Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (4): 697-712.doi: 10.16420/j.issn.0513-353x.2022-0011
• Research Papers • Next Articles
LIU Youxian, LI Guofang, TAN Ming, YANG Zhichang, ZHOU Shiwei, HUO Wenjing, ZHANG He, SUN Jianshe, SHAO Jianzhu()
Received:
2022-06-20
Revised:
2022-12-07
Online:
2023-04-25
Published:
2023-04-27
Contact:
*(E-mail:yysjz@hebau.edu.cn)
E-mail:yysjz@hebau.edu.cn
CLC Number:
LIU Youxian, LI Guofang, TAN Ming, YANG Zhichang, ZHOU Shiwei, HUO Wenjing, ZHANG He, SUN Jianshe, SHAO Jianzhu. Expression Analysis of MdTOPP13/28 During Axillary Bud Outgrowth in Malus[J]. Acta Horticulturae Sinica, 2023, 50(4): 697-712.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0011
用途 Use | 基因名称 Gene name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
克隆Clone | MdTOPP13 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCAGAGACTTGATTC |
MdTOPP28 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCATGGACCTGAT | |
qRT-PCR | MdTOPP13 | GACTGCCTCCTAATGCCAATT | ACTCTGTGAATGTCTTCCATAGC |
MdTOPP28 | GAGGCTATGGAAGACATTCACA | ACCAGAGAAGGTCACAGAGTAA |
Table 1 Primer sequence
用途 Use | 基因名称 Gene name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
克隆Clone | MdTOPP13 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCAGAGACTTGATTC |
MdTOPP28 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCATGGACCTGAT | |
qRT-PCR | MdTOPP13 | GACTGCCTCCTAATGCCAATT | ACTCTGTGAATGTCTTCCATAGC |
MdTOPP28 | GAGGCTATGGAAGACATTCACA | ACCAGAGAAGGTCACAGAGTAA |
基因名称 Gene name | 基因登录号 Gene locus | 染色体位置 Location | 基因链 Strand | 编码区长/bp CDS | 氨基酸数/aa Protein | 蛋白分子量 KDMW | 亲水指数 GRA | 等电点 pI | 不稳定系数 Ⅱ |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | MD01G1140800 | Chr01:24992947..24997431 | - | 726 | 241 | 26.83 | -0.182 | 4.88 | 35.20 |
MdTOPP2 | MD01G1140900 | Chr01:24999027..25001036 | - | 1059 | 352 | 39.40 | -0.131 | 7.96 | 46.55 |
MdTOPP3 | MD01G1141200 | Chr01:25025190..25027819 | - | 258 | 85 | 9.86 | -0.192 | 4.99 | 41.56 |
MdTOPP4 | MD02G1108000 | Chr02:8722439..8725518 | - | 1377 | 458 | 50.62 | -0.340 | 5.16 | 44.73 |
MdTOPP5 | MD03G1007300 | Chr03:580509..585577 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP6 | MD03G1156600 | Chr03:18384616..18392711 | - | 2229 | 742 | 80.25 | -0.129 | 5.78 | 37.73 |
MdTOPP7 | MD03G1192600 | Chr03:26421006..26425412 | + | 918 | 305 | 34.73 | -0.202 | 5.24 | 41.77 |
MdTOPP8 | MD03G1274100 | Chr03:35710860..35716942 | + | 2655 | 884 | 96.77 | -0.295 | 6.08 | 37.83 |
MdTOPP9 | MD04G1083500 | Chr04:11955473..11956621 | - | 336 | 111 | 12.33 | -0.047 | 6.10 | 43.08 |
MdTOPP10 | MD04G1083600 | Chr04:11956624..11958010 | - | 591 | 196 | 22.49 | -0.156 | 9.07 | 46.88 |
MdTOPP11 | MD04G1179900 | Chr04:27091697..27093197 | - | 906 | 301 | 34.34 | -0.136 | 5.04 | 36.91 |
MdTOPP12 | MD04G1198300 | Chr04:28585017..28587856 | - | 969 | 322 | 36.48 | -0.237 | 5.54 | 42.12 |
MdTOPP13 | MD04G1229100 | Chr04:30925518..30929906 | + | 1029 | 342 | 38.38 | -0.184 | 5.67 | 41.09 |
MdTOPP14 | MD05G1232900 | Chr05:36572845..36576146 | + | 432 | 143 | 16.01 | -0.133 | 4.82 | 31.79 |
MdTOPP15 | MD06G1183800 | Chr06:32220590..32223741 | - | 921 | 306 | 35.01 | -0.320 | 4.96 | 34.94 |
MdTOPP16 | MD06G1202700 | Chr06:33587486..33592104 | - | 2115 | 704 | 78.87 | -0.347 | 5.59 | 47.92 |
