https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (11): 2594-2606.doi: 10.16420/j.issn.0513-353x.2023-0964

• Cultivation·Physiology & Biochemistry • Previous Articles     Next Articles

Effect of Melatonin on Antioxidant System of Tomato Senescent Leaves

WANG Yanan, LIU Xutao, JING Tongtong, CHAI Yating, ZHANG Xiaowei, AI Xizhen, BI Huangai*()   

  1. Key Laboratory of Horticultural Crop Biology and Germplasm Innovation,Agriculture Ministry and Rural Affairs,Collaborative Innovation Center of Shandong Province with High Quality and Efficient Production of Fruit and Vegetable,College of Horticulture Science and Engineering,Shandong Agricultural University,Tai’an,Shandong 271018,China
  • Received:2024-05-31 Revised:2024-07-02 Online:2024-12-12 Published:2024-11-25
  • Contact: BI Huangai

Abstract:

To explore the regulation mechanism of exogenous melatonin(MT)on leaf senescence of tomato(Solanum lycopersicum L.),‘Jinpeng 1'tomato and SlTDC(L-tryptophan decarboxylase encoding gene,a key gene for MT synthesis)overexpression and knockout transgenic tomato plants were used as experimental materials and dark condition was used to simulate senescence,the effects of MT on senescence-related gene(SAG12)expression,reactive oxygen species(ROS)accumulation and antioxidant system were studied in this paper. The results showed that the mRNA abundance of SAG12,the accumulation of hydrogen peroxide(H2O2)and superoxide anion superoxide anion,the activities of superoxide dismutase(SOD),peroxidase(POD)and ascorbate peroxidase(APX)and their gene expression,and the content of ascorbic acid(AsA)and glutathione(GSH)in tomato leaves increased significantly with the prolongation of dark treatment time. Compared with the control(H2O),the tomato treated with exogenous MT showed lower SAG12 mRNA abundance,the content of H2O2 and superoxide anion and higher activities of SOD,POD,APX as well as their gene expression and the content of redox substances. Meanwhile,overexpression of SlTDC also significantly down-regulated the mRNA abundance of SAG12 and the content of H2O2 and superoxide anion,and enhanced antioxidant capacity,while inhibition or knockout of SlTDC up-regulated the expression of senescence genes and the accumulation of reactive oxygen species(ROS)in tomato leaves under dark treatment,which accelerated leaf senescence. Moreover,field application studies showed that exogenous MT could also significantly down-regulate the expression of senescence genes and accumulation of ROS in tomato senescent leaves(leaf age > 35 d)in solar greenhouse,and delay leaf senescence caused by increasing leaf age. In summary,MT can accelerate the removal of ROS by down-regulating the expression of senescence genes and up-regulating antioxidant capacity,and then delay the senescence of dark or leaf-age-dependent tomato leaves.

Key words: tomato, melatonin, leaf senescence, reactive oxygen species, antioxidant system, SAG12, SlTDC