Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (2): 396-410.doi: 10.16420/j.issn.0513-353x.2023-0859
• New Technologies·New Methods • Previous Articles Next Articles
SUN Yuchao1,2, LI Shouhao1,2, XIA Xiubo1,3,*(), YANG Wei2,*(
), LI Minzan2, ZHANG Huanchun1,3
Received:
2023-10-30
Revised:
2023-12-29
Online:
2024-02-25
Published:
2024-02-27
Contact:
XIA Xiubo, YANG Wei
SUN Yuchao, LI Shouhao, XIA Xiubo, YANG Wei, LI Minzan, ZHANG Huanchun. Detecting Tomato Fruit Ripeness and Appearance Quality Based on Improved YOLOv5s[J]. Acta Horticulturae Sinica, 2024, 51(2): 396-410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2023-0859
成熟度分类 Maturity classification | 外观品质分级 Appearance quality grading | 主要特点 Main features |
---|---|---|
成熟果 Ripe fruit | 优等 Superior | 商品果,果实周正,无瑕疵。着色率 ≥ 80% Commodity fruit,and the fruit is round and flawless. Coloring rate ≥ 80% |
二等 Second-class | 非商品果,但可食用,有瑕疵,裂纹,轻微日灼。着色率 ≥70% Non commercial fruit,but edible,with defects,cracks,and slight sunburn. Coloring rate ≥ 70% | |
劣等 Inferior | 非商品果,有明显的腐烂,挤压伤,裂果,表面有虫。着色率 ≥ 70% Non commercial fruits,with obvious decay,crushing damage,cracking,and insect infestation on the surface. Coloring rate ≥ 70% | |
半熟果 Semi-ripe fruit | 不分等级 Not graded | 白粉色,或者着色率 < 70% White and pink,or coloring rate < 70% |
未熟果 Unripe fruit | 不分等级 Not graded | 白果、绿果 White and green fruits |
Table 1 Classification standards for different maturity and appearance quality of tomato fruits
成熟度分类 Maturity classification | 外观品质分级 Appearance quality grading | 主要特点 Main features |
---|---|---|
成熟果 Ripe fruit | 优等 Superior | 商品果,果实周正,无瑕疵。着色率 ≥ 80% Commodity fruit,and the fruit is round and flawless. Coloring rate ≥ 80% |
二等 Second-class | 非商品果,但可食用,有瑕疵,裂纹,轻微日灼。着色率 ≥70% Non commercial fruit,but edible,with defects,cracks,and slight sunburn. Coloring rate ≥ 70% | |
劣等 Inferior | 非商品果,有明显的腐烂,挤压伤,裂果,表面有虫。着色率 ≥ 70% Non commercial fruits,with obvious decay,crushing damage,cracking,and insect infestation on the surface. Coloring rate ≥ 70% | |
半熟果 Semi-ripe fruit | 不分等级 Not graded | 白粉色,或者着色率 < 70% White and pink,or coloring rate < 70% |
未熟果 Unripe fruit | 不分等级 Not graded | 白果、绿果 White and green fruits |
Fig. 1 Tomato samples with different maturity and appearance quality grading of tomato fruits a:Ripe superior fruit;b:Ripe second-class fruit;c:Ripe inferior fruit;d:Semi-ripe fruit;e,f:Unripe fruit.
配置名称 Configuration name | 详细信息 Detailed information |
---|---|
CPU | Intel(R)Core i7-12700H |
GPU | NVIDIA GEFORCE RTX 3060 |
显存Video storage | 16GB |
操作系统Operating system | Windows11 |
深度学习框架 Deep learning framework | Pytorch1.9.0 |
开发语言Development language | Python3.9 |
开发IDE Develop IDE | Pycharm |
虚拟环境 Virtual environment | Anaconda |
Table 2 Hardware and software information of the test platform
配置名称 Configuration name | 详细信息 Detailed information |
---|---|
CPU | Intel(R)Core i7-12700H |
GPU | NVIDIA GEFORCE RTX 3060 |
显存Video storage | 16GB |
操作系统Operating system | Windows11 |
深度学习框架 Deep learning framework | Pytorch1.9.0 |
开发语言Development language | Python3.9 |
开发IDE Develop IDE | Pycharm |
虚拟环境 Virtual environment | Anaconda |
模型 Model | 精度提升策略 Precision improvement strategy | 参数量 Parameter quantity | 模型大小/M Model memory | 平均精度/% mAP | 检测时间/ms Detection time | |||
---|---|---|---|---|---|---|---|---|
CA注意力 机制 CA attention mechanism | Stem Block 结构 Stem Block structure | 优化检测层尺度 Optimize detection layer scale | 替换K-means++聚类 Replace K-means++ clustering | |||||
YOLOv5s | — | — | — | — | 7 103 997 | 14.02 | 81.19 | 181 |
YOLOv5s | √ | — | — | — | 7 115 587 | 14.13 | 82.12 | 185 |
YOLOv5s | √ | √ | — | — | 7 098 934 | 14.17 | 83.23 | 193 |
YOLOv5s | √ | √ | √ | — | 5 287 521 | 10.65 | 83.34 | 188 |
SC-YOLOv5s | √ | √ | √ | √ | 5 287 521 | 10.62 | 83.97 | 188 |
Table 3 SC-YOLOv5s ablation test
模型 Model | 精度提升策略 Precision improvement strategy | 参数量 Parameter quantity | 模型大小/M Model memory | 平均精度/% mAP | 检测时间/ms Detection time | |||
---|---|---|---|---|---|---|---|---|
CA注意力 机制 CA attention mechanism | Stem Block 结构 Stem Block structure | 优化检测层尺度 Optimize detection layer scale | 替换K-means++聚类 Replace K-means++ clustering | |||||
YOLOv5s | — | — | — | — | 7 103 997 | 14.02 | 81.19 | 181 |
YOLOv5s | √ | — | — | — | 7 115 587 | 14.13 | 82.12 | 185 |
YOLOv5s | √ | √ | — | — | 7 098 934 | 14.17 | 83.23 | 193 |
YOLOv5s | √ | √ | √ | — | 5 287 521 | 10.65 | 83.34 | 188 |
SC-YOLOv5s | √ | √ | √ | √ | 5 287 521 | 10.62 | 83.97 | 188 |
模型 Model | 轻量化策略 Lightweight strategy | 参数量 Parameter quantity | 模型大小/M Model memory | 平均精度/% mAP | 检测时间/ms Detection time | |
---|---|---|---|---|---|---|
Fire module结构替换3 × 3卷积层 Fire module structure replace 3 × 3 convolutional layers | 减少Bottleneck模块数量 Reduce the number of bottleneck modules | |||||
YOLOv5s | — | — | 7 103 997 | 14.02 | 81.19 | 181 |
SC-YOLOv5s | — | — | 5 287 521 | 10.62 | 83.97 | 188 |
SC-YOLOv5s | √ | — | 3 901 521 | 7.84 | 83.33 | 148 |
SC-YOLOv5s-lite | √ | √ | 3 866 032 | 7.73 | 84.42 | 143 |
Table 4 SC-YOLOv5s lite ablation test
模型 Model | 轻量化策略 Lightweight strategy | 参数量 Parameter quantity | 模型大小/M Model memory | 平均精度/% mAP | 检测时间/ms Detection time | |
---|---|---|---|---|---|---|
Fire module结构替换3 × 3卷积层 Fire module structure replace 3 × 3 convolutional layers | 减少Bottleneck模块数量 Reduce the number of bottleneck modules | |||||
YOLOv5s | — | — | 7 103 997 | 14.02 | 81.19 | 181 |
SC-YOLOv5s | — | — | 5 287 521 | 10.62 | 83.97 | 188 |
SC-YOLOv5s | √ | — | 3 901 521 | 7.84 | 83.33 | 148 |
SC-YOLOv5s-lite | √ | √ | 3 866 032 | 7.73 | 84.42 | 143 |
模型 Model | 参数量 Parameter quantity | 模型大小/M Model memory | 平均精度/% mAP | 检测时间/ms Detection time |
---|---|---|---|---|
YOLOv5n | 2 754 122 | 3.87 | 79.31 | 131 |
YOLOv5s | 7 103 997 | 14.12 | 81.23 | 181 |
YOLOv5-lite | 4 368 521 | 10.98 | 80.86 | 162 |
SC-YOLOv5s-lite | 3 866 032 | 7.73 | 84.42 | 143 |
Table 5 Comparison of performance parameters of different network models
模型 Model | 参数量 Parameter quantity | 模型大小/M Model memory | 平均精度/% mAP | 检测时间/ms Detection time |
---|---|---|---|---|
YOLOv5n | 2 754 122 | 3.87 | 79.31 | 131 |
YOLOv5s | 7 103 997 | 14.12 | 81.23 | 181 |
YOLOv5-lite | 4 368 521 | 10.98 | 80.86 | 162 |
SC-YOLOv5s-lite | 3 866 032 | 7.73 | 84.42 | 143 |
成熟度类别 Maturity classification | 外观品质分级 Appearance quality grading | 召回率/% Recall | 精确率/% AP | F1值/% F1-score | 准确率/% Accuracy | 平均精度/% mAP | |
---|---|---|---|---|---|---|---|
mAP @0.5 | mAP@0.5 ~ 0.95 | ||||||
成熟果Ripe fruit | 优等果Superior fruit | 89.52 | 94.88 | 92.12 | |||
二等果Second-class fruit | 64.39 | 85.72 | 73.53 | ||||
劣等果Inferior fruit | 93.13 | 95.07 | 94.09 | ||||
半熟果Semi-ripe fruit | — | 81.48 | 88.93 | 85.04 | |||
未熟果Unripe fruit | — | 88.24 | 92.08 | 90.12 | |||
整体 Total | — | 83.35 | — | 86.98 | 89.04 | 91.34 | 84.42 |
Table 6 Quantitative results of fruits with different maturity and appearance quality using the SC-YOLOv5s lite algorithm
成熟度类别 Maturity classification | 外观品质分级 Appearance quality grading | 召回率/% Recall | 精确率/% AP | F1值/% F1-score | 准确率/% Accuracy | 平均精度/% mAP | |
---|---|---|---|---|---|---|---|
mAP @0.5 | mAP@0.5 ~ 0.95 | ||||||
成熟果Ripe fruit | 优等果Superior fruit | 89.52 | 94.88 | 92.12 | |||
二等果Second-class fruit | 64.39 | 85.72 | 73.53 | ||||
劣等果Inferior fruit | 93.13 | 95.07 | 94.09 | ||||
半熟果Semi-ripe fruit | — | 81.48 | 88.93 | 85.04 | |||
未熟果Unripe fruit | — | 88.24 | 92.08 | 90.12 | |||
整体 Total | — | 83.35 | — | 86.98 | 89.04 | 91.34 | 84.42 |
Fig. 9 Effect diagram of tomato fruit detection with different maturity and appearance quality a-c:Mature and high-quality fruit;d-f:Mature and second class fruit;g-i:Mature and inferior fruit;j-l:Semi-ripe fruit;m-o:Unripe fruit.
Fig. 10 SC-YOLOv5s lite prediction validation effect in complex environments a,b:The environment obstructed by branches and leaves;c,d:The darkness of different lighting conditions;e,f:The overlapping environment of fruits;g,h:A mixed environment of multiple factors.
[1] |
|
陈乔松, 陈鹏昌, 李佩, 张亚玲, 邓欣, 孙开伟, 王进. 2023. 基于多尺度特征选择与融合的目标检测方法. 重庆邮电大学学报(自然科学版), 35 (2):227-234.
|
|
[2] |
|
杜名扬, 张天柱. 2022. 农业数字化风景下的靓点无人农场. 蔬菜,(9):1-9.
|
|
[3] |
|
冯帆. 2022. 智慧农业背景下物联网技术在现代农业中的应用. 农家参谋,(21):25-27.
|
|
[4] |
|
冯俊惠, 李志伟, 戎有丽, 孙志立. 2021. 基于改进Hough圆变换算法的成熟番茄果实识别. 中国农机化学报, 42 (4):190-196.
doi: 10.13733/j.jcam.issn.2095-5553.2021.04.27 |
|
[5] |
|
高彦钊, 陶常勇. 2023. 信号处理与深度学习硬件加速的一致性计算结构. 国防科技大学学报, 45 (2):112-120.
|
|
[6] |
|
贺杰, 马婷娟, 张永良, 张亚娟. 2022. 指向深度学习的高职混合式学习评价模型及指标体系构建. 职业技术教育, 43 (26):64-70.
|
|
[7] |
|
黄波. 2022. 乡村振兴背景下的人才流失问题对策与分析. 农村实用技术,(4):46-48.
|
|
[8] |
|
黄彤镔, 黄河清, 李震, 吕石磊, 薛秀云, 代秋芳, 温威. 2022. 基于YOLOv5改进模型的柑橘果实识别方法. 华中农业大学学报, 41 (4):170-177.
|
|
[9] |
|
[10] |
doi: 10.13733/j.jcam.issn.20955553.2023.04.022 |
李岩舟, 何艳洲, 覃锋, 钱万强, 吴媚, 乔曦. 2023. 基于卷积神经网络的互花米草识别研究. 中国农机化学报, 44 (4):159-166.
|
|
[11] |
|
刘芳, 刘玉坤, 林森, 郭文忠, 徐凡, 张白. 2020. 基于改进型YOLO的复杂环境下番茄果实快速识别方法. 农业机械学报, 51 (6):229-237.
|
|
[12] |
|
刘铮, 魏传成. 2021. 推进乡村全面振兴的重点、难点及对策. 经济纵横,(10):122-128.
|
|
[13] |
doi: 10.15302/J-SSCAE-2022.01.005 |
罗锡文, 廖娟, 臧英, 区颖刚, 汪沛. 2022. 我国农业生产的发展方向:从机械化到智慧化. 中国工程科学, 24 (1):46-54.
doi: 10.15302/J-SSCAE-2022.01.005 |
|
[14] |
|
马金林, 张裕, 马自萍, 毛凯绩. 2022. 轻量化神经网络卷积设计研究进展. 计算机科学与探索, 16 (3):512-528.
doi: 10.3778/j.issn.1673-9418.2107056 |
|
[15] |
|
宋玲, 曹勉, 胡小春, 贾沛沅, 陈燕, 陈宁江. 2023. 基于YOLOX的复杂背景下木薯叶病害检测方法. 农业机械学报, 54 (3):301-307.
|
|
[16] |
|
孙丰刚, 王云露, 兰鹏, 张旭东, 陈修德, 王志军. 2022. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法. 农业工程学报, 38 (11):171-179.
|
|
[17] |
|
王海群, 张成君, 张怡. 2023. 基于YOLOv4的轻量级火焰检测算法. 山东科技大学学报(自然科学版), 42 (1):91-99.
|
|
[18] |
|
[19] |
|
王亮, 张超. 2023. 一种基于YOLOv5的轻量型行人检测方法. 工业控制计算机, 36 (4):84-86,89.
|
|
[20] |
|
吴敌, 李明辉, 马文凯, 李睿童, 李艳. 2023. 基于改进YOLOv5的钢材表面缺陷检测. 陕西科技大学学报, 41 (2):162-169.
|
|
[21] |
|
郗厚印, 张栋, 周涛, 杨云霄. 2021. 采摘机器人识别抓取重叠番茄果实的方法研究. 农机化研究, 43 (12):17-23,50.
|
|
[22] |
|
熊俊涛, 郑镇辉, 梁嘉恩, 钟灼, 刘柏林, 孙宝霞. 2020. 基于改进YOLO v3网络的夜间环境柑橘识别方法. 农业机械学报, 51 (4):199-206.
|
|
[23] |
|
阳茜汕, 卓德兵, 涂婉莹, 刘杜洋. 2023. 基于离线数据增强与YOLOv5的混凝土裂缝检测研究. 山西建筑, 49 (8):63-66.
|
|
[24] |
|
岳有军, 孙碧玉, 王红君, 赵辉. 2021. 基于级联卷积神经网络的番茄果实目标检测. 科学技术与工程, 21 (6):2387-2391.
|
|
[25] |
|
查文文, 潘伟豪, 陈成鹏, 陈威, 辜丽川, 焦俊. 2023. 基于边缘计算与改进YOLOv5的群养生猪姿态识别及跟踪研究. 东北农业大学学报, 54 (3):83-96.
|
|
[26] |
|
张淮峰, 何祥健, 吴强. 2006. 通用目标检测算法研究进展与评述. 云南民族大学学报(自然科学版), 15 (4):261-267.
|
|
[27] |
|
张会丰, 邢雨彤, 张淼, 李文旭, 李聪. 2022. 不同深度学习模型的骨骺定位准确率比较. 中国法医学杂志, 37 (3):267-271.
|
|
[28] |
|
张磊, 刘琪芳, 聂红玫, 王晨, 牛帆. 2022. 基于改进YOLOV4网络模型的番茄果实检测. 中国农机化学报, 43 (12):162-169.
|
|
[29] |
|
周升和, 邵武长, 王强. 2023. 基于深度学习的小目标检测算法综述数字技术与应用, 41 (2):156-158.
|
|
[30] |
|
朱德利, 文瑞, 熊俊逸. 2023. 融合坐标注意力机制的轻量级玉米花丝检测. 农业工程学报, 39 (3):145-153.
|
|
[31] |
|
祖林禄. 2023. 数据驱动的日光温室番茄果实生长预测模型研究[博士论文]. 泰安: 山东农业大学.
|
[1] | HAN Ying, DUAN Ying, NIU Yijie, LI Yansu, HE Chaoxing, SUN Mintao, WANG Jun, LI Qiang, CHEN Shuangchen, YAN Yan. Transcription Metabolic Mechanism of Humic Acid Biodegradable Plastic Film to Improving the Fruit Quality of Tomato in the Greenhouse [J]. Acta Horticulturae Sinica, 2024, 51(8): 1758-1772. |
[2] | GONG Xiaoya, LI Xian, ZHOU Xingang, WU Fengzhi. Effect of Rhizosphere Microorganisms Induced by Potato-Onion on Tomato Root-Knot Nematode Disease [J]. Acta Horticulturae Sinica, 2024, 51(8): 1913-1926. |
[3] | LIU Chenglong, FAN Xudong, REN Fang, ZHANG Zunping, HU Guojun, and DONG Yafeng. Detection Methods of Apple Tree Viruses [J]. Acta Horticulturae Sinica, 2024, 51(7): 1580-1594. |
[4] | MENG Sida, HAN Leilei, XIANG Hengzuo, ZHU Meiyu, FENG Zhen, YE Yunzhu, SUN Meihua, LI Yanbing, ZHAO Liping, TAN Changhua, QI Mingfang, and LI Tianlai. Research Progress on the Mechanism of Regulating the Number of Tomato Locules [J]. Acta Horticulturae Sinica, 2024, 51(7): 1649-1664. |
[5] | MA Xingyun, FAN Bingli, TANG Guangcai, JIA Zhiqi, LI Ying, XUE Dongqi, ZHANG Shiwen. Preliminary Study on the Mechanism of DXR Regulating Chloroplast Development Flower Color and Fruit Coloring in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(6): 1241-1255. |
[6] | ZHANG Wenjing, XU Dayong, WU Qianlin, YANG Fo, XIN Bingyue, ZENG Xin, LI Feng. Genome Analysis of Bacillus velezensis XDY66,an Antagonist of Tomato Botrytis cinerea [J]. Acta Horticulturae Sinica, 2024, 51(6): 1413-1425. |
[7] | WANG Yongzhen, ZHANG Jianguo, LIU Caihong, LI Sibei, LÜ Tiantian. A New Tomato Hybrid Cultivar‘Yuanhong 212’ [J]. Acta Horticulturae Sinica, 2024, 51(6): 1435-1436. |
[8] | LIU Zeying, SUN Shuai, LIU Zhiqiang, CUI Xia, LI Ren. Mapping of the Sharp Blossom-end Gene and Screening of Candidate Gene in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(5): 982-992. |
[9] | LI Pin, GAN Ning, CHEN Jiawei, XIANG Sixiang, SHEN Jingyi, OUYANG Bo, LU Yong’en. Analysis of Phosphorus Utilization Efficiency in Natural Population of Tomato and Screening of Low Phosphorus Tolerant Germplasm [J]. Acta Horticulturae Sinica, 2024, 51(5): 993-1004. |
[10] | YANG Ting, XI Dehui, XIA Ming, LI Jianan. Studies on the Mechanism of α-Momordicin Gene Enhancing Tomato Resistance to Tobacco Mosaic Virus [J]. Acta Horticulturae Sinica, 2024, 51(5): 1126-1136. |
[11] | HU Zhifeng, SHAO Jingcheng, ZHANG Li. A New Tomato Cultivar‘Longfan 15’ [J]. Acta Horticulturae Sinica, 2024, 51(4): 917-918. |
[12] | LIU Genzhong, LI Fangman, GE Pingfei, TAO Jinbao, ZHANG Xingyu, YE Zhibiao, ZHANG Yuyang. QTL Mapping and Candidate Gene Identification Related to Ascorbic Acid Content in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 219-228. |
[13] | DONG Shuchao, HONG Jun, LING Jiayi, XIE Zixin, ZHANG Shengjun, ZHAO Liping, SONG Liuxia, WANG Yinlei, ZHAO Tongmin. Genome-wide Association Studies of Drought Tolerance in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 229-238. |
[14] | XU Qin, WANG Jiaying, ZHANG Mannan, XIAO Zhihao, ZHENG Hankai, LU Yong'en, WANG Taotao, ZHANG Yuyang, ZHANG Junhong, YE Zhibiao, YE Jie. Identification of Genetic Loci and Molecular Marker Development of Salt Tolerance in Tomato Seedlings [J]. Acta Horticulturae Sinica, 2024, 51(2): 239-252. |
[15] | YANG Liang, LIU Huan, MA Yanqin, LI Ju, WANG Hai'e, ZHOU Yujie, LONG Haicheng, MIAO Mingjun, LI Zhi, CHANG Wei. Creating High Lycopene Fruit Using CRISPR/Cas9 Technology in Tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 253-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd