园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1351-1362.doi: 10.16420/j.issn.0513-353x.2021-0767
邱可立1,2, 王玉民3, 何金铃2, 俞红1,4, 潘海发1, 盛玉1, 谢庆梅1, 陈红莉1, 周晖1,**(), 张金云1,**(
)
收稿日期:
2021-10-29
修回日期:
2021-12-14
出版日期:
2022-06-25
发布日期:
2022-07-05
通讯作者:
周晖,张金云
E-mail:huichou1987@126.com;zjy600@aaas.org.cn
基金资助:
QIU Keli1,2, WANG Yumin3, HE Jinling2, YU Hong1,4, PAN Haifa1, SHENG Yu1, XIE Qingmei1, CHEN Hongli1, ZHOU Hui1,**(), ZHANG Jinyun1,**(
)
Received:
2021-10-29
Revised:
2021-12-14
Online:
2022-06-25
Published:
2022-07-05
Contact:
ZHOU Hui,ZHANG Jinyun
E-mail:huichou1987@126.com;zjy600@aaas.org.cn
摘要:
利用生物信息技术鉴定了桃中漆酶(LAC)家族成员,分析其进化关系分析、基因结构、启动子区顺式作用元件以及表达模式。结果表明,在桃基因组中共鉴定出48个漆酶基因,通过在桃子叶愈伤组织中的表达模式分析,发现1个表达量很高的关键成员PpLAC21,在该基因沉默的桃愈伤组织中,木质素的含量下降,推测该基因可能参与桃愈伤组织的木质素合成。
中图分类号:
邱可立, 王玉民, 何金铃, 俞红, 潘海发, 盛玉, 谢庆梅, 陈红莉, 周晖, 张金云. 桃漆酶家族基因鉴定及PpLAC21功能分析[J]. 园艺学报, 2022, 49(6): 1351-1362.
QIU Keli, WANG Yumin, HE Jinling, YU Hong, PAN Haifa, SHENG Yu, XIE Qingmei, CHEN Hongli, ZHOU Hui, ZHANG Jinyun. Identification of Peach Laccase Family Genes and Function Analysis of PpLAC21[J]. Acta Horticulturae Sinica, 2022, 49(6): 1351-1362.
基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
TEF2 | F:GGTGTGACGATGAAGAGTGATG:R:TGAAGGAGAGGGAAGGTGAAAG |
PpLAC7 | F:AGGGCAGATAACCCAGGCA:R:AGGTGGTCGCAGAGTCTCATT |
PpLAC15 | F:CCTAAAACTATCGACAAGCGAGTT:R:TGACAAGGAGGGACGGACAA |
PpLAC19 | F:GGGCTGATAATCCAGGAGTTTG:R:CCTTTGCCATTGTCCACCA |
PpLAC20 | F:GGGTGGCTATCCGATTTCTG:R:AGCTTCCCATCCTGGACTACC |
PpLAC21 | F:CGACCCTGTTGAAAGAAATACC:R:CCATACACCGGGATTATCTGCT |
PpLAC22 | F:GCCCAAATGTCTCTGATGCTTA:R:CTCATCATTCAGTGCTGCGTT |
PpLAC24 | F:CACCAAACTCCTCGGATGC:R:TCCCTTGCTCAGCCTCCAT |
PpLAC27 | F:GCTGGCGGTTGGATTGC:R:GATCCACGCCATCCTTAGC |
PpLAC28 | F:CCACCCACTTCACCTCCAT:R:CGCCAACGGTGTTCCTCT |
PpLAC30 | F:GCTATCCGATTTCAAGCAGATAA:R:TTGATTCATTCGGTCCTTTCC |
PpLAC33 | F:TGGCACCAAACACCTCTGAC:R:CCCTTGCTCAACCTCCATAACA |
PpLAC43 | F:GCACTACTCACTGCCAACCTT:R:TGAAGTTCCCAGTTCCATCCA |
PpLAC44 | F:TCTCATCCCTTCCACCTTCAT:R:ATACTTTGCCGGGTCCTGTT |
PpLAC45 | F:GCTGCAAGACACCAATCTTCTC:R:GGCAACCCAACCACCTGTA |
表1 荧光定量引物序列
Table 1 Primer sequence used for qRT-PCR
基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
TEF2 | F:GGTGTGACGATGAAGAGTGATG:R:TGAAGGAGAGGGAAGGTGAAAG |
PpLAC7 | F:AGGGCAGATAACCCAGGCA:R:AGGTGGTCGCAGAGTCTCATT |
PpLAC15 | F:CCTAAAACTATCGACAAGCGAGTT:R:TGACAAGGAGGGACGGACAA |
PpLAC19 | F:GGGCTGATAATCCAGGAGTTTG:R:CCTTTGCCATTGTCCACCA |
PpLAC20 | F:GGGTGGCTATCCGATTTCTG:R:AGCTTCCCATCCTGGACTACC |
PpLAC21 | F:CGACCCTGTTGAAAGAAATACC:R:CCATACACCGGGATTATCTGCT |
