https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (2): 239-252.doi: 10.16420/j.issn.0513-353x.2023-0739

• Genetic & Breeding · Germplasm Resources · Molecular Biology • Previous Articles     Next Articles

Identification of Genetic Loci and Molecular Marker Development of Salt Tolerance in Tomato Seedlings

XU Qin1,WANG Jiaying1,ZHANG Mannan1,XIAO Zhihao1,ZHENG Hankai1,LU Yong’en1,WANG Taotao1,ZHANG Yuyang1,2,ZHANG Junhong1,2,YE Zhibiao1,2,and YE Jie1,2,*   

  1. 1National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops,College of Horticulture & Forestry Sciences,Huazhong Agricultural University,Wuhan 430070,China;2Hubei Hongshan Laboratory,Wuhan 430070,China
  • Online:2024-02-25 Published:2024-02-26

Abstract: To identify the genetic components of salt tolerance at the seedling stage of tomato,the contents of sodium(Na+)and potassium(K+)were determined,and genome-wide association analysis was further performed for shoot Na+/K+ ratio in a population consisting of 501 tomato accessions. The decrease in salt tolerance from wild tomatoes to large-fruited tomatoes is due to the decrease in Na+ content and Na+/K+ ratio during tomato domestication and improvement. The most significant loci associated with shoot Na+ content and Na+/K+ ratio were identified on chromosome 7,which contained two genes with known function,HKT1;1 and HKT1;2. Sequence analysis,and haplotype analysis identified a 6 bp InDel(InDel_6)on the promoter of HKT1;2 showed highly correlated with Na+ content and Na+/K+ ratio,and salt treatment of different genotype accessions based on the InDel_6 confirmed that this mutation was the causative variant associated with Na+/K+ ratio and confer salt tolerance in tomato. Based on this causative variant,a codominant molecular marker that can quickly and accurately verify the salt tolerance of tomatoes at the seedling stage were developed.

Key words: tomato, salt tolerance, sodium, potassium, genome-wide association analysis, molecular marker

CLC Number: