园艺学报 ›› 2022, Vol. 49 ›› Issue (4): 827-840.doi: 10.16420/j.issn.0513-353x.2020-1069
王莹, 艾鹏慧, 李帅磊, 康冬茹, 李忠爱, 王子成**()
收稿日期:
2021-07-16
修回日期:
2021-11-15
出版日期:
2022-04-25
发布日期:
2022-04-24
通讯作者:
王子成
E-mail:wzc@henu.edu.cn
基金资助:
WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng**()
Received:
2021-07-16
Revised:
2021-11-15
Online:
2022-04-25
Published:
2022-04-24
Contact:
WANG Zicheng
E-mail:wzc@henu.edu.cn
摘要:
基于传统菊花(Chrysanthemum × morifolium Ramat.)品种‘金背大红’转录组数据和菊花脑(C. nankingense)的基因组数据,通过生物信息学方法鉴定了二者的DNA甲基化相关酶基因,分析其编码蛋白结构域并构建系统发育树,还分析了基因的表达情况。从‘金背大红’中鉴定出了13个DNA甲基转移酶基因和11个去甲基化酶基因,从菊花脑中鉴定出10个DNA甲基转移酶基因和5个去甲基化酶基因。MET1同源氨基酸序列系统进化分析结果表明,菊花‘紫精灵’‘金背大红’和‘禾城星火’与甘菊[C. lavandulifolium(Fisch. ex Trautv.)Ling et Shih]处于较近的分支中,这表明他们可能有更近的演化关系,而菊花脑和菊花‘泉乡水长’与甘菊的进化关系可能较远。DNA甲基化相关酶基因在不同组织及不同菊花品种中的表达水平存在较大差异。
中图分类号:
王莹, 艾鹏慧, 李帅磊, 康冬茹, 李忠爱, 王子成. 菊花和菊花脑DNA甲基化相关酶基因鉴定及表达分析[J]. 园艺学报, 2022, 49(4): 827-840.
WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng. Identification and Expression Analysis of Genes Related to DNA Methylation in Chrysanthemum × morifolium and C. nankingense[J]. Acta Horticulturae Sinica, 2022, 49(4): 827-840.
基因 Gene | 上游引物序列(5′-3′) Forward primer sequence | 下游引物序列(5′-3′) Reverse primer sequence |
---|---|---|
Cm-methylase1 | AACTGGTCACTATACAACTG | ATCATCTGCCGTCATTAC |
Cm-methylase2 | GACGCTCTCCAAGATTAG | ACCACCATCATTAGATTCAA |
Cm-methylase10 | TGACTCCGATAGGCTACTT | GGTATCCGAATCAATATCAACATT |
Cm-demethylase3 | TGGAGAATGATGGAAGTG | GCCTGTTACCTTGGATAA |
Cn-methylase1 | TGTCAAAATCTGCTGGAGG | TTGTCATTATTGTTGGGGG |
Cn-methylase2 | AAAAAAGAAACGAAAGGGTC | ATAAAGAAAGCGAGAAATGG |
Cn-methylase3 | TACAATTCATGGTGCCTTGC | ATTTTGCGCTTCCATATGCT |
Cn-methylase4 | GCTTCTTCCACTTCCTCCCC | CTTAAACCCCCACCTCTCGT |
Cn-methylase5 | TTGCCTCAGTTTCCTTTACC | AGCACCTCCATACTCCATTT |
Cn-methylase6 | AATCACTTTGCTATCTCTCT | TTACTTACTTGTGTCTCTGG |
Cn-methylase7 | TCTTTTGCTCTTGCTCACAC | CACACACAGCCCACACATTT |
Cn-methylase8 | CCAAGCTAATGTGTGGCTTC | GCTGTCCATTAAACTTTGGG |
Cn-methylase9 | TTTTGGAAGTGAATACAGGG | ATGGTTGACATAGTGGAGAA |
Cn-methylase10 | ATGACAGTGAAGGACAGCGA | GAAATGAGGGGTATGAAAGG |
Cn-demethylase1 | CAAACCTAAGAAACCGCCAA | CAACATCTCCAAAGCCACAA |
Cn-demethylase2 | CTGAAGAAACTGGTAGACAA | CAAAATCAAGAACCTAATGG |
Cn-demethylase3 | ACAGATAAGGACCACGAATG | GGACTGAATAACCAGCAAAC |
Cn-demethylase4 | CCACCAGAAGGAAAATGTCG | CTCACCAGGATTGTCCCACG |
Cn-demethylase5 | AAACCGAAGCCAATACTGAG | TTCTAAGAGTGGGTGGGAGT |
Actin | AGCTTGCATATGTTGCTCTTGA | TTACCGTAAAGGTCCTTCCTGA |
表1 荧光定量引物序列
Table 1 Appendix a sequences for fluorescent quantitative
基因 Gene | 上游引物序列(5′-3′) Forward primer sequence | 下游引物序列(5′-3′) Reverse primer sequence |
---|---|---|
Cm-methylase1 | AACTGGTCACTATACAACTG | ATCATCTGCCGTCATTAC |
Cm-methylase2 | GACGCTCTCCAAGATTAG | ACCACCATCATTAGATTCAA |
Cm-methylase10 | TGACTCCGATAGGCTACTT | GGTATCCGAATCAATATCAACATT |
Cm-demethylase3 | TGGAGAATGATGGAAGTG | GCCTGTTACCTTGGATAA |
Cn-methylase1 | TGTCAAAATCTGCTGGAGG | TTGTCATTATTGTTGGGGG |
Cn-methylase2 | AAAAAAGAAACGAAAGGGTC | ATAAAGAAAGCGAGAAATGG |
Cn-methylase3 | TACAATTCATGGTGCCTTGC | ATTTTGCGCTTCCATATGCT |
Cn-methylase4 | GCTTCTTCCACTTCCTCCCC | CTTAAACCCCCACCTCTCGT |
Cn-methylase5 | TTGCCTCAGTTTCCTTTACC | AGCACCTCCATACTCCATTT |
Cn-methylase6 | AATCACTTTGCTATCTCTCT | TTACTTACTTGTGTCTCTGG |
Cn-methylase7 | TCTTTTGCTCTTGCTCACAC | CACACACAGCCCACACATTT |
Cn-methylase8 | CCAAGCTAATGTGTGGCTTC | GCTGTCCATTAAACTTTGGG |
Cn-methylase9 | TTTTGGAAGTGAATACAGGG | ATGGTTGACATAGTGGAGAA |
Cn-methylase10 | ATGACAGTGAAGGACAGCGA | GAAATGAGGGGTATGAAAGG |
Cn-demethylase1 | CAAACCTAAGAAACCGCCAA | CAACATCTCCAAAGCCACAA |
Cn-demethylase2 | CTGAAGAAACTGGTAGACAA | CAAAATCAAGAACCTAATGG |
Cn-demethylase3 | ACAGATAAGGACCACGAATG | GGACTGAATAACCAGCAAAC |
Cn-demethylase4 | CCACCAGAAGGAAAATGTCG | CTCACCAGGATTGTCCCACG |
Cn-demethylase5 | AAACCGAAGCCAATACTGAG | TTCTAAGAGTGGGTGGGAGT |
Actin | AGCTTGCATATGTTGCTCTTGA | TTACCGTAAAGGTCCTTCCTGA |
图1 ‘金背大红’菊(Cm)和菊花脑(Cn)DNA甲基转移酶(A)和去甲基化酶(B)的系统发育树和保守结构域 采用MEGA7,邻接聚类方法,Bootstrap的值为1 000。数字表示自展值。 At:拟南芥;Sl:番茄;Qs:欧洲栓皮栎;Fv:森林草莓;Bna:甘蓝型油菜。
Fig. 1 Phylogenetic tree and conserved domains of DNA methylases(A)and demethylases(B)of Chrysanthemum ‘Jinbeidahong’(Cm)and Chrysanthemum nankingense(Cn) Using the Neighbour-joining method in MEGA 7 software. The value of bootstrap is 1 000. Numbers indicate bootstrap values. At:Arabidopsis thaliana;Sl:Solanum lycopersicum;Qs:Quercus suber;Fv:Fragaria vesca;Bna:Brassica napus.
图2 不同物种中MET1的系统发育树和保守结构域 采用MEGA7,邻接聚类方法,Bootstrap的值为1 000。数字表示自展值。 Cl:甘菊;Cn:菊花脑;Aa:青蒿;Cc:刺苞菜蓟;Ls:莴苣;Ha:向日葵;Os:水稻;Zm:玉米;At:拟南芥。
Fig. 2 Phylogenetic tree and conserved domains of MET1 family in different species Using the Neighbour-joining method in MEGA 7 software. The value of bootstrap is 1 000. Numbers indicate bootstrap values. Cl:C. lavandulifolium;Cn:C. nankingense;Aa:Artemisia annua;Cc:Cynara cardunculus;Ls:Lactuca saliva;Ha:Helianthus annuus;Os:Oryza sativa;Zm:Zea mays;At:Arabidopsis thaliana.
酶 Enzyme | 基因 Gene name | CDS长度/bp CDS length | 蛋白质 Protein | 类型 Type | ||
---|---|---|---|---|---|---|
长度/aa Length | 分子量/Da Mw | 等电点 pI | ||||
甲基转移酶 | Cm-methylase1 | 4 800 | 1 599 | 178 739.29 | 5.75 | MET1 |
Methyltransferase | Cm-methylase2 | 2 788 | 925 | 103 843.57 | 6.14 | CMT |
Cm-methylase3 | 2 595 | 864 | 97 299.75 | 4.91 | CMT | |
Cm-methylase4 | 3 093 | 1 030 | 116 027.35 | 5.92 | CMT | |
Cm-methylase5 | 2 511 | 836 | 94 321.79 | 5.95 | DNMT2 | |
Cm-methylase6 | 1 317 | 438 | 49 870.56 | 5.24 | DNMT2 | |
Cm-methylase7 | 1 053 | 350 | 39 764.17 | 5.13 | DNMT2 | |
Cm-methylase8 | 921 | 306 | 34 963.24 | 4.91 | DNMT2 | |
Cm-methylase9 | 1 788 | 595 | 66 491.85 | 4.89 | DRM | |
Cm-methylase10 | 1 833 | 610 | 68 071.51 | 4.96 | DRM | |
Cm-methylase11 | 654 | 217 | 24 671.57 | 8.97 | DRM | |
Cm-methylase12 | 1 122 | 373 | 40 971.16 | 4.34 | DRM | |
Cm-methylase13 | 1 041 | 346 | 39 705.42 | 5.83 | DNMT2 | |
去甲基化酶 | Cm-demethylase1 | 4 638 | 1 545 | 173 065.09 | 8.26 | DME |
Demethylase | Cm-demethylase2 | 4 503 | 1 500 | 170 278.85 | 6.35 | DML3 |
Cm-demethylase3 | 3 822 | 1 273 | 144 744.28 | 8.93 | DML3 | |
Cm-demethylase4 | 1 281 | 426 | 47 988.14 | 5.92 | ROS1 | |
Cm-demethylase5 | 2 928 | 975 | 110 623.30 | 5.53 | ROS1 | |
Cm-demethylase6 | 1 584 | 527 | 60 170.57 | 5.78 | ROS1 | |
Cm-demethylase7 | 3 027 | 1 008 | 115 750.42 | 5.78 | ROS1 | |
Cm-demethylase8 | 2 751 | 916 | 103 280.83 | 8.51 | DME | |
Cm-demethylase9 | 3 672 | 1 223 | 137 284.38 | 6.74 | DME | |
Cm-demethylase10 | 4 503 | 1 500 | 169 026.50 | 6.05 | ROS1 | |
Cm-demethylase11 | 864 | 287 | 32 569.63 | 4.37 | DML3 |
表2 ‘金背大红’菊的DNA甲基转移酶基因和去甲基化酶基因的结构分析
Table 2 Structural analysis of DNA methyltransferases and demethylase genes of Chrysanthemum‘Jinbeidahong’
酶 Enzyme | 基因 Gene name | CDS长度/bp CDS length | 蛋白质 Protein | 类型 Type | ||
---|---|---|---|---|---|---|
长度/aa Length | 分子量/Da Mw | 等电点 pI | ||||
甲基转移酶 | Cm-methylase1 | 4 800 | 1 599 | 178 739.29 | 5.75 | MET1 |
Methyltransferase | Cm-methylase2 | 2 788 | 925 | 103 843.57 | 6.14 | CMT |
Cm-methylase3 | 2 595 | 864 | 97 299.75 | 4.91 | CMT | |
Cm-methylase4 | 3 093 | 1 030 | 116 027.35 | 5.92 | CMT | |
Cm-methylase5 | 2 511 | 836 | 94 321.79 | 5.95 | DNMT2 | |
Cm-methylase6 | 1 317 | 438 | 49 870.56 | 5.24 | DNMT2 | |
Cm-methylase7 | 1 053 | 350 | 39 764.17 | 5.13 | DNMT2 | |
Cm-methylase8 | 921 | 306 | 34 963.24 | 4.91 | DNMT2 | |
Cm-methylase9 | 1 788 | 595 | 66 491.85 | 4.89 | DRM | |
Cm-methylase10 | 1 833 | 610 | 68 071.51 | 4.96 | DRM | |
Cm-methylase11 | 654 | 217 | 24 671.57 | 8.97 | DRM | |
Cm-methylase12 | 1 122 | 373 | 40 971.16 | 4.34 | DRM | |