PpLAC22 | F:GCCCAAATGTCTCTGATGCTTA:R:CTCATCATTCAGTGCTGCGTT |
PpLAC24 | F:CACCAAACTCCTCGGATGC:R:TCCCTTGCTCAGCCTCCAT |
PpLAC27 | F:GCTGGCGGTTGGATTGC:R:GATCCACGCCATCCTTAGC |
PpLAC28 | F:CCACCCACTTCACCTCCAT:R:CGCCAACGGTGTTCCTCT |
PpLAC30 | F:GCTATCCGATTTCAAGCAGATAA:R:TTGATTCATTCGGTCCTTTCC |
PpLAC33 | F:TGGCACCAAACACCTCTGAC:R:CCCTTGCTCAACCTCCATAACA |
PpLAC43 | F:GCACTACTCACTGCCAACCTT:R:TGAAGTTCCCAGTTCCATCCA |
PpLAC44 | F:TCTCATCCCTTCCACCTTCAT:R:ATACTTTGCCGGGTCCTGTT |
PpLAC45 | F:GCTGCAAGACACCAATCTTCTC:R:GGCAACCCAACCACCTGTA |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpLAC1 | Prupe.1G323200 | 578 | 9.18 | 65 744.34 | 过氧化物酶体 Peroxisome |
PpLAC2 | Prupe.1G357100 | 544 | 9.18 | 60 477.29 | 细胞外基质 Extracellular matrix |
PpLAC3 | Prupe.1G559300 | 568 | 8.98 | 64 123.39 | 溶酶体 Lysosome |
PpLAC4 | Prupe.2G191900 | 574 | 8.38 | 63 604.68 | 细胞外基质 Extracellular matrix |
PpLAC5 | Prupe.2G205500 | 584 | 5.40 | 64 495.92 | 溶酶体 Lysosome |
PpLAC6 | Prupe.2G205600 | 609 | 6.74 | 67 760.86 | 溶酶体 Lysosome |
PpLAC7 | Prupe.2G245800 | 558 | 9.02 | 61 240.19 | 细胞外基质 Extracellular matrix |
PpLAC8 | Prupe.2G257400 | 583 | 8.53 | 64 070.85 | 细胞外基质 Extracellular matrix |
PpLAC9 | Prupe.2G278000 | 592 | 6.54 | 66 358.74 | 细胞外基质 Extracellular matrix |
PpLAC10 | Prupe.2G325200 | 567 | 6.82 | 62 943.79 | 溶酶体 Lysosome |
PpLAC11 | Prupe.3G216000 | 542 | 8.39 | 60 174.81 | 细胞外基质 Extracellular matrix |
PpLAC12 | Prupe.4G018800 | 543 | 9.72 | 61 649.96 | 细胞外基质 Extracellular matrix |
PpLAC13 | Prupe.4G131900 | 597 | 7.99 | 67 085.54 | 细胞外基质 Extracellular matrix |
PpLAC14 | Prupe.5G075700 | 591 | 8.40 | 65 813.66 | 质膜 Plasma membrane |
PpLAC15 | Prupe.5G231100 | 582 | 7.06 | 65 497.57 | 溶酶体 Lysosome |
PpLAC16 | Prupe.6G000400 | 552 | 9.01 | 61 928.85 | 细胞外基质 Extracellular matrix |
PpLAC17 | Prupe.6G000500 | 554 | 8.84 | 62 137.61 | 细胞外基质 Extracellular matrix |
PpLAC18 | Prupe.6G048400 | 1 559 | 6.47 | 175 147.62 | 质膜 Plasma membrane |
PpLAC19 | Prupe.6G061300 | 558 | 9.43 | 61 628.12 | 细胞外基质 Extracellular matrix |
PpLAC20 | Prupe.6G072100 | 587 | 9.77 | 64 558.17 | 细胞外基质 Extracellular matrix |
PpLAC21 | Prupe.6G089100 | 583 | 9.33 | 64 487.37 | 溶酶体 Lysosome |
PpLAC22 | Prupe.6G089300 | 581 | 9.30 | 64 283.15 | 细胞外基质 Extracellular matrix |
PpLAC23 | Prupe.6G155100 | 577 | 6.81 | 64 268.78 | 细胞外基质 Extracellular matrix |
PpLAC24 | Prupe.6G177700 | 564 | 8.41 | 62 267.07 | 溶酶体 Lysosome |
PpLAC25 | Prupe.6G179500 | 580 | 7.09 | 65 306.02 | 细胞外基质 Extracellular matrix |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