MdTOPP17 | MD07G1205100 | Chr07:28233219..28237816 | - | 951 | 316 | 35.76 | -0.176 | 5.25 | 43.02 |
MdTOPP18 | MD09G1156000 | Chr09:12430531..12438867 | + | 1449 | 482 | 54.22 | -0.316 | 5.86 | 35.61 |
MdTOPP19 | MD09G1191500 | Chr09:17014278..17019396 | + | 2487 | 828 | 91.16 | -0.385 | 4.98 | 45.41 |
MdTOPP20 | MD11G1010600 | Chr11:795712..801172 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP21 | MD11G1174100 | Chr11:20340736..20354133 | - | 3009 | 1002 | 106.68 | -0.199 | 5.72 | 40.47 |
MdTOPP22 | MD11G1209100 | Chr11:30467821..30476248 | + | 918 | 305 | 34.76 | -0.204 | 5.24 | 41.36 |
MdTOPP23 | MD11G1296400 | Chr11:41407336..41413456 | + | 2661 | 886 | 96.76 | -0.310 | 6.13 | 39.57 |
MdTOPP24 | MD12G1049700 | Chr12:5646206..5647318 | - | 1113 | 370 | 41.01 | -0.099 | 5.24 | 32.51 |
MdTOPP25 | MD12G1052900 | Chr12:5923211..5929636 | - | 942 | 313 | 35.76 | -0.369 | 5.13 | 35.32 |
MdTOPP26 | MD12G1195100 | Chr12:27647081..27649008 | - | 906 | 301 | 34.40 | -0.111 | 5.17 | 36.04 |
MdTOPP27 | MD12G1210900 | Chr12:28940837..28943702 | - | 975 | 324 | 36.67 | -0.239 | 5.69 | 41.20 |
MdTOPP28 | MD12G1246200 | Chr12:31638713..31643111 | + | 1029 | 342 | 38.56 | -0.228 | 5.85 | 41.23 |
MdTOPP29 | MD13G1001400 | Chr13:102885..107604 | + | 768 | 255 | 29.15 | -0.195 | 4.85 | 39.20 |
MdTOPP30 | MD13G1054400 | Chr13:3810784..3816831 | - | 2583 | 860 | 97.00 | -0.281 | 5.88 | 47.84 |
MdTOPP31 | MD13G1083600 | Chr13:5864560..5867786 | + | 921 | 306 | 35.05 | -0.304 | 4.85 | 38.94 |
MdTOPP32 | MD13G1213200 | Chr13:20015224..20016220 | + | 666 | 221 | 25.16 | -0.219 | 5.08 | 41.16 |
MdTOPP33 | MD13G1216200 | Chr13:20567021..20567531 | - | 399 | 132 | 14.93 | -0.561 | 5.88 | 33.32 |
MdTOPP34 | MD14G1051300 | Chr14:4891465..4897083 | - | 942 | 313 | 35.77 | -0.378 | 5.13 | 34.84 |
MdTOPP35 | MD14G1112500 | Chr14:18172736..18176908 | - | 960 | 319 | 36.09 | -0.273 | 5.72 | 34.33 |
MdTOPP36 | MD14G1112700 | Chr14:18199211..18201364 | - | 231 | 76 | 8.61 | -0.092 | 5.52 | 8.40 |
MdTOPP37 | MD14G1112800 | Chr14:18201367..18205580 | - | 906 | 301 | 34.34 | -0.281 | 5.67 | 36.20 |
MdTOPP38 | MD14G1112900 | Chr14:18226998..18231411 | - | 960 | 319 | 36.09 | -0.273 | 5.60 | 34.93 |
MdTOPP39 | MD14G1189900 | Chr14:28117305..28120399 | - | 921 | 306 | 35.02 | -0.286 | 4.90 | 33.44 |
MdTOPP40 | MD15G1227500 | Chr15:18487996..18491614 | - | 1383 | 460 | 50.58 | -0.336 | 5.17 | 46.63 |
MdTOPP41 | MD16G1004700 | Chr16:353770..361929 | - | 912 | 303 | 34.87 | -0.271 | 4.88 | 38.04 |
MdTOPP42 | MD16G1083000 | Chr16:5813202..5816273 | + | 921 | 306 | 35.05 | -0.308 | 4.86 | 39.57 |
MdTOPP43 | MD16G1217200 | Chr16:21423719..21427410 | + | 975 | 324 | 36.70 | -0.183 | 6.88 | 41.38 |
MdTOPP44 | MD17G1142100 | Chr17:12801908..12811146 | + | 1449 | 482 | 54.25 | -0.306 | 5.74 | 35.79 |
Table 2 The TOPP gene family in apple
基因名称 Gene name | 基因登录号 Gene locus | 染色体位置 Location | 基因链 Strand | 编码区长/bp CDS | 氨基酸数/aa Protein | 蛋白分子量 KDMW | 亲水指数 GRA | 等电点 pI | 不稳定系数 Ⅱ |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | MD01G1140800 | Chr01:24992947..24997431 | - | 726 | 241 | 26.83 | -0.182 | 4.88 | 35.20 |
MdTOPP2 | MD01G1140900 | Chr01:24999027..25001036 | - | 1059 | 352 | 39.40 | -0.131 | 7.96 | 46.55 |
MdTOPP3 | MD01G1141200 | Chr01:25025190..25027819 | - | 258 | 85 | 9.86 | -0.192 | 4.99 | 41.56 |