Cm-methylase13 | 1 041 | 346 | 39 705.42 | 5.83 | DNMT2 | |
去甲基化酶 | Cm-demethylase1 | 4 638 | 1 545 | 173 065.09 | 8.26 | DME |
Demethylase | Cm-demethylase2 | 4 503 | 1 500 | 170 278.85 | 6.35 | DML3 |
Cm-demethylase3 | 3 822 | 1 273 | 144 744.28 | 8.93 | DML3 | |
Cm-demethylase4 | 1 281 | 426 | 47 988.14 | 5.92 | ROS1 | |
Cm-demethylase5 | 2 928 | 975 | 110 623.30 | 5.53 | ROS1 | |
Cm-demethylase6 | 1 584 | 527 | 60 170.57 | 5.78 | ROS1 | |
Cm-demethylase7 | 3 027 | 1 008 | 115 750.42 | 5.78 | ROS1 | |
Cm-demethylase8 | 2 751 | 916 | 103 280.83 | 8.51 | DME | |
Cm-demethylase9 | 3 672 | 1 223 | 137 284.38 | 6.74 | DME | |
Cm-demethylase10 | 4 503 | 1 500 | 169 026.50 | 6.05 | ROS1 | |
Cm-demethylase11 | 864 | 287 | 32 569.63 | 4.37 | DML3 |
酶 Enzyme | 基因 Gene Name | CDS长度/bp CDS length | 外显子数 Number of exons | 蛋白质Protein | 类型 Type | ||
---|---|---|---|---|---|---|---|
长度/aa Length | 分子量/Da Mw | 等电点 pI | |||||
甲基转移酶 | Cn-methylase1 | 4 803 | 3 | 1 600 | 178 962.60 | 5.78 | MET1 |
Methyltransferase | Cn-methylase2 | 1 029 | 4 | 342 | 39 472.94 | 9.68 | DRM |
Cn-methylase3 | 2 019 | 12 | 672 | 75 038.30 | 5.01 | DRM | |
Cn-methylase4 | 1 470 | 9 | 489 | 54 992.14 | 5.19 | DRM | |
Cn-methylase5 | 879 | 10 | 292 | 32 439.25 | 7.63 | CMT | |
Cn-methylase6 | 2 730 | 20 | 909 | 101 888.25 | 6.20 | CMT | |
Cn-methylase7 | 1 887 | 18 | 628 | 71 372.50 | 4.99 | CMT | |
Cn-methylase8 | 543 | 4 | 181 | 20 947.95 | 7.57 | DNMT2 | |
Cn-methylase9 | 1 155 | 9 | 384 | 44 105.80 | 6.36 | DNMT2 | |
Cn-methylase10 | 1 038 | 9 | 345 | 39 700.18 | 5.27 | DNMT2 | |
去甲基化酶 | Cn-demethylase1 | 4 254 | 18 | 1 417 | 160 835.45 | 7.46 | DML3 |
Demethylase | Cn-demethylase2 | 2 805 | 14 | 934 | 106 836.11 | 8.79 | DML3 |
Cn-demethylase3 | 2 613 | 15 | 870 | 99 036.82 | 9.20 | DML3 | |
Cn-demethylase4 | 5 244 | 20 | 1 747 | 194 573.45 | 6.65 | DME | |
Cn-demethylase5 | 4 707 | 18 | 1 568 | 175 882.89 | 5.96 | ROS1 |
表3 菊花脑的DNA甲基转移酶基因和去甲基化酶基因的结构分析
Table 3 Structural analysis of DNA methyltransferases and demethylase genes of Chrysanthemum nankingense
酶 Enzyme | 基因 Gene Name | CDS长度/bp CDS length | 外显子数 Number of exons | 蛋白质Protein | 类型 Type | ||
---|---|---|---|---|---|---|---|
长度/aa Length | 分子量/Da Mw | 等电点 pI | |||||
甲基转移酶 | Cn-methylase1 | 4 803 | 3 | 1 600 | 178 962.60 | 5.78 | MET1 |
Methyltransferase | Cn-methylase2 | 1 029 | 4 | 342 | 39 472.94 | 9.68 | DRM |
Cn-methylase3 | 2 019 | 12 | 672 | 75 038.30 | 5.01 | DRM | |
Cn-methylase4 | 1 470 | 9 | 489 | 54 992.14 | 5.19 | DRM | |
Cn-methylase5 | 879 | 10 | 292 | 32 439.25 | 7.63 | CMT | |
Cn-methylase6 | 2 730 | 20 | 909 | 101 888.25 | 6.20 | CMT | |
