园艺学报 ›› 2021, Vol. 48 ›› Issue (5): 860-872.doi: 10.16420/j.issn.0513-353x.2020-0578
收稿日期:
2020-09-08
修回日期:
2021-03-05
出版日期:
2021-05-25
发布日期:
2021-06-07
通讯作者:
罗昌国,王三红
E-mail:376258195@qq.com;wsh3xg@niau.edu.cn
基金资助:
LAN Liming1, LUO Changguo2,*(), WANG Sanhong1,*()
Received:
2020-09-08
Revised:
2021-03-05
Online:
2021-05-25
Published:
2021-06-07
Contact:
LUO Changguo,WANG Sanhong
E-mail:376258195@qq.com;wsh3xg@niau.edu.cn
摘要:
为研究湖北海棠[Malus hupehensis(Pamp)Rehd.]响应白粉病菌胁迫过程中相关基因的表达及分子机制,取同一时期爆发白粉病的‘青砧1号’、‘青砧1号’/湖北海棠嫁接苗的接穗部分和湖北海棠等3份材料的叶片,使用BGISEQ-500测序技术对其进行转录组测序分析。结果表明:青砧1号、青砧1号/湖北海棠和湖北海棠对白粉病的抗性依次增加;GO富集显示代谢过程和催化活性相关的GO term在青砧1号、青砧1号/湖北海棠和湖北海棠中被显著富集;KEGG分析显示亚油酸代谢、植物病原体相互作用、磷酸肌醇代谢、油菜素类固醇生物合成和磷脂酰肌醇信号系统等5条代谢途径在‘青砧1号’/湖北海棠和湖北海棠中均显著富集,碳代谢途径只在抗性强的湖北海棠中显著富集。与白粉病抗性相关基因家族表达分析显示,WRKY70、WRKY33、NPR3和WRKY40等转录因子基因在青砧1号/湖北海棠和湖北海棠中较青砧1号显著上调表达。实时荧光定量PCR结果证实了转录组测序结果的准确性。
中图分类号:
兰黎明, 罗昌国, 王三红. 基于转录组测序的湖北海棠抗白粉病机制分析[J]. 园艺学报, 2021, 48(5): 860-872.
LAN Liming, LUO Changguo, WANG Sanhong. Analysis of Resistance Mechanism to Powdery Mildew Based on Transcriptome Sequencing in Malus hupehensis[J]. Acta Horticulturae Sinica, 2021, 48(5): 860-872.
样品名称 Sample name | clean reads数量/Mb Number of clean reads | GC含量/% GC content | Q30/% | 低质量含量/% Low quality content |
---|---|---|---|---|
青砧1号Qingzhen 1 | 46.17(96.40%) | 49.40 | 93.31 | 3.09 |
青砧1号/湖北海棠 Qingzhen 1/Malus hupehensis | 56.53(97.25%) | 47.33 | 93.98 | 2.34 |
湖北海棠 M. hupehensis | 52.78(96.64%) | 48.53 | 93.50 | 2.87 |
表1 转录组测序数据过滤后的质量统计
Table 1 Quality statistics of filtered transcript group sequencing data
样品名称 Sample name | clean reads数量/Mb Number of clean reads | GC含量/% GC content | Q30/% | 低质量含量/% Low quality content |
---|---|---|---|---|
青砧1号Qingzhen 1 | 46.17(96.40%) | 49.40 | 93.31 | 3.09 |
青砧1号/湖北海棠 Qingzhen 1/Malus hupehensis | 56.53(97.25%) | 47.33 | 93.98 | 2.34 |
湖北海棠 M. hupehensis | 52.78(96.64%) | 48.53 | 93.50 | 2.87 |
图 2 青砧1号、青砧1号/湖北海棠和湖北海棠3个材料Unigenes的GO富集分析
Fig. 2 Analysis of gene ontology enrichment of three materials Unigenes of Qingzhen 1,Qingzhen 1/Malus hupehensis and M. hupehensis
图3 青砧1号、青砧1号/湖北海棠和湖北海棠3个材料Unigenes的KEGG富集分析
Fig. 3 Analysis of the KEGG enrichment of three materials Unigenes of Qingzhen 1,Qingzhen 1/Malus hupehensis and M. hupehensis
图4 青砧1号、青砧1号/湖北海棠和湖北海棠3个材料中基因表达量分布
Fig. 4 Distribution of gene expression in three materials of Qingzhen 1,Qingzhen 1/Malus hupehensis and M. hupehensis
基因名称 Gene name | 基因ID Gene ID | Nr-注释 Nr-annotation | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|---|---|
WRKY70 | XP_008388364.1a | WRKY转录因子70[苹果] WRKY transcription factor 70[Malus × domestica] | F:AAACCACCTACATCGGCGAG |
R:ATGAGAATTGACGGTGCGGA | |||