MdTOPP4 | MD02G1108000 | Chr02:8722439..8725518 | - | 1377 | 458 | 50.62 | -0.340 | 5.16 | 44.73 |
MdTOPP5 | MD03G1007300 | Chr03:580509..585577 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP6 | MD03G1156600 | Chr03:18384616..18392711 | - | 2229 | 742 | 80.25 | -0.129 | 5.78 | 37.73 |
MdTOPP7 | MD03G1192600 | Chr03:26421006..26425412 | + | 918 | 305 | 34.73 | -0.202 | 5.24 | 41.77 |
MdTOPP8 | MD03G1274100 | Chr03:35710860..35716942 | + | 2655 | 884 | 96.77 | -0.295 | 6.08 | 37.83 |
MdTOPP9 | MD04G1083500 | Chr04:11955473..11956621 | - | 336 | 111 | 12.33 | -0.047 | 6.10 | 43.08 |
MdTOPP10 | MD04G1083600 | Chr04:11956624..11958010 | - | 591 | 196 | 22.49 | -0.156 | 9.07 | 46.88 |
MdTOPP11 | MD04G1179900 | Chr04:27091697..27093197 | - | 906 | 301 | 34.34 | -0.136 | 5.04 | 36.91 |
MdTOPP12 | MD04G1198300 | Chr04:28585017..28587856 | - | 969 | 322 | 36.48 | -0.237 | 5.54 | 42.12 |
MdTOPP13 | MD04G1229100 | Chr04:30925518..30929906 | + | 1029 | 342 | 38.38 | -0.184 | 5.67 | 41.09 |
MdTOPP14 | MD05G1232900 | Chr05:36572845..36576146 | + | 432 | 143 | 16.01 | -0.133 | 4.82 | 31.79 |
MdTOPP15 | MD06G1183800 | Chr06:32220590..32223741 | - | 921 | 306 | 35.01 | -0.320 | 4.96 | 34.94 |
MdTOPP16 | MD06G1202700 | Chr06:33587486..33592104 | - | 2115 | 704 | 78.87 | -0.347 | 5.59 | 47.92 |
MdTOPP17 | MD07G1205100 | Chr07:28233219..28237816 | - | 951 | 316 | 35.76 | -0.176 | 5.25 | 43.02 |
MdTOPP18 | MD09G1156000 | Chr09:12430531..12438867 | + | 1449 | 482 | 54.22 | -0.316 | 5.86 | 35.61 |
MdTOPP19 | MD09G1191500 | Chr09:17014278..17019396 | + | 2487 | 828 | 91.16 | -0.385 | 4.98 | 45.41 |
MdTOPP20 | MD11G1010600 | Chr11:795712..801172 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP21 | MD11G1174100 | Chr11:20340736..20354133 | - | 3009 | 1002 | 106.68 | -0.199 | 5.72 | 40.47 |
MdTOPP22 | MD11G1209100 | Chr11:30467821..30476248 | + | 918 | 305 | 34.76 | -0.204 | 5.24 | 41.36 |
MdTOPP23 | MD11G1296400 | Chr11:41407336..41413456 | + | 2661 | 886 | 96.76 | -0.310 | 6.13 | 39.57 |
MdTOPP24 | MD12G1049700 | Chr12:5646206..5647318 | - | 1113 | 370 | 41.01 | -0.099 | 5.24 | 32.51 |
MdTOPP25 | MD12G1052900 | Chr12:5923211..5929636 | - | 942 | 313 | 35.76 | -0.369 | 5.13 | 35.32 |
MdTOPP26 | MD12G1195100 | Chr12:27647081..27649008 | - | 906 | 301 | 34.40 | -0.111 | 5.17 | 36.04 |
MdTOPP27 | MD12G1210900 | Chr12:28940837..28943702 | - | 975 | 324 | 36.67 | -0.239 | 5.69 | 41.20 |
MdTOPP28 | MD12G1246200 | Chr12:31638713..31643111 | + | 1029 | 342 | 38.56 | -0.228 | 5.85 | 41.23 |
MdTOPP29 | MD13G1001400 | Chr13:102885..107604 | + | 768 | 255 | 29.15 | -0.195 | 4.85 | 39.20 |
MdTOPP30 | MD13G1054400 | Chr13:3810784..3816831 | - | 2583 | 860 | 97.00 | -0.281 | 5.88 | 47.84 |
MdTOPP31 | MD13G1083600 | Chr13:5864560..5867786 | + | 921 | 306 | 35.05 | -0.304 | 4.85 | 38.94 |
MdTOPP32 | MD13G1213200 | Chr13:20015224..20016220 | + | 666 | 221 | 25.16 | -0.219 | 5.08 | 41.16 |
MdTOPP33 | MD13G1216200 | Chr13:20567021..20567531 | - | 399 | 132 | 14.93 | -0.561 | 5.88 | 33.32 |
MdTOPP34 | MD14G1051300 | Chr14:4891465..4897083 | - | 942 | 313 | 35.77 | -0.378 | 5.13 | 34.84 |
MdTOPP35 | MD14G1112500 | Chr14:18172736..18176908 | - | 960 | 319 | 36.09 | -0.273 | 5.72 | 34.33 |
MdTOPP36 | MD14G1112700 | Chr14:18199211..18201364 | - | 231 | 76 | 8.61 | -0.092 | 5.52 | 8.40 |
MdTOPP37 | MD14G1112800 | Chr14:18201367..18205580 | - | 906 | 301 | 34.34 | -0.281 | 5.67 | 36.20 |
MdTOPP38 | MD14G1112900 | Chr14:18226998..18231411 | - | 960 | 319 | 36.09 | -0.273 | 5.60 | 34.93 |
MdTOPP39 | MD14G1189900 | Chr14:28117305..28120399 | - | 921 | 306 | 35.02 | -0.286 | 4.90 | 33.44 |
MdTOPP40 | MD15G1227500 | Chr15:18487996..18491614 | - | 1383 | 460 | 50.58 | -0.336 | 5.17 | 46.63 |
MdTOPP41 | MD16G1004700 | Chr16:353770..361929 | - | 912 | 303 | 34.87 | -0.271 | 4.88 | 38.04 |
MdTOPP42 | MD16G1083000 | Chr16:5813202..5816273 | + | 921 | 306 | 35.05 | -0.308 | 4.86 | 39.57 |
MdTOPP43 | MD16G1217200 | Chr16:21423719..21427410 | + | 975 | 324 | 36.70 | -0.183 | 6.88 | 41.38 |
MdTOPP44 | MD17G1142100 | Chr17:12801908..12811146 | + | 1449 | 482 | 54.25 | -0.306 | 5.74 | 35.79 |
基因 Gene | 脱落酸 Abscisic acid | 光信号Circadian | 分生组织Meristem | 茉莉酸甲酯MeJA | 赤霉素 Gibberellin | 胁迫 Stress | 生长素 Auxin | 水杨酸 Salicylic acid | 栅栏状叶肉细胞分化Differentiation of the palisade mesophyll cells |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | 1 | 11 | 1 | 6 | — | 1 | 1 | 1 | — |
MdTOPP2 | 3 | 9 | — | 10 | 2 | — | — | 1 | — |
MdTOPP3 | — | 14 | 2 | — | 1 | — | 1 | 1 | — |
MdTOPP4 | 3 | 14 | — | 4 | 2 | 1 | 1 | 1 | — |
MdTOPP5 | 3 | 13 | 1 | 2 | 1 | 2 | 3 | 2 | — |
MdTOPP6 | 1 | 5 | — | — | — | — | 1 | 1 | 1 |
MdTOPP7 | 3 | 8 | — | — | — | 1 | 6 | 1 | — |
MdTOPP8 | 1 | 5 | 1 | 2 | — | 3 | — | — | — |
MdTOPP9 | 3 | 10 | — | 4 | 2 | 2 | 1 | 1 | — |
MdTOPP10 | 7 | 10 | — | — | 1 | — | — | 1 | — |
MdTOPP11 | 2 | 12 | 1 | 2 | — | 1 | — | 1 | — |
MdTOPP12 | 9 | 7 | 1 | — | 1 | — | 1 | — | — |
MdTOPP13 | 3 | 17 | — | 4 | 1 | 4 | — | 3 | — |
MdTOPP14 | 1 | 14 | 3 | 8 | 1 | 1 | 2 | 1 | — |
MdTOPP15 | 1 | 12 | 1 | 10 | — | — | 1 | — | — |
MdTOPP16 | 3 | 14 | 1 | — | 1 | 1 | 2 | 1 | — |
MdTOPP17 | 4 | 7 | — | 6 | — | 3 | — | 1 | — |
MdTOPP18 | 3 | 16 | — | 2 | — | — | — | — | — |
MdTOPP19 | 2 | 16 | 1 | 8 | 2 | — | 3 | — | — |
MdTOPP20 | — | 11 | — | 2 | 1 | — | 2 | 1 | 1 |
MdTOPP21 | 5 | 14 | 1 | 2 | 1 | — | — | — | — |
MdTOPP22 | — | 10 | — | 4 | — | 3 | 2 | 1 | — |
MdTOPP23 | 2 | 10 | 1 | 10 | — | 5 | — | — | — |
MdTOPP24 | — | 10 | — | 4 | 1 | 16 | 2 | 1 | — |
MdTOPP25 | 3 | 13 | — | — | — | 1 | — | — | — |
MdTOPP26 | 4 | 11 | 2 | 4 | — | 6 | 3 | 1 | — |
MdTOPP27 | 4 | 5 | 2 | 6 | — | 1 | 2 | — | 2 |
MdTOPP28 | 2 | 9 | — | — | 3 | 5 | 3 | 1 | — |
MdTOPP29 | — | 8 | — | — | — | 1 | 1 | — | — |
MdTOPP30 | — | 17 | — | — | 1 | 2 | 2 | — | — |
MdTOPP31 | 7 | 18 | — | 4 | 3 | — | 2 | 1 | — |
MdTOPP32 | 1 | 5 | — | 2 | — | — | 1 | 2 | — |
MdTOPP33 | 1 | 17 | 1 | 4 | 2 | — | — | 1 | — |
MdTOPP34 | — | 13 | — | 2 | 2 | 1 | 1 | — | — |
MdTOPP35 | 4 | 11 | 2 | 4 | 1 | — | — | 1 | 1 |
MdTOPP36 | 2 | 9 | 1 | 4 | 1 | 1 | — | 1 | — |
MdTOPP37 | 6 | 9 | — | 2 | 2 | 2 | — | — | — |
MdTOPP38 | 2 | 13 | 1 | 4 | 2 | — | — | 1 | 1 |
MdTOPP39 | 6 | 17 | 1 | 4 | — | 3 | — | 1 | — |
MdTOPP40 | 1 | 12 | — | 18 | — | 2 | 1 | — | — |
MdTOPP41 | 5 | 16 | 1 | 6 | — | — | — | 1 | — |
MdTOPP42 | 4 | 10 | — | 2 | — | — | 3 | — | — |
MdTOPP43 | — | 16 | — | 2 | 1 | 1 | — | — | — |
MdTOPP44 | 3 | 13 | — | — | 2 | 2 | — | — | — |
Table 3 Predicted cis-elements in the promoter of the MdTOPP genes
基因 Gene | 脱落酸 Abscisic acid | 光信号Circadian | 分生组织Meristem | 茉莉酸甲酯MeJA | 赤霉素 Gibberellin | 胁迫 Stress | 生长素 Auxin | 水杨酸 Salicylic acid | 栅栏状叶肉细胞分化Differentiation of the palisade mesophyll cells |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | 1 | 11 | 1 | 6 | — | 1 | 1 | 1 | — |
MdTOPP2 | 3 | 9 | — | 10 | 2 | — | — | 1 | — |
MdTOPP3 | — | 14 | 2 | — | 1 | — | 1 | 1 | — |
MdTOPP4 | 3 | 14 | — | 4 | 2 | 1 | 1 | 1 | — |
MdTOPP5 | 3 | 13 | 1 | 2 | 1 | 2 | 3 | 2 | — |
MdTOPP6 | 1 | 5 | — | — | — | — | 1 | 1 | 1 |
MdTOPP7 | 3 | 8 | — | — | — | 1 | 6 | 1 | — |
MdTOPP8 | 1 | 5 | 1 | 2 | — | 3 | — | — | — |
MdTOPP9 | 3 | 10 | — | 4 | 2 | 2 | 1 | 1 | — |
MdTOPP10 | 7 | 10 | — | — | 1 | — | — | 1 | — |
MdTOPP11 | 2 | 12 | 1 | 2 | — | 1 | — | 1 | — |
MdTOPP12 | 9 | 7 | 1 | — | 1 | — | 1 | — | — |
MdTOPP13 | 3 | 17 | — | 4 | 1 | 4 | — | 3 | — |
MdTOPP14 | 1 | 14 | 3 | 8 | 1 | 1 | 2 | 1 | — |
MdTOPP15 | 1 | 12 | 1 | 10 | — | — | 1 | — | — |
MdTOPP16 | 3 | 14 | 1 | — | 1 | 1 | 2 | 1 | — |
MdTOPP17 | 4 | 7 | — | 6 | — | 3 | — | 1 | — |
MdTOPP18 | 3 | 16 | — | 2 | — | — | — | — | — |
MdTOPP19 | 2 | 16 | 1 | 8 | 2 | — | 3 | — | — |
MdTOPP20 | — | 11 | — | 2 | 1 | — | 2 | 1 | 1 |
MdTOPP21 | 5 | 14 | 1 | 2 | 1 | — | — | — | — |
MdTOPP22 | — | 10 | — | 4 | — | 3 | 2 | 1 | — |
MdTOPP23 | 2 | 10 | 1 | 10 | — | 5 | — | — | — |
MdTOPP24 | — | 10 | — | 4 | 1 | 16 | 2 | 1 | — |
MdTOPP25 | 3 | 13 | — | — | — | 1 | — | — | — |
MdTOPP26 | 4 | 11 | 2 | 4 | — | 6 | 3 | 1 | — |
MdTOPP27 | 4 | 5 | 2 | 6 | — | 1 | 2 | — | 2 |
MdTOPP28 | 2 | 9 | — | — | 3 | 5 | 3 | 1 | — |
MdTOPP29 | — | 8 | — | — | — | 1 | 1 | — | — |
MdTOPP30 | — | 17 | — | — | 1 | 2 | 2 | — | — |
MdTOPP31 | 7 | 18 | — | 4 | 3 | — | 2 | 1 | — |
MdTOPP32 | 1 | 5 | — | 2 | — | — | 1 | 2 | — |
MdTOPP33 | 1 | 17 | 1 | 4 | 2 | — | — | 1 | — |
MdTOPP34 | — | 13 | — | 2 | 2 | 1 | 1 | — | — |
MdTOPP35 | 4 | 11 | 2 | 4 | 1 | — | — | 1 | 1 |
MdTOPP36 | 2 | 9 | 1 | 4 | 1 | 1 | — | 1 | — |
MdTOPP37 | 6 | 9 | — | 2 | 2 | 2 | — | — | — |
MdTOPP38 | 2 | 13 | 1 | 4 | 2 | — | — | 1 | 1 |
MdTOPP39 | 6 | 17 | 1 | 4 | — | 3 | — | 1 | — |
MdTOPP40 | 1 | 12 | — | 18 | — | 2 | 1 | — | — |
MdTOPP41 | 5 | 16 | 1 | 6 | — | — | — | 1 | — |
MdTOPP42 | 4 | 10 | — | 2 | — | — | 3 | — | — |
MdTOPP43 | — | 16 | — | 2 | 1 | 1 | — | — | — |
MdTOPP44 | 3 | 13 | — | — | 2 | 2 | — | — | — |
处理 Treatment | 处理后时间/d Days after treatment | 腋芽长度/mm Axillary bud length | 腋芽宽度/mm Axillary bud width |
---|---|---|---|
对照Control | 3 | 4.47 ± 0.35 c | 3.37 ± 0.23 c |
7 | 4.43 ± 0.43 c | 3.39 ± 0.32 c | |
6-BA | 3 | 6.33 ± 0.87 b | 3.35 ± 0.24 c |
7 | 13.28 ± 0.66 a | 4.84 ± 0.63 a | |
TDZ | 3 | 6.23 ± 0.69 b | 3.74 ± 0.71 b |
7 | 14.51 ± 0.92 a | 5.25 ± 0.58 a |
Table 4 The influence of different treatments on the axillary buds length and width
处理 Treatment | 处理后时间/d Days after treatment | 腋芽长度/mm Axillary bud length | 腋芽宽度/mm Axillary bud width |
---|---|---|---|
对照Control | 3 | 4.47 ± 0.35 c | 3.37 ± 0.23 c |
7 | 4.43 ± 0.43 c | 3.39 ± 0.32 c | |
6-BA | 3 | 6.33 ± 0.87 b | 3.35 ± 0.24 c |
7 | 13.28 ± 0.66 a | 4.84 ± 0.63 a | |
TDZ | 3 | 6.23 ± 0.69 b | 3.74 ± 0.71 b |
7 | 14.51 ± 0.92 a | 5.25 ± 0.58 a |
图9 Relative expression levels of MdTOPP13 in the axillary buds treated with 6-BA and TDZ at different times Signifcant difference between treatment and control at same time point were analyszed by using t-test.* α = 0.05,** α = 0.01. The same below.
[1] |
Aggen J B, Nairn A C, Chamberlin R. 2000. Regulation of protein phosphatase-1. Chemistry & Biology, 7 (1):R13-R23.
doi: 10.1016/S1074-5521(00)00069-7 URL |
[2] | Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk M G, Scarpella E, Ljung K, Leyser O. 2016. Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol, 14 (4):e1002446. |
[3] | Böhm S, Buchberger A. 2013. The budding yeast Cdc48(Shp1)complex promotes cell cycle progression by positive regulation of protein phosphatase 1(Glc7). PLoS ONE, 8 (2):276-276. |
[4] |
Chatfield S P, Stirnberg P, Forde B G, Leyser O. 2000. The hormonal regulation of axillary bud growth in Arabidopsis. Plant Journal, 24 (2):159-169.
doi: 10.1046/j.1365-313x.2000.00862.x pmid: 11069691 |
[5] |
Cline M G. 1991. Apical dominance. The Botanical Review, 57 (4):318-358.
doi: 10.1007/BF02858771 URL |
[6] |
Cohen P T. 2002. Protein phosphatase 1-targeted in many directions. J Cell Sci, 115:241-256.
doi: 10.1242/jcs.115.2.241 URL |
[7] |
Chen Hong-fei, Shao Hong-xia, Fan Sheng, Ma Juan-juan, Zhang Dong, Han Ming-yu. 2016. Identification and phylogenetic analysis of the polygalacturonase gene family in apple. Acta Horticulturae Sinica, 43 (10):1863-1877. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0224 URL |
陈鸿飞, 邵红霞, 樊胜, 马娟娟, 张东, 韩明玉. 2016. 苹果全基因组多聚半乳糖醛酸酶基因家族的鉴定及进化分析. 园艺学报, 43 (10):1863-1877.
doi: 10.16420/j.issn.0513-353x.2016-0224 URL |
|
[8] |
Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro E A, Gouzy J, Rees D J G, Guérif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, Weg E, Troggio M, Bucher E. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49:1099-1106.
doi: 10.1038/ng.3886 |
[9] |
Fan S, Zhang D, Xing L, Qi S, Du L, Wu H, Shao H, Li Y, Ma J, Han M. 2017. Phylogenetic analysis of IDD gene family and characterization of its expression in response to flower induction in Malus. Molecular Genetics and Genomics, 292 (4):755.
doi: 10.1007/s00438-017-1306-4 |
[10] | Fan Sheng, Zhang Lan-qing, Liu Ke, Lei Chao, Chen Xin, Yao Dian-cheng, Zhang Dong, Han Ming-yu. 2016. Cloning and expression of the flowering regulation transcription factor gene MdSPL6 in Malus × domestica. Acta Horticulturae Sinica, 43 (11):2089-2098. (in Chinese) |
樊胜, 张岚清, 刘柯, 雷超, 陈欣, 姚殿城, 张东, 韩明玉. 2016. 苹果‘长富2号’开花调控转录因子MdSPL6基因的克隆和表达分析. 园艺学报, 43 (11):2089-2098. | |
[11] |
Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. 2007. Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 12:169-181.
doi: 10.1016/j.tplants.2007.03.003 pmid: 17368080 |
[12] |
Foster T M, Ledger S E, Janssen B J, Luo Z W, Drummond Revel S M, Tomes S, Karunairetnam S, Waite C N, Funnell K A, van Hooijdonk B M, Saei A, Seleznyova A N, Snowden K C. 2018. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees. Journal of Experimental Botany, 69 (9):2379-2390.
doi: 10.1093/jxb/erx404 pmid: 29190381 |
[13] |
Gill S S, Tajrishi M, Madan M, Tuteja N. 2013. A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice(Oryza sativa). Plant Molecular Biology, 82:1-22.
doi: 10.1007/s11103-013-0031-6 URL |
[14] |
Heisler M G, Ohno C, Das P, Sieber P, Reddy G V, Long J A, Meyerowitz E M. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology, 15 (21):1899-1911.
doi: 10.1016/j.cub.2005.09.052 pmid: 16271866 |
[15] | Hou Y J, Zhu Y, Wang P, Zhao Y, Xie S, Giorgia B, Wang B, Duan C G, Wang X, Xing L. 2016. Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genetics, 12:583-595. |
[16] |
Lesage B, Qian J, Bollen M. 2011. Spindle checkpoint silencing:PP1 tips the balance. Current Biology, 21:898-903.