PpLAC26 | Prupe.6G242000 | 567 | 6.64 | 63 053.79 | 溶酶体 Lysosome |
PpLAC27 | Prupe.6G257700 | 585 | 9.02 | 64 453.73 | 质膜 Plasma membrane |
PpLAC28 | Prupe.6G258000 | 586 | 9.85 | 64 986.03 | 细胞外基质 Extracellular matrix |
PpLAC29 | Prupe.6G267700 | 563 | 5.95 | 61 867.26 | 细胞外基质 Extracellular matrix |
PpLAC30 | Prupe.6G271500 | 559 | 9.31 | 60 774.70 | 细胞外基质 Extracellular matrix |
PpLAC31 | Prupe.7G140500 | 539 | 9.29 | 60 306.38 | 细胞外基质 Extracellular matrix |
PpLAC32 | Prupe.7G140600 | 537 | 9.46 | 59 617.38 | 溶酶体 Lysosome |
PpLAC33 | Prupe.7G156500 | 587 | 8.65 | 65 072.51 | 细胞外基质 Extracellular matrix |
PpLAC34 | Prupe.8G046800 | 568 | 6.76 | 64 097.74 | 细胞外基质 Extracellular matrix |
PpLAC35 | Prupe.8G046900 | 578 | 9.08 | 65 169.63 | 细胞外基质 Extracellular matrix |
PpLAC36 | Prupe.8G047000 | 584 | 4.95 | 65 244.50 | 细胞外基质 Extracellular matrix |
PpLAC37 | Prupe.8G047100 | 570 | 5.52 | 62 952.86 | 质膜 Plasma membrane |
PpLAC38 | Prupe.8G047200 | 569 | 5.29 | 62 540.13 | 质膜 Plasma membrane |
PpLAC39 | Prupe.8G047300 | 569 | 5.11 | 62 344.97 | 质膜 Plasma membrane |
PpLAC40 | Prupe.8G047500 | 558 | 5.52 | 61 255.84 | 质膜 Plasma membrane |
PpLAC41 | Prupe.8G047900 | 564 | 5.58 | 62 057.08 | 质膜 Plasma membrane |
PpLAC42 | Prupe.8G048100 | 564 | 5.93 | 62 274.45 | 细胞外基质 Extracellular matrix |
PpLAC43 | Prupe.8G094800 | 367 | 9.69 | 40 256.36 | 质膜 Plasma membrane |
PpLAC44 | Prupe.8G095000 | 514 | 8.63 | 57 389.05 | 溶酶体 Lysosome |
PpLAC45 | Prupe.8G095400 | 563 | 8.78 | 62 198.39 | 溶酶体 Lysosome |
PpLAC46 | Prupe.8G097000 | 563 | 8.78 | 62 158.28 | 溶酶体 Lysosome |
PpLAC47 | Prupe.8G172900 | 536 | 9.26 | 59 889.78 | 细胞外基质 Extracellular matrix |
PpLAC48 | Prupe.8G189700 | 588 | 5.94 | 65 150.69 | 溶酶体 Lysosome |
表2 桃漆酶蛋白的理化性质与亚细胞定位预测
Table 2 Physicochemical properties and subcellular localization prediction of peach laccase protein
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpLAC1 | Prupe.1G323200 | 578 | 9.18 | 65 744.34 | 过氧化物酶体 Peroxisome |
PpLAC2 | Prupe.1G357100 | 544 | 9.18 | 60 477.29 | 细胞外基质 Extracellular matrix |
PpLAC3 | Prupe.1G559300 | 568 | 8.98 | 64 123.39 | 溶酶体 Lysosome |
PpLAC4 | Prupe.2G191900 | 574 | 8.38 | 63 604.68 | 细胞外基质 Extracellular matrix |
PpLAC5 | Prupe.2G205500 | 584 | 5.40 | 64 495.92 | 溶酶体 Lysosome |
PpLAC6 | Prupe.2G205600 | 609 | 6.74 | 67 760.86 | 溶酶体 Lysosome |
PpLAC7 | Prupe.2G245800 | 558 | 9.02 | 61 240.19 | 细胞外基质 Extracellular matrix |
PpLAC8 | Prupe.2G257400 | 583 | 8.53 | 64 070.85 | 细胞外基质 Extracellular matrix |
PpLAC9 | Prupe.2G278000 | 592 | 6.54 | 66 358.74 | 细胞外基质 Extracellular matrix |