WRKY33 | NP_001315684.1a | WRKY转录因子26[苹果] WRKY transcription factor 26[Malus × domestica] | F:ACAACAACAGCGCCTCTACC |
R:CCCTCCCCAAAAGACAGCAAA | |||
WRKY3 | XP_008352971.1a | WRKY转录因子3[苹果] WRKY transcription factor 3[Malus × domestica] | F:TACACAGGCAACAACAACGC |
R:TCTGATTCCTCGTGCTTGCTT | |||
WRKY22 | XP_008345081.1a | WRKY转录因子22[苹果] WRKY transcription factor 22[Malus × domestica] | F:CTAGTAGTGCTGCCACTGCC |
R:TCCCACCCATAGTTACACCCA | |||
WRKY2 | XP_008344758.1a | WRKY转录因子2[苹果] WRKY transcription factor 2[Malus × domestica] | F:TCTTGGTGCAACGCCTTGAT |
R:TCTCGAGCTCCCAGGAAGAA | |||
NPR3 | ANJ45443.1a | NPR5a [苹果] NPR5a[Malus × domestica] | F:CATCTTCTCCGAAGGACGGG |
R:TCTGTTTGATAAGGAGAGAGCCA | |||
WRKY40 | NP_001315769.1a | WRKY转录因子40[苹果] WRKY transcription factor 40[Malus × domestica] | F:TGCTCAACTCCAAGGCAATG |
R:TTCACTGTCTGCCTTTCGCT | |||
EF1 | MD09G014760b | 内参基因 Reference gene | F:TACTGGAACATCACAGGCTGAC |
R:TGGACCTCTCAATCATGTTGTC |
表2 荧光定量PCR中所用差异表达基因及其引物序列
Table 2 Differentially expressed genes and their primer sequences in qPCR
基因名称 Gene name | 基因ID Gene ID | Nr-注释 Nr-annotation | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|---|---|
WRKY70 | XP_008388364.1a | WRKY转录因子70[苹果] WRKY transcription factor 70[Malus × domestica] | F:AAACCACCTACATCGGCGAG |
R:ATGAGAATTGACGGTGCGGA | |||
WRKY33 | NP_001315684.1a | WRKY转录因子26[苹果] WRKY transcription factor 26[Malus × domestica] | F:ACAACAACAGCGCCTCTACC |
R:CCCTCCCCAAAAGACAGCAAA | |||
WRKY3 | XP_008352971.1a | WRKY转录因子3[苹果] WRKY transcription factor 3[Malus × domestica] | F:TACACAGGCAACAACAACGC |
R:TCTGATTCCTCGTGCTTGCTT | |||
WRKY22 | XP_008345081.1a | WRKY转录因子22[苹果] WRKY transcription factor 22[Malus × domestica] | F:CTAGTAGTGCTGCCACTGCC |
R:TCCCACCCATAGTTACACCCA | |||
WRKY2 | XP_008344758.1a | WRKY转录因子2[苹果] WRKY transcription factor 2[Malus × domestica] | F:TCTTGGTGCAACGCCTTGAT |
R:TCTCGAGCTCCCAGGAAGAA | |||
NPR3 | ANJ45443.1a | NPR5a [苹果] NPR5a[Malus × domestica] | F:CATCTTCTCCGAAGGACGGG |
R:TCTGTTTGATAAGGAGAGAGCCA | |||
WRKY40 | NP_001315769.1a | WRKY转录因子40[苹果] WRKY transcription factor 40[Malus × domestica] | F:TGCTCAACTCCAAGGCAATG |
R:TTCACTGTCTGCCTTTCGCT | |||
EF1 | MD09G014760b | 内参基因 Reference gene | F:TACTGGAACATCACAGGCTGAC |
R:TGGACCTCTCAATCATGTTGTC |
图5 青砧1号、青砧1号/湖北海棠和湖北海棠3个材料中差异基因表达量分析与验证
Fig. 5 Analysis and verification of differentially expressed genes in three materials of Qingzhen 1,Qingzhen 1/Malus hupehensis and M. hupehensis
[1] |
Albert R, Künstler A, Lantos F, Attila L, Király L. 2017. Graft-transmissible resistance of cherry pepper(Capsicum annuum var. cerasiforme)to powdery mildew(Leveillula taurica)is associated with elevated superoxide accumulation,NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiologiae Plantarum, 39(2):53-63.
doi: 10.1007/s11738-017-2353-5 URL |
[2] |
Ali M, Brian W, Kenneth M, Lorian S, Barbara W. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7):621-628.
doi: 10.1038/nmeth.1226 URL |
[3] | Ali S, Gunupuru L, Kumar G, Khan M, Scofield S, Nicholson P, Doohan F. 2014. Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biology, 14 (1):doi: 10.1186/s12870-014-0227-1. |
[4] |
Altschul S, Gish W, Miller W, Myers E, Lipman D. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403-410.
doi: 10.1016/S0022-2836(05)80360-2 URL |
[5] | Alvarez M, Pennell R, Meijer P, Ishikawa A, Dixon R, Lamb C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of Plant immunity. Cell, 1(4):773-784. |
[6] |
Bolton M. 2009. Primary metabolism and plant defense:fuel for the fire. Molecular Plant-Microbe Interactions, 22(5):487-497.
doi: 10.1094/MPMI-22-5-0487 URL |
[7] |
Buchfink B, Xie C, Huson D. 2015. Fast and sensitive protein alignment using Diamond. Nature Methods, 12(1):59.
doi: 10.1038/nmeth.3176 URL |
[8] |
Cheng B, Ding Y, Gao X, Cao N, Xin Z, Zhang L. 2020. The diversity of powdery mildew resistance gene loci among wheat germplasm in Southwest China. Cereal Research Communications, 48(1):65-70.
doi: 10.1007/s42976-020-00015-2 URL |
[9] |
Conesa A, Gotz S, Garcia-Gomez J, Terol J, Talon M, Robles M. 2005. Blast2GO:a universal tool for annotation,visualization and analysis in functional genomics research. Bioinformatics, 21(18):3674-3676.
pmid: 16081474 |
[10] | Ding Xuan, Yuan Kun, Cao Jian-hua, Xu Zhi-juan, He Zhe, Lin Wei-fu. 2010. Research progress on interaction between rootstock and scion. Chinese Journal of Tropical Agriculture, 30(5):68-71. (in Chinese) |
丁璇, 袁坤, 曹建华, 徐志娟, 何哲, 林位夫. 2010. 嫁接树砧穗互作研究进展. 热带农业科学, 30(5):68-71. | |
[11] | Duan Lin-yuan, Zhou Jun, Wang Da-wei, Xu Shi-hong, Ma Yu-mei, Zhang Hui-xiang. 2015. Research progress on apple powdery mildew occurrence and resistance resources. Journal of Southwest Forestry University, 35(5):104-109. (in Chinese) |
段淋渊, 周军, 王大玮, 徐世宏, 马玉梅, 张惠祥. 2015. 苹果白粉病危害防治及抗性资源研究进展. 西南林业大学学报, 35(5):104-109. | |
[12] |
Duan X, Zhang W, Huang J, Zhao L, Ma C, Hao L, Yuan H, Harada T, Li T. 2015. KNOTTED1 mRNA undergoes long-distance transport and interacts with movement protein binding protein 2C in pear(Pyrus betulaefolia). Plant Cell Tissue and Organ Culture, 121(1):109-119.
doi: 10.1007/s11240-014-0685-z URL |
[13] |
Dziurka M, Janeczko A, Juhász C, Gullner G, Oklestková J, Novák O, Saja D, Skoczowski A, Tóbiás I, Barna B. 2016. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. Plant Physiology and Biochemistry, 109:355-364.