doi: 10.1016/j.cub.2011.08.063 pmid: 22075433 |
[17] | Li Guo-fang. 2018. Functional study of MAX2 gene on the regulation of axillary bud outgrowth by mediating strigolactone signaling in Malus[Ph. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
李国防. 2018. 苹果MAX2基因介导独脚金内酯信号调控腋芽萌发的功能研究[博士论文]. 杨凌: 西北农林科技大学. | |
[18] |
Li G F, Tan M, Cheng F, Liu X J, Qi S Y, Chen H F, Zhang D, Zhao C P, Han M Y, Ma J J. 2018. Molecular role of cytokinin in bud activation and outgrowth in apple branching based on transcriptomic analysis. Plant Molecular Biology, 98:261-274.
doi: 10.1007/s11103-018-0781-2 pmid: 30311175 |
[19] |
Li G F, Tan M, Ma J J, Cheng F, Li K, Liu X J, Zhao C P, Zhang D, Xing L B, Ren X L, Han M Y, An N. 2021. Molecular mechanism of MdWUS2-MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. Journal of Experimental Botany, 72:4822-4838.
doi: 10.1093/jxb/erab163 pmid: 34113976 |
[20] | Liao Bao-peng, Wang Song-man, Du Ming-wei, Li Fang-jun, Tian Xiao-li, Li Zhao-hu. 2020. Responses and underlying mechanisms of different mainstem leaves on cotton to defoliant thidiazuron. Cotton Science, 32 (5):418-424. (in Chinese) |
廖宝鹏, 王崧嫚, 杜明伟, 李芳军, 田晓莉, 李召虎. 2020. 棉花不同部位主茎叶对脱叶剂噻苯隆的响应及机理. 棉花学报, 32 (5):418-424. | |
[21] |
Lin Q, Li J, Smith1 R D, Walker J C. 1998. Molecular cloning and chromosomal mapping of type one serine/threonine protein phosphatases in Arabidopsis thaliana. Plant Molecular Biology, 37:471-481.
pmid: 9617814 |
[22] | Liu Xiao-jie, Fan Sheng, Li Guo-fang, Tan Ming, Mo Ning, Ma Juan-juan, Zhang Dong, Han Ming-yu. 2017. Genome-wide identification of PIN gene family,cloning and expression analysis of MdPIN15 during axillary bud burst in Malus. Acta Horticulturae Sinica, 44 (11):2041-2054. (in Chinese) |
刘小杰, 樊胜, 李国防, 檀鸣, 默宁, 马娟娟, 张东, 韩明玉. 2017. 苹果全基因组PIN成员鉴定及MdPIN15的克隆和在腋芽萌发中的表达分析. 园艺学报, 44 (11):2041-2054.
doi: 10.16420/j.issn.0513-353x.2017-0219 |
|
[23] |
Lo S F, Yang S Y, Chen K T, Hsing Y L, Zeevaart J A D, Chen L J, Yu S M. 2008. A novel class of gibberellin 2-oxidases control semidwarfism,tillering,and root development in rice. The Plant Cell, 20 (10):2603-2618.
doi: 10.1105/tpc.108.060913 URL |
[24] |
Luan S. 2003. Protein phosphatase in plans. Annu Rev Plant Biol, 54:63-92.
doi: 10.1146/arplant.2003.54.issue-1 URL |
[25] | Meng Yun, Ma Shao-feng, Shao Jian-zhu, Sun Jian-she, Ma Bao-kun, Wang Hong-ning. 2012. Effects of spraying 6-BA on axillary bud growth and the dynamic changes of endogenous hormones in‘Tianhong 2’Fuji nursery apple trees. Acta Horticulturae Sinica, 39 (5):837-844. (in Chinese) |
孟云, 马少锋, 邵建柱, 孙建设, 马宝焜, 王红宁. 2012. 喷施6-BA对‘天红2号’苹果苗腋芽萌发及其内源激素的影响. 园艺学报, 39 (5):837-844. | |
[26] | Qin Qianqian. 2014. Molecular mechanism on protein phosphatase TOPP 4 regulating gibberellin signaling in Arabidopsis[Ph. D. Dissertation]. Lanzhou: Lanzhou University. (in Chinese) |
秦倩倩. 2014. 拟南芥磷酸酶TOPP4调控赤霉素信号通路的分子机理[博士论文]. 兰州: 兰州大学. | |
[27] | Qin Q Q, Wang W, Guo X L, Yue J, Huang Y, Xu X F, Li J, Hou S W. 2014. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase,TOPP4. PLoS Genetics, 10 (7):e1004464. |
[28] |
Shen Y, Khanna R, Carle C M, Quail P H. 2007. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology, 145:1043-1051.
doi: 10.1104/pp.107.105601 pmid: 17827270 |
[29] |
Silverstone A L, Ciampaglio C N, Sun T. 1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. The Plant Cell, 10 (2):155-169.
doi: 10.1105/tpc.10.2.155 URL |
[30] |
Stubbs M D, Tran H T, Atwell A J, Smith C S, Olson D, Moorhead G B. 2001. Purification and properties of Arabidopsis thaliana type one protein phosphatase(PP1). Biochimica Et Biophysica Acta, 1550:52-63.