PpLAC10 | Prupe.2G325200 | 567 | 6.82 | 62 943.79 | 溶酶体 Lysosome |
PpLAC11 | Prupe.3G216000 | 542 | 8.39 | 60 174.81 | 细胞外基质 Extracellular matrix |
PpLAC12 | Prupe.4G018800 | 543 | 9.72 | 61 649.96 | 细胞外基质 Extracellular matrix |
PpLAC13 | Prupe.4G131900 | 597 | 7.99 | 67 085.54 | 细胞外基质 Extracellular matrix |
PpLAC14 | Prupe.5G075700 | 591 | 8.40 | 65 813.66 | 质膜 Plasma membrane |
PpLAC15 | Prupe.5G231100 | 582 | 7.06 | 65 497.57 | 溶酶体 Lysosome |
PpLAC16 | Prupe.6G000400 | 552 | 9.01 | 61 928.85 | 细胞外基质 Extracellular matrix |
PpLAC17 | Prupe.6G000500 | 554 | 8.84 | 62 137.61 | 细胞外基质 Extracellular matrix |
PpLAC18 | Prupe.6G048400 | 1 559 | 6.47 | 175 147.62 | 质膜 Plasma membrane |
PpLAC19 | Prupe.6G061300 | 558 | 9.43 | 61 628.12 | 细胞外基质 Extracellular matrix |
PpLAC20 | Prupe.6G072100 | 587 | 9.77 | 64 558.17 | 细胞外基质 Extracellular matrix |
PpLAC21 | Prupe.6G089100 | 583 | 9.33 | 64 487.37 | 溶酶体 Lysosome |
PpLAC22 | Prupe.6G089300 | 581 | 9.30 | 64 283.15 | 细胞外基质 Extracellular matrix |
PpLAC23 | Prupe.6G155100 | 577 | 6.81 | 64 268.78 | 细胞外基质 Extracellular matrix |
PpLAC24 | Prupe.6G177700 | 564 | 8.41 | 62 267.07 | 溶酶体 Lysosome |
PpLAC25 | Prupe.6G179500 | 580 | 7.09 | 65 306.02 | 细胞外基质 Extracellular matrix |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
PpLAC26 | Prupe.6G242000 | 567 | 6.64 | 63 053.79 | 溶酶体 Lysosome |
PpLAC27 | Prupe.6G257700 | 585 | 9.02 | 64 453.73 | 质膜 Plasma membrane |
PpLAC28 | Prupe.6G258000 | 586 | 9.85 | 64 986.03 | 细胞外基质 Extracellular matrix |
PpLAC29 | Prupe.6G267700 | 563 | 5.95 | 61 867.26 | 细胞外基质 Extracellular matrix |
PpLAC30 | Prupe.6G271500 | 559 | 9.31 | 60 774.70 | 细胞外基质 Extracellular matrix |
PpLAC31 | Prupe.7G140500 | 539 | 9.29 | 60 306.38 | 细胞外基质 Extracellular matrix |
PpLAC32 | Prupe.7G140600 | 537 | 9.46 | 59 617.38 | 溶酶体 Lysosome |
PpLAC33 | Prupe.7G156500 | 587 | 8.65 | 65 072.51 | 细胞外基质 Extracellular matrix |
PpLAC34 | Prupe.8G046800 | 568 | 6.76 | 64 097.74 | 细胞外基质 Extracellular matrix |
PpLAC35 | Prupe.8G046900 | 578 | 9.08 | 65 169.63 | 细胞外基质 Extracellular matrix |
PpLAC36 | Prupe.8G047000 | 584 | 4.95 | 65 244.50 | 细胞外基质 Extracellular matrix |
PpLAC37 | Prupe.8G047100 | 570 | 5.52 | 62 952.86 | 质膜 Plasma membrane |
PpLAC38 | Prupe.8G047200 | 569 | 5.29 | 62 540.13 | 质膜 Plasma membrane |
PpLAC39 | Prupe.8G047300 | 569 | 5.11 | 62 344.97 | 质膜 Plasma membrane |
PpLAC40 | Prupe.8G047500 | 558 | 5.52 | 61 255.84 | 质膜 Plasma membrane |
PpLAC41 | Prupe.8G047900 | 564 | 5.58 | 62 057.08 | 质膜 Plasma membrane |