Cn-methylase7 | 1 887 | 18 | 628 | 71 372.50 | 4.99 | CMT | |
Cn-methylase8 | 543 | 4 | 181 | 20 947.95 | 7.57 | DNMT2 | |
Cn-methylase9 | 1 155 | 9 | 384 | 44 105.80 | 6.36 | DNMT2 | |
Cn-methylase10 | 1 038 | 9 | 345 | 39 700.18 | 5.27 | DNMT2 | |
去甲基化酶 | Cn-demethylase1 | 4 254 | 18 | 1 417 | 160 835.45 | 7.46 | DML3 |
Demethylase | Cn-demethylase2 | 2 805 | 14 | 934 | 106 836.11 | 8.79 | DML3 |
Cn-demethylase3 | 2 613 | 15 | 870 | 99 036.82 | 9.20 | DML3 | |
Cn-demethylase4 | 5 244 | 20 | 1 747 | 194 573.45 | 6.65 | DME | |
Cn-demethylase5 | 4 707 | 18 | 1 568 | 175 882.89 | 5.96 | ROS1 |
图3 ‘金背大红’菊幼苗期部分DNA甲基转移酶基因和去甲基化酶基因在根、茎和叶的表达分析 将根的表达水平设为1。*表示与其差异显著(P < 0.05),**表示与其差异极显著(P < 0.01)。下同。
Fig. 3 Relative expression of DNA methylases and demethylases gene in root,stem and leaf of Chrysanthemum‘Jinbeidahong’seedling stage Expression leves in root were arbitrarily set to 1. Use * to indicate that the difference is significant(P < 0.05),** to indicate that the difference is significant extremely(P < 0.01). The same below
图4 ‘金背大红’菊开花期DNA甲基转移酶基因和去甲基化酶基因在根、茎、叶和花的表达分析
Fig. 4 Relative expression of DNA methylases and demethylases gene in root,stem,leaf and flower of Chrysanthemum‘Jinbeidahong’during flowering stage
图5 不同品种菊花叶片组织中DNA甲基转移酶基因和去甲基化酶基因的表达分析 1:‘金背大红’;2:‘千丝万缕’;3:‘银龙分水’;4:‘国庆红’;5:‘南农红袖’;6:‘紫精灵’;7:‘杭白菊’;8:‘紫蝶翻飞’;9:‘天女的神秘’;10:‘玉台一号’。将‘金背大红’的表达水平设为1,*表示与其差异显著(P < 0.05),**表示与其差异极显著(P < 0.01)。
Fig. 5 Relative expression of DNA methylases and demethylases in different chrysanthemum cultivars 1:‘Jinbeidahong’;2:‘Qiansiwanlü’;3:‘Yinlongfenshui’;4:‘Guoqinghong’;5:‘Nannong Hongxiu’;6:‘Zijingling’;7:‘Hangbaiju’;8:‘Zidie Fanfei’;9:‘Tiannvdeshenmi’;10:‘Yutaiyihao’. Expression leves of‘Jinbeidahong’were arbitrarily set to 1, use * to indicate that the difference is significant(P < 0.05),** to indicate that the difference is significant extremely(P < 0.01).
图6 菊花脑幼苗期DNA甲基转移酶(A)和去甲基化酶(B)在根、茎和叶的表达分析
Fig. 6 Expression analysis of DNA methyltransferase(A)and demethylase(B)in root,stem and leaf of Chrysanthemum nankingense seedling stage
[1] |
Aparicio G, Gotz S, Conesa A, Segrelles D, Blanquer I, Garcia J M, Hernandez V, Robles M, Talon M. 2006. Blast2GO goes grid:developing a grid-enabled prototype for functional genomics analysis. Studies in Health Technology and Informatics, 120:194-204.
pmid: 16823138 |
[2] | Ashapkin V V, Kutueva L I, Vanyushin B F. 2016. Plant DNA methyltransferase genes:multiplictiy,expression,methylation patterns. Biochemistry, 81 (2):141-151. |
[3] |
Chan W L, Henderson I R, Jacobsen S E. 2005. Gardening the genome:DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 6 (5):351-360.
doi: 10.1038/nrg1601 URL |
[4] | Chang Lin-lin. 2009. Isolation and expression analysis of DNA methyltransferase genes in strawberry and apple[Ph. D. Dissertation]. Shenyang: Shenyang Agricultural University. (in Chinese) |
常琳琳. 2009. 草莓和苹果DNA甲基转移酶基因分离与表达分析[博士论文]. 沈阳: 沈阳农业大学. | |
[5] | Dai Si-lan, Wang Wen-kui, Huang Jia-ping. 2002. Advances of researches on phylogeny of Dendranthema and origin of chrysanthemum. Journal of Beijing Forestry University, 24 (6):230-234. (in Chinese) |
戴思兰, 王文奎, 黄家平. 2002. 菊属系统学及菊花起源的研究进展. 北京林业大学学报, 24 (6):230-234. | |
[6] |
Dong W, Li M M, Li Z A, Li S L, Zhu Y, Hong X, Wang Z C. 2020. Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods. Plant Physiology and Biochemistry, 146:315-328.
doi: S0981-9428(19)30492-9 pmid: 31785518 |
[7] |
Fan S H, Liu H F, Liu J, Hua W, Xu S M, Li J. 2020. Systematic analysis of the DNA methylase and demethylase gene families in rapeseed(Brassica napus L.)and their expression variations after salt and heat stresses. International Journal of Molecular Sciences, 21 (3):953.
doi: 10.3390/ijms21030953 URL |
[8] | Fu Q S, Song A X, Hu H Y. 2012. Structural aspects of ubiquitin binding specificities. Current Protein & Peptide Science, 13 (5):482-489. |
[9] |
Furner I J, Matzke M. 2011. Methylation and demethylation of the Arabidopsis genome. Current Opinion in Plant Biology, 14 (2):137-141.
doi: 10.1016/j.pbi.2010.11.004 pmid: 21159546 |
[10] |
Gong Z Z, Morales-Ruiz T, Ariza R R, Roldan-Arjona T, David L, Zhu J K. 2002. ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylaselyase. Cell, 111 (6):803-814.
doi: 10.1016/S0092-8674(02)01133-9 URL |
[11] |
Gu T T, Ren S, Wang Y H, Han Y H, Li Y. 2016. Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca. Molecular Genetics and Genomics, 291 (3):1333-1345.
doi: 10.1007/s00438-016-1187-y URL |
[12] |
Kang D R, Dai S L, Gao K, Zhang F, Luo H. 2019a. Morphological variation of Chrysanthemum lavandulifolium induced by 5-azaC treatment. Scientia Horticulturae, 257:108645.
doi: 10.1016/j.scienta.2019.108645 URL |
[13] |
Kang D R, Dai S L, Gao K, Zhang F, Luo H. 2019b. Morphological variation of five cut chrysanthemum cultivars induced by 5-azaC treatment. HortScience, 54 (7):1208-1216.
doi: 10.21273/HORTSCI14012-18 URL |
[14] | Li J, Li C L, Lu S F. 2018. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza. Peer J, 6:4461. |
[15] |
Li S L, Li M M, Li Z A, Zhu Y, Ding H X, Fan X X, Li F, Wang Z C. 2019. Effects of the silencing of CmMET1 by RNA interference in chrysanthemum(Chrysanthemum morifolium). Plant Biotechnology Reports, 13 (1):63-72.
doi: 10.1007/s11816-019-00516-5 URL |
[16] | Liu Yan-hua, Li Zhong-ai, Li Jie, Liu Xiao, Wang Zi-cheng. 2017. Effect of curcumin on DNA methylation and growth of chrysanthemum. Henan Agricultural Sciences, 46 (5):100-105. (in Chinese) |
刘艳华, 李忠爱, 李杰, 刘晓, 王子成. 2017. 姜黄素对菊花DNA甲基化及其生长发育的影响. 河南农业科学, 46 (5):100-105. | |
[17] |
Matzke M A, Mette M F, Matzke A J M. 2000. Transgene silencing by the host genome defense:implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43 (2-3):401-415.
pmid: 10999419 |
[18] | Mok Y G, Uzawa R, Lee J, Werner G M, Eichman B F, Fischer R L, Huh J H. 2010. Domain structure of the DEMETER 5-methylcytosine DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America, 107 (45):19225-19230. |
[19] | Morales-Ruiz T, Ortega-Galisteo A P, Ponferrada-Marin M I, Martinez-Macias M I, Ariza R R, Roldan-Arjona T. 2006. DEMETER and pepressor of silencing 1 encode 5-methylcytosine DNA glycosylases. Proceedings of the National Academy of Sciences of the United States of America, 103 (18):6853-6858. |
[20] |
Nielsen P R, Nietlispach D, Mott H R, Callaghan J, Bannister A, Kouzarides T, Murzin A G, Murzina N V, Laue E D. 2002. Structure of the HP 1 chromodomain bound to histone H3 methylated at lysine 9. Nature, 416 (6876):103-107.
doi: 10.1038/nature722 URL |
[21] |
Oliver A W, Jones S A, Roe S M, Matthews S, Goodwin G H, Pearl L H. 2005. Crystal structure of the proximal BAH domain of the polybromo protein. Biochemical Journal, 389 (3):657-664.
doi: 10.1042/BJ20050310 URL |
[22] |
Ortega-Galisteo A P, Morales-Ruiz T, Ariza R R, Roldan-Arjona, 2008. Arabidopsis DEMETER-LIKE proteins DML2 and DML 3 are required for appropriate distribution of DNA methylation marks. Plant Molecular Biology, 67 (6):671-681.
doi: 10.1007/s11103-008-9346-0 pmid: 18493721 |
[23] |
Qi X Y, Wang H B, Song A P, Jiang J F, Chen S M, Chen F D. 2018. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense × Tanacetum vulgare hybrid and allopolyploid (Asteraceae). Horticulture Research, 5:5.
doi: 10.1038/s41438-017-0003-0 URL |
[24] |
Qian Y X, Xi Y L, Cheng B J, Zhu S W. 2014. Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize. Plant Cell Reports, 33 (10):1661-1672.
doi: 10.1007/s00299-014-1645-0 URL |
[25] |
Silva H G, Sobral R S, Magalhes A P, Morais-Cecilio L, Costa M M R. 2020. Genome-wide identification of epigenetic regulators in Quercus suber L. International Journal of Molecular Sciences, 21 (11):3783.
doi: 10.3390/ijms21113783 URL |
[26] |
Song C, Liu Y F, Song A P, Dong G Q, Zhao H B, Sun W, Ramakrishnan S, Wang Y, Wang S B, Li T Z, Niu Y, Jiang J F, Dong B, Xia Y, Chen S M, Hu Z G, Chen F D, Chen S L. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant, 11 (12):1482-1491.
doi: S1674-2052(18)30308-3 pmid: 30342096 |
[27] | Wang H B, Qi X Y, Chen S M, Fang W M, Guan Z Y, Teng N J, Liao Y, Jiang J F, Chen F D. 2015. Limited DNA methylation variation and the transcription of MET1 and DDM1 in the genus Chrysanthemum(Asteraceae):following the track of polyploidy. Frontiers in Plant Science, 6:68. |
[28] | Xu Sheng, Zhang Xin, Liu Decai, Gu Tingting. 2020. Identification and functional analysis of N6-Adenine methylation(6mA)methyltransferase genes in Fragaria vesca. Acta Horticulturae Sinica, 47 (11):2194-2206. (in Chinese) |
徐昇, 张鑫, 刘德才, 顾婷婷. 2020. 森林草莓6mA甲基转移酶基因鉴定及功能分析. 园艺学报, 47 (11):2194-2206. | |
[29] |
Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Lida S. 2014. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Molecular Biology, 85 (3):219-232.
doi: 10.1007/s11103-014-0178-9 pmid: 24535433 |
[30] |
Yu Yuan-yuan, Guo Yun-hui, Wen Li-zhu, Sun Cui-hui, Fan Hong-mei, Sun Xian-zhi, Wang Wen-li, Sun Xia, Zheng Cheng-shu. 2018. Effects of DNA methylation level on the nitrate uptake of roots in Chrysanthemum morifolium. Plant Physiology Journal, 54 (5):886-894. (in Chinese)
doi: 10.1104/pp.54.6.886 URL |
于媛媛, 郭芸珲, 温立柱, 孙翠慧, 樊红梅, 孙宪芝, 王文莉, 孙霞, 郑成淑. 2018. 菊花基因组DNA甲基化水平对根系硝态氮吸收的影响. 植物生理学报, 54 (5):886-894. | |
[31] |
Zhang C M, Hao Y J. 2020. Advances in genomic,transcriptomic,and metabolomic analyses of fruit quality in fruit crops. Horticultural Plant Journal, 6 (6):361-371.
doi: 10.1016/j.hpj.2020.11.001 URL |
[32] |
Zhang F, Deng C Y, Dai S L. 2020. MSAP analysis reveals the DNA methylation dynamics during capitulum development in Chrysanthemum lavandulifolium. Canadian Journal of Plant Science, 101 (3):1-31.
doi: 10.1139/cjps-2019-0318 URL |
[33] |
Zhang H M, Lang Z B, Zhu J K. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19 (8):489-506.
doi: 10.1038/s41580-018-0016-z URL |
[34] | Zhou Chenping, Yang Min, Guo Jinju, Kuang Ruibin, Yang Hu, Huang Bingxiong, Wei Yuerong. 2022. Dynamic changes in DNA methylome and transcriptome patterns during papaya fruit ripening. Acta Horticulturae Sinica, 49 (3):519-532. (in Chinese) |
周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 2022. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析. 园艺学报, 49 (3):519-532. |
[1] | 梁沁, 张延晖, 康开权, 刘瑾航, 李亮, 冯宇, 王超, 杨超, 李永裕. miR168 家族进化特性及其在砂梨休眠期的表达模式分析[J]. 园艺学报, 2022, 49(5): 958-972. |
[2] | 高玮林, 张力曼, 薛超玲, 张垚, 刘孟军, 赵锦. 枣E类MADS基因在花和果中的表达及其蛋白互作研究[J]. 园艺学报, 2022, 49(4): 739-748. |
[3] | 李亚梅, 马福利, 张山奇, 黄锦秋, 陈梦婷, 周军永, 孙其宝, 孙俊. 酸枣愈伤组织转化体系构建及在ZjBRC1调控ZjYUCCA表达中的应用[J]. 园艺学报, 2022, 49(4): 749-757. |
[4] | 沈楠, 张荆城, 王成晨, 边银丙, 肖扬. 香菇子实体发育过程中的转录组研究[J]. 园艺学报, 2022, 49(4): 801-815. |
[5] | 方能炎, 樊荣辉, 罗远华, 孔兰, 林榕燕, 叶秀仙, 林兵, 钟淮钦, 黄敏玲. 文心兰OnGI在拟南芥中异源表达促进开花[J]. 园艺学报, 2022, 49(4): 841-850. |
[6] | 周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析[J]. 园艺学报, 2022, 49(3): 519-532. |
[7] | 刘梦雨, 蒋梦琦, 陈燕, 张舒婷, 薛晓东, 肖学宸, 赖钟雄, 林玉玲. 龙眼GDSL酯酶/脂肪酶基因的全基因组鉴定及表达分析[J]. 园艺学报, 2022, 49(3): 597-612. |
[8] | 聂文锋, 王金玉, 高春娟, 陈学好. 表观遗传修饰调控园艺植物果实发育研究进展[J]. 园艺学报, 2022, 49(3): 671-686. |
[9] | 张瑞, 张夏燚, 赵婷, 王双成, 张仲兴, 刘博, 张德, 王延秀. 基于转录组分析垂丝海棠响应盐碱胁迫的分子机制[J]. 园艺学报, 2022, 49(2): 237-251. |
[10] | 姜翠翠, 方智振, 周丹蓉, 林炎娟, 叶新福. ‘芙蓉李’糖转运蛋白家族基因鉴定及表达分析[J]. 园艺学报, 2022, 49(2): 252-264. |
[11] | 卢甜甜, 刘志远, 徐兆生, 张合龙, 李国亮, 折红兵, 钱伟. 菜豆花色全基因组关联分析[J]. 园艺学报, 2022, 49(2): 332-340. |
[12] | 周至铭, 杨佳宝, 张程, 曾令露, 孟晚秋, 孙黎. 向日葵LACS家族鉴定及响应非生物胁迫表达分析[J]. 园艺学报, 2022, 49(2): 352-364. |
[13] | 周铁, 潘斌, 李菲菲, 马小川, 汤孟婧, 廉雪菲, 常媛媛, 陈岳文, 卢晓鹏. 膨大期干旱对温州蜜柑品质形成的影响及复水后树体水分吸收转运规律[J]. 园艺学报, 2022, 49(1): 11-22. |
[14] | 贺琰, 孙艳丽, 赵芳芳, 代红军. 外源油菜素内酯处理对‘美乐’葡萄果实糖代谢的影响[J]. 园艺学报, 2022, 49(1): 117-128. |
[15] | 务俊月, 孙雪言, 杨振华, 罗璐, 莫翠园, 马爱民. 虎奶菇菌丝体和菌核基因组甲基化分析[J]. 园艺学报, 2022, 49(1): 148-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司