pmid: 11738087 |
[31] |
Tan M, Li G, Liu X, Cheng F, Ma J, Zhao C, Zhang D, Han M. 2018. Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple(Malus domestica Borkh.). Mol Genet Genomics, 293 (6):1547-1563.
doi: 10.1007/s00438-018-1481-y |
[32] |
Tanaka M, Takei K, Ojima M, Akakibara H, Mori H. 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal, 45:1028-1036.
doi: 10.1111/tpj.2006.45.issue-6 URL |
[33] |
Viaene T, Delwiche C F, Rensing S A, Friml J. 2013. Origin and evolution of PIN auxin transporters in the green lineage. Trends in Plant Science, 18 (1):5-10.
doi: 10.1016/j.tplants.2012.08.009 pmid: 22981345 |
[34] |
Wickson M, Thimann K V. 2010. The antagonism of auxin and kinetin in apical dominance. Physiologia Plantarum, 11 (1):62-74.
doi: 10.1111/ppl.1958.11.issue-1 URL |
[35] | Xiong Ting-ting. 2019. Identification and preliminary function prediction of PpTOPP4 gene family members[Ph. D. Dissertation]. Zhengzhou: Agricultural University of Henan. (in Chinese) |
熊婷婷. 2019. PpTOPP4基因家族成员鉴定及功能初探[博士论文]. 郑州: 河南农业大学. | |
[36] | Yan Jia, Bai Yu-e. 2020. Review on the phosphorylation of PIN protein in auxin transport. Molecular Plant Breeding, 18 (24):8138-8146. (in Chinese) |
闫佳, 白玉娥. 2020. 生长素极性运输中PIN蛋白磷酸化修饰研究进展. 分子植物育种, 18 (24):8138-8146. | |
[37] |
Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61:49-64.
doi: 10.1146/annurev-arplant-042809-112308 pmid: 20192736 |
[38] | Zhang Xiao-hong, Zhang Hong-yan, Wu Jun, Min Dong-hong, Kang Bing, Li Jun-chao. 2002. Effect of TDZ on the induction of callus and bud proliferation and growth of Chinese toon. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 30 (5):35-39. (in Chinese) |
张小红, 张红燕, 武军, 闵东红, 康冰, 李军超. 2002. TDZ对香椿愈伤组织诱导及芽增殖生长等的影响. 西北农林科技大学学报(自然科学版), 30 (5):35-39. |
[1] | NING Yuansheng, LI Huan, SONG Jianfei, YU Tingting, HAN Mengyuan, PENG Lulin, JIA Junqi, ZHANG Weiwei, YANG Hongqiang. Characterization of NCL Family Genes in Malus and Their Relationship with Cellular Calcium Concentration in Root [J]. Acta Horticulturae Sinica, 2023, 50(3): 475-484. |
[2] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[3] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YANG An, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Zhongping Youlei’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 1-2. |
[4] | SUN Simiao, WANG Kun, GAO Yuan, WANG Dajiang, and LI Lianwen. A New Ornamental Crabapple Cultivar‘Zichen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 267-268. |
[5] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Pingyou 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 1-2. |
[6] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Late Ripening Apple Cultivar‘Huayou Tianwa’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 3-4. |
[7] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Mid-ripening Apple Cultivar‘Huayou Baomi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 5-6. |
[8] | YANG Ling, CONG Peihua, WANG Qiang, LI Wuxing, and KANG Liqun. A New Mid-ripening Apple Cultivar‘Huafeng’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 7-8. |
[9] | LIU Chuanhe, HE Han, SHAO Xuehua, LAI Duo, KUANG Shizi, XIAO Weiqiang, LIU Yan. A New Pineapple Cultivar‘Yuetong’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2053-2054. |
[10] | GAO Yanlong, WU Yuxia, ZHANG Zhongxing, WANG Shuangcheng, ZHANG Rui, ZHANG De, WANG Yanxiu. Bioinformatics Analysis of Apple ELO Gene Family and Its Expression Analysis Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(8): 1621-1636. |
[11] | LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a [J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662. |
[12] | ZHENG Xiaodong, XI Xiangli, LI Yuqi, SUN Zhijuan, MA Changqing, HAN Mingsan, LI Shaoxuan, TIAN Yike, WANG Caihong. Effects and Regulating Mechanism of Exogenous Brassinosteroids on the Growth of Malus hupehensis Under Saline-alkali Stress [J]. Acta Horticulturae Sinica, 2022, 49(7): 1401-1414. |
[13] | XIA Yan, HUANG Song, WU Xueli, LIU Yiqi, WANG Miaomiao, SONG Chunhui, BAI Tuanhui, SONG Shangwei, PANG Hongguang, JIAO Jian, ZHENG Xianbo. Identification and Analysis of Apple Viruses Diseases Based on Virome Sequencing Technology [J]. Acta Horticulturae Sinica, 2022, 49(7): 1415-1428. |
[14] | LIU Zhaoxia, ZHANG Xin, WANG Lu, MA Yuting, CHEN Qian, ZHU Zhanling, GE Shunfeng, JIANG Yuanmao. Effects of Fertilizer Hole Application Sites on Fine Root Growth,15N Absorption and Utilization,Yield and Quality of Apple Trees [J]. Acta Horticulturae Sinica, 2022, 49(7): 1545-1556. |
[15] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd