Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (5): 993-1004.doi: 10.16420/j.issn.0513-353x.2023-0053
• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles Next Articles
LI Pin, GAN Ning, CHEN Jiawei, XIANG Sixiang, SHEN Jingyi, OUYANG Bo, LU Yong’en*()
Received:
2024-01-28
Revised:
2024-04-26
Online:
2024-05-25
Published:
2024-05-29
LI Pin, GAN Ning, CHEN Jiawei, XIANG Sixiang, SHEN Jingyi, OUYANG Bo, LU Yong’en. Analysis of Phosphorus Utilization Efficiency in Natural Population of Tomato and Screening of Low Phosphorus Tolerant Germplasm[J]. Acta Horticulturae Sinica, 2024, 51(5): 993-1004.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2023-0053
处理 Treatment | 地上部干质量/g Shoot dry weight | 地上部鲜质量/g Shoot fresh weight | 株高/cm Plant height | ||||||
---|---|---|---|---|---|---|---|---|---|
变幅 Range | 均值 Average | 变异系数 CV | 变幅 Range | 均值 Average | 变异系数 CV | 变幅 Range | 均值 Average | 变异系数 CV | |
正常磷 Normal P | 0.07 ~ 5.51 | 1.10 ± 0.69 a | 0.76 | 2.20 ~ 35.91 | 9.24 ± 6.43 a | 0.65 | 14.00 ~ 63.00 | 32.60 ± 10.26 a | 0.30 |
1%磷 1% P | 0.06 ~ 0.91 | 0.40 ± 0.04 c | 0.50 | 1.05 ~ 8.05 | 3.85 ± 1.52 b | 0.38 | 8.67 ~ 37.33 | 19.50 ± 5.70 b | 0.26 |
10%磷 10% P | 0.11 ~ 2.92 | 0.64 ± 0.19 b | 0.67 | 0.86 ~ 22.30 | 4.68 ± 3.38 b | 0.66 | 8.00 ~ 48.00 | 20.00 ± 6.84 b | 0.33 |
处理 Treatment | 茎粗/mm Stem diameter | 下胚轴长/cm Hypocotyl length | SPAD | ||||||
变幅 Range | 均值 Average | 变异系数 CV | 变幅 Range | 均值 Average | 变异系数CV | 变幅 Range | 均值 Average | 变异系数CV | |
正常磷 Normal P | 2.62 ~ 6.27 | 4.19 ± 0.49 a | 0.17 | 1.50 ~ 10.80 | 5.13 ± 2.06 a | 0.40 | 21.30 ~ 46.90 | 36.74 ± 4.86 a | 0.14 |
1%磷 1% P | 2.18 ~ 4.78 | 3.53 ± 0.26 c | 0.14 | 1.00 ~ 7.80 | 3.64 ± 1.63 b | 0.35 | 23.70 ~ 51.60 | 36.74 ± 5.35 a | 0.14 |
10%磷 10% P | 2.10 ~ 6.50 | 3.76 ± 0.49 b | 0.19 | 1.50 ~ 11.50 | 5.50 ± 1.82 a | 0.35 | 23.80 ~ 51.90 | 36.67 ± 5.83 a | 0.16 |
处理 Treatment | 叶绿素含量/(mg · L-1)Chlorophyll content | ||||||||
变幅 Range | 均值 Average | 变异系数CV | |||||||
正常磷 Normal P | 0.04 ~ 0.15 | 0.09 ± 0.00 a | 0.22 | ||||||
1%磷 1% P | 0.01 ~ 0.07 | 0.03 ± 0.00 b | 0.33 | ||||||
10%磷 10% P | 0.03 ~ 0.17 | 0.09 ± 0.00 a | 0.33 |
Table 1 Phenotypic differences of tomato accessions exhibited in three levels of phosphorus supply
处理 Treatment | 地上部干质量/g Shoot dry weight | 地上部鲜质量/g Shoot fresh weight | 株高/cm Plant height | ||||||
---|---|---|---|---|---|---|---|---|---|
变幅 Range | 均值 Average | 变异系数 CV | 变幅 Range | 均值 Average | 变异系数 CV | 变幅 Range | 均值 Average | 变异系数 CV | |
正常磷 Normal P | 0.07 ~ 5.51 | 1.10 ± 0.69 a | 0.76 | 2.20 ~ 35.91 | 9.24 ± 6.43 a | 0.65 | 14.00 ~ 63.00 | 32.60 ± 10.26 a | 0.30 |
1%磷 1% P | 0.06 ~ 0.91 | 0.40 ± 0.04 c | 0.50 | 1.05 ~ 8.05 | 3.85 ± 1.52 b | 0.38 | 8.67 ~ 37.33 | 19.50 ± 5.70 b | 0.26 |
10%磷 10% P | 0.11 ~ 2.92 | 0.64 ± 0.19 b | 0.67 | 0.86 ~ 22.30 | 4.68 ± 3.38 b | 0.66 | 8.00 ~ 48.00 | 20.00 ± 6.84 b | 0.33 |
处理 Treatment | 茎粗/mm Stem diameter | 下胚轴长/cm Hypocotyl length | SPAD | ||||||
变幅 Range | 均值 Average | 变异系数 CV | 变幅 Range | 均值 Average | 变异系数CV | 变幅 Range | 均值 Average | 变异系数CV | |
正常磷 Normal P | 2.62 ~ 6.27 | 4.19 ± 0.49 a | 0.17 | 1.50 ~ 10.80 | 5.13 ± 2.06 a | 0.40 | 21.30 ~ 46.90 | 36.74 ± 4.86 a | 0.14 |
1%磷 1% P | 2.18 ~ 4.78 | 3.53 ± 0.26 c | 0.14 | 1.00 ~ 7.80 | 3.64 ± 1.63 b | 0.35 | 23.70 ~ 51.60 | 36.74 ± 5.35 a | 0.14 |
10%磷 10% P | 2.10 ~ 6.50 | 3.76 ± 0.49 b | 0.19 | 1.50 ~ 11.50 | 5.50 ± 1.82 a | 0.35 | 23.80 ~ 51.90 | 36.67 ± 5.83 a | 0.16 |
处理 Treatment | 叶绿素含量/(mg · L-1)Chlorophyll content | ||||||||
变幅 Range | 均值 Average | 变异系数CV | |||||||
正常磷 Normal P | 0.04 ~ 0.15 | 0.09 ± 0.00 a | 0.22 | ||||||
1%磷 1% P | 0.01 ~ 0.07 | 0.03 ± 0.00 b | 0.33 | ||||||
10%磷 10% P | 0.03 ~ 0.17 | 0.09 ± 0.00 a | 0.33 |
指标 Index | 1%磷主成分Principal component 1 2 | 权重 Weight | 10%磷主成分Principal component 1 2 | 权重 Weight | ||
---|---|---|---|---|---|---|
鲜质量比值 Fresh weight ratio | 0.940 | 0.171 | 21.148 | 0.901 | 0.055 | 19.596 |
株高比值 Plant height ratio | 0.900 | 0.062 | 19.506 | 0.847 | 0.014 | 18.136 |
干质量比值 Dry weight ratio | 0.856 | 0.061 | 18.565 | 0.817 | -0.015 | 17.493 |
茎粗比值 Stem diameter ratio | 0.854 | -0.061 | 18.525 | 0.758 | 0.048 | 16.509 |
叶绿素含量比值Chlorophyll content ratio | -0.145 | 0.780 | 8.744 | 0.479 | -0.267 | 12.298 |
SPAD比值SPAD ratio | 0.277 | 0.514 | 9.621 | 0.118 | 0.777 | 8.661 |
下胚轴长度比值Hypocotyl length ratio | -0.027 | -0.455 | 3.891 | -0.095 | 0.667 | 7.306 |
特征值 Eigenvalue | 3.285 | 1.089 | — | 3.022 | 1.126 | — |
方差贡献率 Variance contribution | 46.489 | 16.005 | — | 43.175 | 16.080 | — |
累计贡献率 Cumulative percentage | 46.489 | 62.495 | — | 43.175 | 59.256 | — |
Table 2 Factor load matrix for the index ratio of each trait under 1% P and 10% P treatments
指标 Index | 1%磷主成分Principal component 1 2 | 权重 Weight | 10%磷主成分Principal component 1 2 | 权重 Weight | ||
---|---|---|---|---|---|---|
鲜质量比值 Fresh weight ratio | 0.940 | 0.171 | 21.148 | 0.901 | 0.055 | 19.596 |
株高比值 Plant height ratio | 0.900 | 0.062 | 19.506 | 0.847 | 0.014 | 18.136 |
干质量比值 Dry weight ratio | 0.856 | 0.061 | 18.565 | 0.817 | -0.015 | 17.493 |
茎粗比值 Stem diameter ratio | 0.854 | -0.061 | 18.525 | 0.758 | 0.048 | 16.509 |
叶绿素含量比值Chlorophyll content ratio | -0.145 | 0.780 | 8.744 | 0.479 | -0.267 | 12.298 |
SPAD比值SPAD ratio | 0.277 | 0.514 | 9.621 | 0.118 | 0.777 | 8.661 |
下胚轴长度比值Hypocotyl length ratio | -0.027 | -0.455 | 3.891 | -0.095 | 0.667 | 7.306 |
特征值 Eigenvalue | 3.285 | 1.089 | — | 3.022 | 1.126 | — |
方差贡献率 Variance contribution | 46.489 | 16.005 | — | 43.175 | 16.080 | — |
累计贡献率 Cumulative percentage | 46.489 | 62.495 | — | 43.175 | 59.256 | — |
Fig. 3 Phosphorus content ratio of both low phosphorus tolerant and low phosphorus sensitive tomato accessions under low phosphorus and normal phosphorus treatments Different lowercase letters represent significant differences after multiple Tukey comparisons.