doi: S0981-9428(16)30402-8 pmid: 27810675 |
[14] | Fan Lian-mei, Wang Chao, Liu Geng-sen, Yuan Yong-bing. 2014. Screening and validation of reference genes for real-time fluorescence quantitative PCR during coloring period in apple(Malus domestica) . Plant Physiology Journal, 50(12):1903-1911. (in Chinese) |
樊连梅, 王超, 刘更森, 原永兵. 2014. 苹果着色期实时定量PCR内参基因的筛选和验证. 植物生理学报, 50(12):1903-1911. | |
[15] | Gao Fen, Chu Jian-mei, Li Jing-hong, Wang Meng-liang. 2014. Research progress in the pathogenesis of plant pathogenic fungi. Jiangsu Journal of Agricultural Sciences, 30(5):1174-1179. (in Chinese) |
高芬, 褚建梅, 李静虹, 王梦亮. 2014. 植物病原真菌致病机理研究进展. 江苏农业学报, 30(5):1174-1179. | |
[16] |
Gu K, Tian D, Yang F, Wu L, Sreekala C, Wang D, Wang G, Yin Z. 2004. High-resolution genetic mapping of Xa27(t),a new bacterial blight resistance gene in rice,Oryzae sativaL. Theoretical and Applied Genetics, 108(5):800-807.
pmid: 15118822 |
[17] |
Hok S, Allasia V, Andrio E, Naessens E, Ribes E, Panabieres F, Attard A, Ris N, Clement M, Barlet X, Marco Y, Grill E, Eichmann R, Weis C, Huckelhoven R, Ammon A, Ludwig J, Voll L, Keller H. 2014. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses inArabidopsis. Plant Physiology, 166(3):1506.
doi: 10.1104/pp.114.248518 URL |
[18] |
Huang F C, Hwang H H. 2020. Arabidopsis RETICULON-LIKE4(RTNLB4)protein participates in Agrobacterium infection and VirB2 peptide-induced plant defense response. International Journal of Molecular Sciences, 21(5):1722-1750.
doi: 10.3390/ijms21051722 URL |
[19] |
Kaur H, Verma P, Petla B, Rao V, Saxena S, Majee M. 2013. Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2(CaMIPS2)in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta, 237(1):321-335.
doi: 10.1007/s00425-012-1781-0 URL |
[20] | Keppler L, Novaeky A. 1987. The initiation of membrane lipid peroxidation during bacteria-induced hypersenssitive reaction. Molecular Plant Pathology, 30(2):233-245. |
[21] | Liu Hui, Meng De-long, Zha Ri-yang, Xu Da-yong. 2015. Identification and evaluation on blast resistance of rice varieties in Jiangsu. Fujian Journal of Agricultural Sciences, 30(5):452-458. (in Chinese) |
刘辉, 孟德龙, 査日扬, 徐大勇. 2015. 江苏水稻品种稻瘟病主效抗性基因鉴定及应用评价. 福建农业学报, 30(5):452-458. | |
[22] |
Livak K, Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 25(4):402-408.
pmid: 11846609 |
[23] | Luo Chang-guo, Yuan Qi-feng, Pei Xiao-hong, Wu Ya-wei, Zheng Wei, Zhang Zhen. 2013. Cloning of MdWRKY40b gene in Fuji apple and its response to powdery mildew stress . Acta Botanica Boreali-Occidentalia Sinica, 33(12):2382-2387. (in Chinese) |
罗昌国, 袁启凤, 裴晓红, 吴亚维, 郑伟, 章镇. 2013. 富士苹果MdWRKY40b基因克隆及其对白粉病的抗性分析. 西北植物学报, 33(12):2382-2387. | |
[24] |
Maekawa S, Inada N, Yasuda S, Fukao Y, Fujiwara M, Sato T, Yamaguchi J. 2014. The carbon/nitrogen regulator Arabidopsis toxicos enlevaura31 controls papilla formation in response to powdery mildew fungi penetration by interacting with syntaxin of plants121 in Arabidopsis. Plant physiology, 164(2):879-887.
doi: 10.1104/pp.113.230995 URL |
[25] |
Massad T, Dyer L, Vega C. 2012. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE, 7(10):e47554.
doi: 10.1371/journal.pone.0047554 URL |
[26] |
Murphy A, Otto B, Brearley C, Carr J, Hanke D. 2010. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant Journal, 56(4):638-652.
doi: 10.1111/tpj.2008.56.issue-4 URL |
[27] | Mustafa G, Masood S, Ahmad N, Saboor A, Ali A. 2019. Seed priming for disease resistance in plants. Priming and Pretreatment of Seeds and Seedlings, 5(6):527-541. |
[28] |
Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant Journal, 33(5):887-898.
pmid: 12609030 |
[29] |
Qiu L, Jiang B, Fang J, Shen Y, Fang Z, Yi K, Shen C, Yan D, Zheng B. 2016. Analysis of transcriptome in hickory,and uncover the dynamics in the hormonal signaling pathway during graft process. BMC Genomics, 17(1):935.
doi: 10.1186/s12864-016-3182-4 URL |
[30] | Qiu Wen-ming, He Xiu-juan, Xu Yu-hai. 2014. Evaluation and identification of germplasm resources of dwarf Malus hupehensis . South China Fruits, 43(4):104-106,110. |
邱文明, 何秀娟, 徐育海. 2014. 矮化型湖北海棠种质资源评价与鉴定. 中国南方果树, 43(4):104-106,110. | |
[31] | Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005. InterProScan:protein domains identifier. Nucleic Acids Research, 33:116-120. |
[32] | Qu Shen-chun, Lü Dong, Zhang Zhen. 2009. Research advances of resistant genes in apple. Journal of Agricultural Science and Technology, 11(5):36-41. (in Chinese) |
渠慎春, 吕东, 章镇. 2009. 苹果抗病虫基因研究进展. 中国农业科技导报, 11(5):36-41. | |
[33] |
Renard-Merlier D, Laruelle F, Nowak E, Durand R, Reignault P. 2009. Changes in C12:0,C18:1,C18:2 and C20:2 fatty acid content in wheat treated with resistance inducers and infected by powdery mildew. Plant Biology, 11(1):75-82.
doi: 10.1111/j.1438-8677.2008.00169.x pmid: 19121116 |
[34] | Sha Guang-li, Hao Yu-jin, Gong Xiang-hui, Shu Huai-rui, Huang Yue, Shao Yong-chun, Yin Tao. 2013. Apple apomictic rootstock‘Qingzhen 1’. Acta Horticulturae Sinica, 40(7):1407-1408. (in Chinese) |
沙广利, 郝玉金, 宫象晖, 束怀瑞, 黄粤, 邵永春, 尹涛. 2013. 苹果无融合生殖砧木‘青砧1号'. 园艺学报, 40(7):1407-1408. | |
[35] |
Shah J. 2005. Lipids,lipases,and lipid-modifying enzymes in plant disease resistance. Annual Review of Phytopathology, 43(1):229-260.
doi: 10.1146/annurev.phyto.43.040204.135951 URL |
[36] |
Shim S, Jung C, Lee S, Min K, Lee W, Choi Y, Lee S, Song T, Kim K, Choi D. 2013. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant Journal, 73(3):483-495.
doi: 10.1111/tpj.12051 URL |
[37] | Skoczowski A, Janeczko A, Gullner G, Tóbias I, Kornaś A, Barna B. 2011. Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence. Journal of Thermal Analysis and Calorimetey, 104:131-139. |
[38] | Song Zhi-dan. 2012. Research on low temperature response gene expression profiles of Ammopiptanthus mongolicus basing on mRNA transcriptome and small RNA transcriptome[M. D. Dissertation]. Changsha:Central South University of Forestry and Technology. (in Chinese) |
宋志丹. 2012. 沙冬青转录组、小RNA组及低温应答基因表达谱研究[硕士论文]. 长沙:中南林业科技大学. | |
[39] |
Tan J, Wang C, Xiang B, Han R, Guo Z. 2013. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myoinositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant Cell and Environment, 36(2):288-299.
doi: 10.1111/j.1365-3040.2012.02573.x URL |
[40] |
Wang J, Jiang L, Wu R. 2016. Plant grafting:how genetic exchange promotes vascular reconnection. New Phytologist, 214(1):56-65.
doi: 10.1111/nph.2017.214.issue-1 URL |
[41] | Wang Li-li. 2014. Apple powdery mildew disease and its control. Agricultural Science-Technology and Information, (7):40. (in Chinese) |
王丽丽. 2014. 苹果白粉病病害及其防治. 农业科技与信息,(7):40. | |
[42] | Wang Pan, Cai Zhao-ming, Liao Jing-jing, Luo Lu-yun, Xiang Mei-qin, Shi Jia-yu, Xu Dan, Xia Qiu-yu, Wang Dian-dong. 2020. Genome-wide identification and expression pattern analysis of histidine NPR family genes in Brassica rapassp. pekinensis . Molecular Plant Breeding, 19(3):746-758. (in Chinese) |
王攀, 蔡兆明, 廖静静, 罗路云, 向美琴, 石家宇, 许丹, 夏秋宇, 王殿东. 2020. 大白菜NPR家族基因鉴定及表达模式分析. 分子植物育种, 19(3):746-758. | |
[43] |
Wang Y J, Zeng J, Xia X L, Xu Y, Sun J, Gu J, Sun H N, Lei H N, Chen F D, Jiang J F, Fang W M, Chen S M. 2020. Comparative analysis of leaf trichomes,epidermal wax and defense enzymes activities in response toPuccinia horiana in ChrysanthemumandAjaniaspecies. Horticultural Plant Journal, 6(3):191-198.
doi: 10.1016/j.hpj.2020.03.006 URL |
[44] | Wang Yu-lin. 2011. Apple cultivation. Beijing: Science Press:129-130. (in Chinese) |
王宇霖. 2011. 苹果栽培学. 北京: 科学出版社:129-130. | |
[45] | Wightwick A, Walters R, Allinson G, Reichman S, Menzies N. 2010. Environmental risks of fungicides used in horticultural production systems. Fungicides,273-304. |
[46] | Xu Zhi, Zhang Ying, Wang Sheng, Ji Hong-li, Ni Jian-ying, Peng Yun-liang. 2019. Efficiency of wheat resistance genes and commercial varieties to powdery mildew in Chengdu Plain. Journal of Triticeae Crops, 39(9):1022-1028. (in Chinese) |
徐志, 张英, 王胜, 姬红丽, 倪健英, 彭云良. 2019. 小麦不同抗白粉病基因及品种在成都平原抗病的有效性. 麦类作物学报, 39(9):1022-1028. | |
[47] |
Yang B, Jiang Y, Rahman M, Beyholos M, Kav V. 2009. Identification and expression analysis of WRKY transcription factor genes in canola (Bras-sica napus L.)in response to fungal pathogens and hormone treatments. BMC Plant Biology, 9(1):68.
doi: 10.1186/1471-2229-9-68 URL |
[48] | Zeng Lie-xian, Wang Cong-ying, Feng Ai-qing, Chen Shen, Su Jing, Wang Wen-juan, Wu Sheng-yuan, Yang Jian-yuan, Zhu Xiao-yuan. 2016. Resistance analysis on major resistant genes of rice bacterial blight in different donors and genetic background. Acta Phytopathologica Sinica, 46(4):514-520. (in Chinese) |
曾列先, 汪聪颖, 冯爱卿, 陈深, 苏菁, 汪文娟, 伍圣远, 杨健源, 朱小源. 2016. 水稻白叶枯病抗性基因在不同载体品种上及杂种F1的抗性研究. 植物病理学报, 46(4):514-520. | |
[49] | Zhang D, Meng Z, Xiao W, Wang X, Sodmergon. 2002. Graft-induced inheritable variation in mungbean and its application in mungbean breeding. Acta Botanica Sinica, 44(7):832-837. |
[1] | 蒋 彧, 涂勋良, 何俊蓉. 国兰叶色突变体叶片差异表达基因分析[J]. 园艺学报, 2023, 50(2): 371-381. |
[2] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[3] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[4] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[5] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[6] | 张晓明, 闫国华, 周 宇, 王 晶, 段续伟, 吴传宝, 张开春. 甜樱桃砧木新品种‘京春2号’[J]. 园艺学报, 2022, 49(S2): 31-32. |
[7] | 田红梅, 刘 娟, 张长坤, 陶 珍, 张 建, 王朋成, . 甜瓜砧木用南瓜新品种‘皖砧6号’[J]. 园艺学报, 2022, 49(S2): 127-128. |
[8] | 韩晓蕾, 张彩霞, 刘 锴, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘苹优2号’[J]. 园艺学报, 2022, 49(S1): 1-2. |
[9] | 王 强, 丛佩华, 刘肖烽. 晚熟苹果新品种‘华优甜娃’[J]. 园艺学报, 2022, 49(S1): 3-4. |
[10] | 王 强, 丛佩华, 刘肖烽. 中熟苹果新品种‘华优宝蜜’[J]. 园艺学报, 2022, 49(S1): 5-6. |
[11] | 杨 玲, 丛佩华, 王 强, 李武兴, 康立群. 中熟鲜食苹果新品种‘华丰’[J]. 园艺学报, 2022, 49(S1): 7-8. |
[12] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[13] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[14] | 聂鑫淼, 栾恒, 冯改利, 王超, 李岩, 魏珉. 硅营养和嫁接砧木对黄瓜幼苗耐冷性的影响[J]. 园艺学报, 2022, 49(8): 1795-1804. |
[15] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司