PpLAC42 | Prupe.8G048100 | 564 | 5.93 | 62 274.45 | 细胞外基质 Extracellular matrix |
PpLAC43 | Prupe.8G094800 | 367 | 9.69 | 40 256.36 | 质膜 Plasma membrane |
PpLAC44 | Prupe.8G095000 | 514 | 8.63 | 57 389.05 | 溶酶体 Lysosome |
PpLAC45 | Prupe.8G095400 | 563 | 8.78 | 62 198.39 | 溶酶体 Lysosome |
PpLAC46 | Prupe.8G097000 | 563 | 8.78 | 62 158.28 | 溶酶体 Lysosome |
PpLAC47 | Prupe.8G172900 | 536 | 9.26 | 59 889.78 | 细胞外基质 Extracellular matrix |
PpLAC48 | Prupe.8G189700 | 588 | 5.94 | 65 150.69 | 溶酶体 Lysosome |
[1] |
Arcuri Mariana L C, Larissa C Fialho, Alessandra Vasconcellos Nunes-Laitz, Maria Cecília P Fuchs-Ferraz, Ivan Rodrigo Wolf, Guilherme Targino Valente, Celso L Marino, Ivan G Maia. 2020. Genome-wide identification of multifunctional laccase gene family in Eucalyptus grandis: potential targets for lignin engineering and stress tolerance. Trees, 34:745-758.
doi: 10.1007/s00468-020-01954-3 URL |
[2] |
Berkman S J, Roscoe E M, Bourret J C. 2019. Comparing self-directed methods for training staff to create graphs using Graphpad Prism. J Appl Behav Anal, 52 (1):188-204.
doi: 10.1002/jaba.522 pmid: 30382580 |
[3] |
Cai X Z, Xu Q F, Wang C C, Zheng Z. 2006. Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis. Plant Mol Biol, 62:223-232.
doi: 10.1007/s11103-006-9016-z URL |
[4] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[5] |
Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y. 2020. Correction:comprehensive genome-wide analysis of the pear(Pyrus bretschneideri)laccase gene(PbLAC)family and functional identification of PbLAC 1 involved in lignin biosynthesis. PLoS ONE, 15:e0228183.
doi: 10.1371/journal.pone.0228183 URL |
[6] | Ding Rong, Liang Jing, Zhao Hewen, Zhang Kezhong. 2018. Application and optimization of VIGS experimental technology system in Rosa hybrida. Chinese Agricultural Science Bulletin, 34:87-92. (in Chinese) |
丁榕, 梁晶, 赵和文, 张克中. 2018. VIGS实验技术体系在月季中的应用及优化. 中国农学通报, 34:87-92. | |
[7] |
Faivre-Rampant, Gilroy E M, Hrubikova K, Hein I, Millam S, Loake G J, Birch P, Taylor M, Lacomme C. 2004. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol, 134:1308-1316.
pmid: 15084725 |
[8] | Gao X, Britt R C, Shan L, He P. 2011. Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp,e2938. |
[9] |
Godge M R, Purkayastha A, Dasgupta I, Kumar P P. 2009. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep, 28:335.
doi: 10.1007/s00299-008-0660-4 URL |
[10] |
Kim J, Park M, Jeong E S, Lee J M, Choi D. 2017. Harnessing anthocyanin-rich fruit:a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods, 13:3.
doi: 10.1186/s13007-016-0151-5 URL |
[11] |
Li K B. 2003. ClustalW-MPI:ClustalW analysis using distributed and parallel computing. Bioinformatics, 19 (12):1585-1586.
doi: 10.1093/bioinformatics/btg192 URL |
[12] |
Liu Q, Luo L, Wang X, Shen Z, Zheng L. 2017. Comprehensive analysis of rice laccase gene(OsLAC)family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 18:16.
doi: 10.3390/ijms18010016 URL |
[13] | Liu Yanying, Ni Shanshan, Xiang Leilei, Chen Yukun. 2020. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata. Acta Horticulturae Sinica, 47 (5):837-852. (in Chinese) |
刘彦英, 倪珊珊, 项蕾蕾, 陈裕坤. 2020. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析, 园艺学报, 47 (5):837-852. | |
[14] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[15] | Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. 2015. CDD:NCBI’s conserved domain database. Nucleic Acids Res, 43:D222-226. |
[16] |
Martinez-Alvarez O, Montero P, Gomez-Guillen C. 2008. Evidence of an active laccase-like enzyme in deepwater pink shrimp(Parapenaeus longirostris). Food Chem, 108:624-632.
doi: 10.1016/j.foodchem.2007.11.029 URL |
[17] |
Nikki K, Barnes W J, Richard T L, Anderson C T. 2015. Imaging with the fluorogenic dye basic fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon. Journal of Experimental Botany, 66:4295-4304.
doi: 10.1093/jxb/erv158 pmid: 25922482 |
[18] |
Schuetz M, Benske A, Smith R A, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels A L. 2014. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol, 166:798-807.
doi: 10.1104/pp.114.245597 URL |
[19] |
Senthil-Kumar M, Mysore K S. 2014. Tobacoo rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc, 9 (7):1549-1562.
doi: 10.1038/nprot.2014.092 pmid: 24901739 |
[20] |
Shulaev V, Korban S S, Sosinski B, Abbott A G, Aldwinckle H S, Folta K M, Iezzoni A, Main D, Arus P, Dandekar A M, Lewers K, Brown S K, Davis T M, Gardiner S E, Potter D, Veilleux R E. 2008. Multiple models for Rosaceae genomics. Plant Physiol, 147:985-1003.
doi: 10.1104/pp.107.115618 URL |
[21] | Shu Qingyan, Zhu jin, Men Siqi. 2018. Establishing Virus Induced Gene Silencing(VIGS)system in tree peony using PsUFGT genes. Acta Horticulturae Sinica, 45 (1):168-176. (in Chinese) |
舒庆艳, 朱瑾, 门思琦. 2018. 基于牡丹类黄酮糖基转移酶基因建立VIGS技术体系. 园艺学报, 45 (1):168-176. | |
[22] |
Singh V K, Mangalam A K, Dwivedi S, Naik S. 1998. Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques, 24 (2):318-319.
pmid: 9494736 |
[23] |
Soni N, Hegde N, Dhariwal A, Kushalappa A C. 2020. Role of laccase gene in wheat NILs differing at QTL-Fhb 1 for resistance against Fusarium head blight. Plant Sci, 298:110574.
doi: 10.1016/j.plantsci.2020.110574 URL |
[24] |
Tang Yi, Li Lingfei, Wang Xiaoqing. 2017. Establishment of transient gene expression and virus-induced gene silencing(VIGS)system in Gerbera hybrida petals. Plant Physiology Journal, 53:505-512. (in Chinese)
doi: 10.1111/j.1399-3054.1981.tb02741.x URL |
唐宜, 李凌飞, 王小菁. 2017. 非洲菊花瓣瞬时表达和病毒诱导的基因沉默(VIGS)系统的建立. 植物生理学报, 53:505-512. | |
[25] | Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. 2019. The soybean laccase gene family: evolution and possible roles in plant defense and stem strength selection. Genes(Basel), 10:19. |
[26] |
Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legee F, Cezard L, Lapierre C, Sibout R. 2015. LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol, 168:192-204.
doi: 10.1104/pp.114.255489 pmid: 25755252 |
[27] |
Yi Chou E, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels A L. 2018. Distribution,mobility,and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot, 69:1849-1859.
doi: 10.1093/jxb/ery067 pmid: 29481639 |
[28] |
Yoshida, Hikorokuro. 1883. LXIII.—Chemistry of lacquer(Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society,Transactions, 43:472.