Fig. 4 Ratio of phosphorus content in shoots and roots of low phosphorus tolerant and low phosphorus sensitive tomato accessions The t test,* P < 0.05,** P < 0.01,and ns indicates that the difference is not significant.
[1] |
|
鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社.
|
|
[2] |
|
柏栋阴, 冯国华, 张会云, 陈荣振, 王晓军. 2007. 低磷胁迫下磷高效基因型小麦的筛选. 麦类作物学报, 27 (3):407-410,415.
|
|
[3] |
|
曹靖, 张福锁. 2000. 低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响. 植物生态学报, 24 (6):731-735.
|
|
[4] |
|
[5] |
|
陈燕玲, 王宁, 石磊. 2023. 甘蓝型油菜自然群体苗期磷效率分析及磷高效优异种质筛选. 中国油料作物学报, 45 (1):56-62.
doi: 10.19802/j.issn.1007-9084.2022087 |
|
[6] |
|
崔亚胜, 张颖. 2013. 番茄施肥技术. 西北园艺(蔬菜),(2):46-47.
|
|
[7] |
|
[8] |
|
龚丝雨. 2019. 烟草苗期耐低磷基因型筛选及生理机制研究[硕士论文]. 南昌: 江西农业大学.
|
|
[9] |
|
郭再华, 贺立源, 徐才国, 张启发. 2005. 水稻耐低磷种质资源的筛选、鉴定指标. 作物学报, 31 (1):65-69.
|
|
[10] |
|
贺囡囡. 2010. 磷高效甜玉米品种筛选及营养差异性研究[硕士论文]. 湛江: 广东海洋大学.
|
|
[11] |
|
贾亚涛, 谢圣杰, 牛旭龙, 邢国芳. 2017. 玉米耐低磷自交系的筛选与鉴定. 山西农业大学学报(自然科学版), 37 (1):11-17.
|
|
[12] |
|
李志丹, 韩瑞宏, 廖桂兰, 张美华. 2011. 植物叶片中叶绿素提取方法的比较研究. 广东第二师范学院学报, 31 (3):80-83.
|
|
[13] |
|
李志刚. 2004. 不同磷效率基因型大豆的筛选及其对磷素水平的反应机理研究[博士论文]. 沈阳: 沈阳农业大学.
|
|
[14] |
|
刘海旭, 吴俊江, 王金生, 鹿文成, 徐鹏飞, 张淑珍. 2017. 大豆耐低磷研究进展. 大豆科学, 36 (4):639-644.
|
|
[15] |
doi: 10.1038/s41598-022-08337-3 pmid: 35288620 |
[16] |
doi: 10.1093/jxb/eri059 pmid: 15596475 |
[17] |
|
万延慧, 朱龙英, 杨志杰, 朱为民. 2005. 低磷胁迫对不同番茄基因型苗期影响的研究. 农业工程学报, 21 (S2):57-59.
|
|
[18] |
|
王会君. 2010. 番茄常见的缺素症状及施肥措施. 中国园艺文摘, 26 (5):136.
|
|
[19] |
|
王晶, 韩晓日, 宫亮, 阴红彬, 于成广. 2005. 低磷胁迫下不同番茄品种苗期根系生理适应性研究. 沈阳农业大学学报, 36 (5):615-618.
|
|
[20] |
|
王兰珍, 米国华, 陈范骏, 张福锁. 2003. 冬小麦品种的磷营养效率鉴定. 中国农业大学学报, 8 (5):69-73.
|
|
[21] |
|
王谧. 2007. 马铃薯对磷素的响应及不同磷效率的机理研究[硕士论文]. 雅安: 四川农业大学.
|
|
[22] |
|
[23] |
doi: 10.1104/pp.127.1.345 pmid: 11553762 |
[24] |
|
尹元萍, 张雅琼, 申毓晗, 赵志勇, 谢世清, 杨生超, 梁泉. 2015. 利用根系形态构型筛选磷高效大豆基因型. 分子植物育种, 13 (5):999-1008.
|
|
[25] |
|
于新超, 王晶, 朱美玉, 姜晶. 2015. 碳水化合物代谢参与番茄响应低磷胁迫的分子机制. 分子植物育种, 13 (12):2833-2842.
|
|
[26] |
|
原梦, 赵峥艳, 李雪林, 张富厚, 刘逢举, 孟超敏. 2019. 低磷胁迫下不同基因型棉花生理和形态的响应差异. 种子, 38 (4):20-23,30.
|
[1] | HAN Ying, DUAN Ying, NIU Yijie, LI Yansu, HE Chaoxing, SUN Mintao, WANG Jun, LI Qiang, CHEN Shuangchen, and YAN Yan, . Transcription Metabolic Mechanism of Humic Acid Biodegradable Plastic Film to Improving the Fruit Quality of Tomato in the Greenhouse [J]. Acta Horticulturae Sinica, 2024, 51(8): 1758-1772. |
[2] | GONG Xiaoya, LI Xian, ZHOU Xingang, and WU Fengzhi. Effect of Rhizosphere Microorganisms Induced by Potato-Onion on Tomato Root-Knot Nematode Disease [J]. Acta Horticulturae Sinica, 2024, 51(8): 1913-1926. |
[3] | MENG Sida, HAN Leilei, XIANG Hengzuo, ZHU Meiyu, FENG Zhen, YE Yunzhu, SUN Meihua, LI Yanbing, ZHAO Liping, TAN Changhua, QI Mingfang, and LI Tianlai. Research Progress on the Mechanism of Regulating the Number of Tomato Locules [J]. Acta Horticulturae Sinica, 2024, 51(7): 1649-1664. |
[4] | QIN Yu, GUO Rongkun, NONG Huilan, WANG Yan, CUI Kai, and DONG Ningguang, . Using the Fluorescent Labeled SSR Markers to Establish Molecular Identity of Hawthorn [J]. Acta Horticulturae Sinica, 2024, 51(6): 1227-1240. |
[5] | MA Xingyun, FAN Bingli, TANG Guangcai, JIA Zhiqi, LI Ying, XUE Dongqi, and ZHANG Shiwen. Preliminary Study on the Mechanism of DXR Regulating Chloroplast Development Flower Color and Fruit Coloring in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(6): 1241-1255. |
[6] | ZHANG Wenjing, XU Dayong, WU Qianlin, YANG Fo, XIN Bingyue, ZENG Xin, and LI Feng. Genome Analysis of Bacillus velezensis XDY66,an Antagonist of Tomato Botrytis cinerea [J]. Acta Horticulturae Sinica, 2024, 51(6): 1413-1425. |
[7] | WANG Yongzhen, ZHANG Jianguo, LIU Caihong, LI Sibei, and LÜ Tiantian. A New Tomato Hybrid Cultivar‘Yuanhong 212’ [J]. Acta Horticulturae Sinica, 2024, 51(6): 1435-1436. |
[8] | LIU Zeying, SUN Shuai, LIU Zhiqiang, CUI Xia, LI Ren. Mapping of the Sharp Blossom-end Gene and Screening of Candidate Gene in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(5): 982-992. |
[9] | YANG Ting, XI Dehui, XIA Ming, LI Jianan. Studies on the Mechanism of α-Momordicin Gene Enhancing Tomato Resistance to Tobacco Mosaic Virus [J]. Acta Horticulturae Sinica, 2024, 51(5): 1126-1136. |
[10] | HU Zhifeng, SHAO Jingcheng, and ZHANG Li. A New Tomato Cultivar‘Longfan 15’ [J]. Acta Horticulturae Sinica, 2024, 51(4): 917-918. |
[11] | LIU Genzhong, LI Fangman, GE Pingfei, TAO Jinbao, ZHANG Xingyu, YE Zhibiao, and ZHANG Yuyang, . QTL Mapping and Candidate Gene Identification Related to Ascorbic Acid Content in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 219-228. |
[12] | DONG Shuchao, HONG Jun, LING Jiayi, XIE Zixin, ZHANG Shengjun, ZHAO Liping, SONG Liuxia, WANG Yinlei, and ZHAO Tongmin, . Genome-wide Association Studies of Drought Tolerance in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 229-238. |
[13] | XU Qin, WANG Jiaying, ZHANG Mannan, XIAO Zhihao, ZHENG Hankai, LU Yong’en, WANG Taotao, ZHANG Yuyang, ZHANG Junhong, YE Zhibiao, and YE Jie, . Identification of Genetic Loci and Molecular Marker Development of Salt Tolerance in Tomato Seedlings [J]. Acta Horticulturae Sinica, 2024, 51(2): 239-252. |
[14] | YANG Liang, LIU Huan, MA Yanqin, LI Ju, WANG Hai’e, ZHOU Yujie, LONG Haicheng, MIAO Mingjun, LI Zhi, and CHANG Wei, . Creating High Lycopene Fruit Using CRISPR/Cas9 Technology in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 253-265. |
[15] | YAN Chaofan, SUN Xuemei, ZHONG Qiwen, SHAO Dengkui, DENG Changrong, and WEN Junqin. Identification and Bioinformatics Analysis of 20S Proteasome Gene Family in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 266-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd