定(A)与GUS染色鉴定(B)
Fig. 3 The PCR(A)and GUS staining(B)confirmations of the fragment insertion of the proDAM3:GUS transgenic line
突变类型InDel types | 碱基数/bp Number of base | GUST1 sites(%) | GUST2 sites(%) | 对应株系Line# |
---|---|---|---|---|
碱基插入Insertion | 1 ~ 2 | 12(30%) | 2(7.7%) | #1、#2、#3 |
单碱基缺失Single base deletion | 1 | 5(12.5%) | 8(30.8%) | #1、#2、#3 |
小片段缺失Small fragment deletion | 2 ~ 15 | 7(17.5%) | 0 | #1、#2 |
大片段缺失Long fragment deletion | 625 | 16(40.0%) | 16(61.5%) | #5 |
表2 基因编辑株系的突变类型分析
Table 2 Indel types in GUS mutant lines
突变类型InDel types | 碱基数/bp Number of base | GUST1 sites(%) | GUST2 sites(%) | 对应株系Line# |
---|---|---|---|---|
碱基插入Insertion | 1 ~ 2 | 12(30%) | 2(7.7%) | #1、#2、#3 |
单碱基缺失Single base deletion | 1 | 5(12.5%) | 8(30.8%) | #1、#2、#3 |
小片段缺失Small fragment deletion | 2 ~ 15 | 7(17.5%) | 0 | #1、#2 |
大片段缺失Long fragment deletion | 625 | 16(40.0%) | 16(61.5%) | #5 |
图4 基因编辑株系#1、#2、#3(A)和#5(B)靶位点的突变类型 蓝色方框为外显子,灰色方框为内含子,绿色和橙色方框分别代表两个靶位点,方框下方的数字为位置信息,不同颜色的方框宽度按照序列长度比例绘制。A:黑字体为PAM序列;蓝色字体为靶位点序列;红色字体代表基因编辑突变位点;B:靶位点用加粗字体表示,删除部分和插入序列用红色字体表示。
Fig. 4 The mutation types of #1,#2,#3(A)and #5(B)gene editing lines The blue bars represent the exons,the gray bar represents the intron,the green and orange bars represent two target sites,the numbers below the bar are position information,and the width of the bars are drawn in proportion to the sequence length. A:PAM sequence is shown in bold font;the target sites are shown in blue color;the mutations are represented in red color;B:The target sites are indicated by bold font,and the deletion and insertion are indicated by red color.
[1] |
Bai S L, Tao R Y, Tang Y X, Yin L, Ma Y J, Ni J B, Yan X H, Yang Q S, Wu Z Y, Zeng Y L, Teng Y W. 2019. BBX16,a B-box protein,positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal, 17(10):1985-1997.
doi: 10.1111/pbi.v17.10 URL |
[2] |
Chen Y T, Mao W W, Liu T, Feng Q Q, Li L, Li B B. 2020. Genome editing as a versatile tool to improve horticultural crop qualities. Horticultural Plant Journal, 6(6):372-384.
doi: 10.1016/j.hpj.2020.11.004 URL |
[3] | Cui Xia, Zhang Shuaibin. 2017. Gene editing technology and its application and prospect in horticultural crops. Acta Horticulturae Sinica, 44(9):1787-1795. (in Chinese) |
崔霞, 张率斌. 2017. 基因编辑技术及其在园艺作物中的应用和展望. 园艺学报, 44(9):1787-1795. | |
[4] |
Du H Y, Zeng X R, Zhao M, Cui X P, Wang Q, Yang H, Cheng H, Yu D Y. 2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology, 217:90-97.
doi: 10.1016/j.jbiotec.2015.11.005 URL |
[5] |
Graf R, Li X, Chu V T, Rajewsky K. 2019. sgRNA sequence motifs blocking efficient CRISPR/Cas9-mediated gene editing. Cell Reports, 26(5):1098-1103.
doi: 10.1016/j.celrep.2019.01.024 URL |
[6] | Guo Ye, Wan Dongyan, Chai Zhuangzhuang, Wang Yuejin, Wen Yingqiang. 2019. Knock-out analysis of VviPDS1gene using CRISPR/Cas9 in grapevine . Acta Horticulturae Sinica, 46(4):623-634. (in Chinese) |
郭晔, 万东艳, 柴壮壮, 王跃进, 文颖强. 2019. 利用CRISPR/Cas9敲除葡萄VviPDS1基因的研究. 园艺学报, 46(4):623-634. | |
[7] |
Jia H, Orbovic V, Jones J B, Wang N. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccpthA4:dCsLOB1.3 infection. Plant Biotechnology Journal, 14(5):1291-1301.
doi: 10.1111/pbi.2016.14.issue-5 URL |
[8] |
Jia H, Wang N. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE, 9(4):e93806.
doi: 10.1371/journal.pone.0093806 URL |
[9] |
Jia H, Zhang Y, Orbovic V, Xu J, White F F, Jones J B, Wang N. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7):817-823.
doi: 10.1111/pbi.12677 URL |
[10] |
Li C, Unver T, Zhang B H. 2017. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton(Gossypium hirsutumL.). Scientific Reports, 7:43902.
doi: 10.1038/srep43902 URL |
[11] |
Li J, Li Y, Ma L G. 2019. CRISPR/Cas9-based genome editing and its applications for functional genomic analyses in plants. Small Methods, 3(3):1800473.
doi: 10.1002/smtd.v3.3 URL |
[12] |
Li J F, Norville J E, Aach J, McCormack M, Zhang D D, Bush J, Church G M, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8):688-691.
doi: 10.1038/nbt.2654 URL |
[13] |
Ma C, Liu M, Li Q, Jun Si, Ren X, Song H. 2019. Efficient BoPDSgene editing in cabbage by the CRISPR/Cas9 system. Horticultural Plant Journal, 5(4):164-169.
doi: 10.1016/j.hpj.2019.04.001 URL |
[14] | Ma X, Liu Y G. 2016. CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Current Protocols in Molecular Biology,115:31.6.1-31. 6.21. |
[15] | Malnoy M, Viola R, Jung M H, Koo O J, Kim S, Kim J S, Velasco R, Kanchiswamy C N. 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7:1904. |
[16] |
Mao Y F, Zhang H, Xu N F, Zhang B T, Gou F, Zhu J K. 2013. Application of the CRISPR/Cas system for efficient genome engineering in plants. Molecular Plant, 6(6):2008-2011.
doi: 10.1093/mp/sst121 URL |
[17] | Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M. 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE, 12(5):16. |
[18] |
Nekrasov V, Staskawicz B, Weigel D, Jones J D G, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(8):691-693.
doi: 10.1038/nbt.2655 URL |
[19] |
Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6:31481.
doi: 10.1038/srep31481 URL |
[20] |
Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 15(12):1509-1519.
doi: 10.1111/pbi.2017.15.issue-12 URL |
[21] |
Ren C, Liu X J, Zhang Z, Wang Y, Duan W, Li S H, Liang Z C. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay(Vitis vinifera L.). Scientific Reports, 6:32289.
doi: 10.1038/srep32289 URL |
[22] | Shan Qiwei, Gao Caixia. 2015. Recent advances in plant genome editing and its derivatives. Hereditas, 37(10):953-973. (in Chinese) |
单奇伟, 高彩霞. 2015. 植物基因组编辑及衍生技术最新研究进展. 遗传, 37(10):953-973. | |
[23] |
Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Xi J J, Qiu J L, Gao C X. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8):686-688.
doi: 10.1038/nbt.2650 URL |
[24] |
Svitashev S, Young J K, Schwartz C, Gao H R, Falco S C, Cigan A M. 2015. Targeted mutagenesis,precise gene editing,and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169(2):931-945.
doi: 10.1104/pp.15.00793 URL |
[25] |
Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y. 2017. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Reports, 36(3):399-406.
doi: 10.1007/s00299-016-2089-5 URL |
[26] | Wang Fujun, Zhao Kaijun. 2018. Progress and challenge of crop genetic improvement via genome editing. Scientia Agricultura Sinica, 51(1):1-16. (in Chinese) |
王福军, 赵开军. 2018. 基因组编辑技术应用于作物遗传改良的进展与挑战. 中国农业科学, 51(1):1-16. | |
[27] |
Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16(4):844-855.
doi: 10.1111/pbi.2018.16.issue-4 URL |
[28] |
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao CX, Qiu J L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9):947-951.
doi: 10.1038/nbt.2969 URL |
[29] |
Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, Liu Y, Huang H. 2018. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnology Journal, 16(8):1424-1433.
doi: 10.1111/pbi.2018.16.issue-8 URL |
[30] |
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan M, Tao S, Korban S, Wang H, Chen N, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull R, Bennetzen J, Zhang S. 2013. The genome of the pear(Pyrus bretschneideriRehd.). Genome Research, 23:396-408.
doi: 10.1101/gr.144311.112 URL |
[31] | Yang Lushan, Guo Ye, Hu Yang, Wen Yingqiang. 2020. CRISPR/Cas9-mediated mutagenesis of VviEDR2 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera) . Acta Horticulturae Sinica, 47(4):623-634. (in Chinese) |
杨禄山, 郭晔, 胡洋, 文颖强. 2020. 利用CRISPR/Cas9系统敲除葡萄中VviEDR2提高对白粉病的抗性. 园艺学报, 47(4):623-634. | |
[32] |
Yang Q, Yang B, Li J, Wang Y, Tao R, Yang F, Wu X, Yan X, Ahmad M, Shen J, Bai S, Teng Y. 2020. ABA-responsive ABRE-BINDING FACTOR3 activates DAM3 expression to promote bud dormancy in Asian pear. Plant Cell and Environment, 43(6):1360-1375.
doi: 10.1111/pce.v43.6 URL |
[33] | Zheng Aihong, Zhang Fen, Jiang Min, Yuan Qiao, Jiang Leiyu, Chen Qing, Tang Haoru, Sun Bo. 2019. Targeted editing of BoaZDSby CRISPR/Cas9 technology in Chinese kale . Acta Horticulturae Sinica, 46(1):57-64. (in Chinese) |
郑爱红, 张芬, 江敏, 袁巧, 江雷雨, 陈清, 汤浩茹, 孙勃. 2019. 利用CRISPR/Cas9技术靶向编辑芥蓝BoaZDS. 园艺学报, 46(1):57-64. | |
[34] | Zou Xiuping, Fan Di, Peng Aihong, He Yongrui, Xu Lanzhen, Lei Tiangang, Yao Lixiao, Li Qiang, Luo Keming, Chen Shanchun. 2019 CRISPR/Cas9-mediated editing of multiple sites in the citrus CsLOB1 promoter . Acta Horticulturae Sinica, 46(2):337-344. (in Chinese) |
邹修平, 范迪, 彭爱红, 何永睿, 许兰珍, 雷天刚, 姚利晓, 李强, 罗克明, 陈善春. 2019. CRISPR/Cas9介导柑橘CsLOB1基因启动子的多位点编辑. 园艺学报, 46(2):337-344. |
[1] | 张爱萍, 刘江娜, 闫建俊, 张西英, 白云凤, . 番茄基因编辑研究进展和前景[J]. 园艺学报, 2022, 49(1): 221-232. |
[2] | 王亚茹, 李 勇, 王 晋, 王迎涛, 李 晓, 王永博. 中熟梨新品种‘冀锦’[J]. 园艺学报, 2021, 48(S2): 2771-2772. |
[3] | 贾兵, 叶振风, 刘普, 刘莉, 朱立武, 衡伟. 梨新品种‘砀山金酥’[J]. 园艺学报, 2021, 48(8): 1635-1636. |
[4] | 王斐, 欧春青, 马力, 张艳杰, 方明, 姜淑苓. 晚熟耐贮红皮梨新品种‘晚脆香’[J]. 园艺学报, 2021, 48(8): 1637-1638. |
[5] | 魏树伟, 王少敏, 王宏伟, 冉昆, 董冉, 董肖昌, 张勇. 钙处理对‘南果梨'果皮微观结构、蜡质成分及香气释放的影响[J]. 园艺学报, 2021, 48(6): 1197-1207. |
[6] | 黄威剑, 李梦. 果树全基因组测序现状与展望[J]. 园艺学报, 2021, 48(4): 733-748. |
[7] | 贾兵, 郭国凌, 王友煜, 魏鹏飞, 余桃, 常笑, 衡伟. ‘砀山酥梨’宿萼和脱萼分化期形态建成与碳水化合物的关系[J]. 园艺学报, 2021, 48(3): 421-438. |
[8] | 韩文龙, 朱振, 李君茹, 陈天哲, 李国辉, 苏雪强, 金青, 程曦, 蔡永萍. 梨Trihelix转录因子家族成员鉴定及表达分析[J]. 园艺学报, 2021, 48(3): 439-455. |
[9] | 张震, 李晨智宇, 张雅, 李玺, 王烁, 王鑫玉, 陈学森, 冯守千. 西洋梨PcHB12基因抑制果实花青苷的合成[J]. 园艺学报, 2021, 48(3): 456-464. |
[10] | 刘雅洁, 梁晨, 王莉, 杜国强, 师校欣. 保存8 ~ 33年的苹果试管苗增殖能力与端粒长度分析[J]. 园艺学报, 2021, 48(2): 243-253. |
[11] | 贾兵, 郭国凌, 王友煜, 叶振风, 刘莉, 刘普, 衡伟, 朱立武. ‘黄金梨’缺铁黄化叶片受GA3诱导复绿的机理研究[J]. 园艺学报, 2021, 48(2): 254-264. |
[12] | 王强, 张茂君, 卢明艳, 闫兴凯, 武春昊, 李红莲, 丁丽华. 梨新品种‘吉香’[J]. 园艺学报, 2021, 48(2): 397-398. |
[13] | 杜艳民, 王文辉, 贾晓辉, 王志华, 佟伟, 张鑫楠. 前期低氧处理对梨虎皮病的防控及乙烯释放的影响[J]. 园艺学报, 2021, 48(1): 15-25. |
[14] | 梁振旭, 孙明德, 武阳, 田海青, 杜瑞瑞, 赵艳艳, 刘松忠. 梨幼树到结果初期春施15N-尿素的利用及其在土壤的残留与损失[J]. 园艺学报, 2021, 48(1): 137-145. |
[15] | 陈启亮, 范 净, 杨晓平, 张靖国, 田 瑞, 胡红菊. 抗病砂梨新品种‘金鑫’[J]. 园艺学报, 2020, 47(S2): 2881-2882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司