doi: 10.1039/CT8834300472 URL |
[29] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z Y, Dixon R A. 2013. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 25:3976-3987.
doi: 10.1105/tpc.113.117770 URL |
[30] |
Zhou P, Peng J Y, Zeng M J, Wu L X, Fan Y X, Zeng L H. 2021. Virus-induced gene silencing(VIGS)in Chinese narcissus and its use in functional analysis of NtMYB3. Horticultural Plant Journal, 7 (6):565-572.
doi: 10.1016/j.hpj.2021.04.009 URL |
[1] | 蔡志翔, 严娟, 宿子文, 徐子媛, 张明昊, 沈志军, 杨军, 马瑞娟, 俞明亮. 不同类型桃种质资源主要酚类物质含量评价[J]. 园艺学报, 2022, 49(5): 1008-1022. |
[2] | 李丽仙, 王烁, 陈莹, 邬滢涛, 王雅倩, 房月, 陈学森, 田长平, 冯守千. 甜樱桃PavMYB10.1促进PavRiant表达和花青苷积累[J]. 园艺学报, 2022, 49(5): 1023-1030. |
[3] | 李亚梅, 马福利, 张山奇, 黄锦秋, 陈梦婷, 周军永, 孙其宝, 孙俊. 酸枣愈伤组织转化体系构建及在ZjBRC1调控ZjYUCCA表达中的应用[J]. 园艺学报, 2022, 49(4): 749-757. |
[4] | 李黎, 冯丹丹, 潘慧, 李文艺, 邓蕾, 汪祖鹏, 钟彩虹. 猕猴桃花粉灭菌方法比较及对果实品质的影响[J]. 园艺学报, 2022, 49(4): 769-777. |
[5] | 杨凤英, 郝瑞敏, 董思佳, 钱朗, 陈雪, 关海春. 早中熟油桃新品种‘丹霞’[J]. 园艺学报, 2022, 49(3): 701-702. |
[6] | 黎春红, 汪开拓, 雷长毅, 许凤, 季娜娜, 蒋永波. 桃TGA家族鉴定及BABA诱导的抗病表达分析[J]. 园艺学报, 2022, 49(2): 265-280. |
[7] | 王莹莹, 王海波, 史祥宾, 冀晓昊, 王志强, 王孝娣. 中熟抗寒桃新品种‘中农寒桃4号’[J]. 园艺学报, 2021, 48(S2): 2773-2774. |
[8] | 王孝娣, 王莹莹, 王宝亮, 王小龙, 张艺灿. 中熟抗寒桃新品种‘中农寒桃6号’[J]. 园艺学报, 2021, 48(S2): 2775-2776. |
[9] | 杨兴旺, 王莹莹, 史祥宾, 冀晓昊, 刘红弟, 王孝娣. 中熟抗寒桃新品种‘中农寒桃7号’[J]. 园艺学报, 2021, 48(S2): 2777-2778. |
[10] | 王莹莹, 王志强, 张艺灿, 王孝娣, 杨兴旺. 中熟抗寒桃新品种‘中农寒桃9号’[J]. 园艺学报, 2021, 48(S2): 2779-2780. |
[11] | 王莹莹, 刘立常, 刘志伍, 王孝娣, . 早熟黄肉油桃新品种‘中农红花珍珠1号’[J]. 园艺学报, 2021, 48(S2): 2781-2782. |
[12] | 郭继英, 赵剑波, 张 瑜, 王尚德, 刘 鑫, 李新越, 王 真, 任 飞, 姜 全. 晚熟黄肉蟠桃新品种‘瑞蟠101号’[J]. 园艺学报, 2021, 48(S2): 2783-2784. |
[13] | 王 晶, 闫国华, 张晓明, 段续伟, 周 宇, 吴传宝, 张开春. 甜樱桃新品种‘香泉紫云’[J]. 园艺学报, 2021, 48(S2): 2785-2786. |
[14] | 张晓明, 闫国华, 周 宇, 王 晶, 段续伟, 张开春, . 甜樱桃砧木新品种‘京春1号’[J]. 园艺学报, 2021, 48(S2): 2787-2788. |
[15] | 张晓明, 闫国华, 周 宇, 王 晶, 段续伟, 张开春, . 甜樱桃砧木新品种‘兰丁3号’[J]. 园艺学报, 2021, 48(S2): 2789-2790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司