Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (5): 984-994.doi: 10.16420/j.issn.0513-353x.2021-0165
• Research Papers • Previous Articles Next Articles
LIU Zhongjie1, ZHENG Ting1, ZHAO Fanggui1, FU Weihong1, ZHUGE Yaxian1, ZHANG Zhichang2, FANG Jinggui1,3,*()
Received:
2022-01-11
Revised:
2022-02-15
Online:
2022-05-25
Published:
2022-05-25
Contact:
FANG Jinggui
E-mail:fanggg@ njau.du.cn
CLC Number:
LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress[J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0165
砧木 Rootstock name | 来源 Source | 亲本 Parent | 砧木特性 Rootstock characteristic |
---|---|---|---|
520A | 美国 America | Vitis berlandieri × V. riparia | 生长旺盛,抗旱,抗寒,土壤适应性较广 Vigorous growth,drought resistance,cold resistance and wide soil adaptability |
110R | 法国 France | V. berlandieri × V. rupestris | 抗旱,长势旺盛,不易生根,产枝量小 Drought resistance,vigorous growth,difficult to take root and small branch yield |
贝达 Beta | 美国 America | V. riparia × V. labrusca | 长势旺盛,耐旱,耐湿,抗寒,抗病,产枝量中等 Vigorous growth,drought resistance,moisture resistance,cold resistance,disease resistance,medium branch yield |
1103P | 意大利 Italy | V. berlandieri × V. rupestris | 长势旺盛,耐湿,耐盐碱土,较耐旱 Vigorous growth,moisture resistance,salt and alkaline soil resistance,drought resistance |
抗砧3号 Kangzhen 3 | 中国 China | V. berlandieri × V. riparia | 生长旺盛,耐盐碱,抗根瘤蚜,产条量高,土壤适应性广 It has strong growth,salt and alkali resistance,phylloxera resistance,high yield and wide soil adaptability |
420A | 法国 France | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗盐碱 Vigorous growth,drought resistance,salt and alkali resistance |
5BB | 奥地利 Austria | V. berlandieri × V. riparia | 生长旺盛,抗根瘤蚜,扦插生根率高,嫁接亲和性较差 Vigorous growth,resistance to phylloxera,high rooting rate and poor grafting compatibility |
101-14 | 法国 France | V. riparia × V. rupestris | 生长较旺,抗根瘤蚜,适于肥沃土壤,扦插易生根,与欧洲葡萄嫁接亲和力好 It grows vigorously,is resistant to phylloxera,is suitable for fertile soil,is easy to take root by cutting,and has good grafting affinity with European grape varieties |
3309C | 法国 France | V. riparia × V. rupestris | 生长较旺盛,抗旱,抗根瘤蚜 Strong growth,drought resistance and root rumen aphid resistance |
SO4 | 德国 Germany | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗根瘤蚜能力较强,土壤适应性广 It has strong growth,drought resistance,strong resistance to phylloxera and wide soil adaptability |
Table 1 Characteristics of 10 grape rootstocks
砧木 Rootstock name | 来源 Source | 亲本 Parent | 砧木特性 Rootstock characteristic |
---|---|---|---|
520A | 美国 America | Vitis berlandieri × V. riparia | 生长旺盛,抗旱,抗寒,土壤适应性较广 Vigorous growth,drought resistance,cold resistance and wide soil adaptability |
110R | 法国 France | V. berlandieri × V. rupestris | 抗旱,长势旺盛,不易生根,产枝量小 Drought resistance,vigorous growth,difficult to take root and small branch yield |
贝达 Beta | 美国 America | V. riparia × V. labrusca | 长势旺盛,耐旱,耐湿,抗寒,抗病,产枝量中等 Vigorous growth,drought resistance,moisture resistance,cold resistance,disease resistance,medium branch yield |
1103P | 意大利 Italy | V. berlandieri × V. rupestris | 长势旺盛,耐湿,耐盐碱土,较耐旱 Vigorous growth,moisture resistance,salt and alkaline soil resistance,drought resistance |
抗砧3号 Kangzhen 3 | 中国 China | V. berlandieri × V. riparia | 生长旺盛,耐盐碱,抗根瘤蚜,产条量高,土壤适应性广 It has strong growth,salt and alkali resistance,phylloxera resistance,high yield and wide soil adaptability |
420A | 法国 France | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗盐碱 Vigorous growth,drought resistance,salt and alkali resistance |
5BB | 奥地利 Austria | V. berlandieri × V. riparia | 生长旺盛,抗根瘤蚜,扦插生根率高,嫁接亲和性较差 Vigorous growth,resistance to phylloxera,high rooting rate and poor grafting compatibility |
101-14 | 法国 France | V. riparia × V. rupestris | 生长较旺,抗根瘤蚜,适于肥沃土壤,扦插易生根,与欧洲葡萄嫁接亲和力好 It grows vigorously,is resistant to phylloxera,is suitable for fertile soil,is easy to take root by cutting,and has good grafting affinity with European grape varieties |
3309C | 法国 France | V. riparia × V. rupestris | 生长较旺盛,抗旱,抗根瘤蚜 Strong growth,drought resistance and root rumen aphid resistance |
SO4 | 德国 Germany | V. berlandieri × V. riparia | 生长旺盛,抗旱,抗根瘤蚜能力较强,土壤适应性广 It has strong growth,drought resistance,strong resistance to phylloxera and wide soil adaptability |
砧木 Rootstock | 盐害指数Salt damage index | 耐涝性 Salt tolerance | ||
---|---|---|---|---|
2 d | 4 d | 8 d | ||
520A | 0 ± h | 2.8 ± 0.0 g | 12.1 ± 0.4 j | 强Strong |
1103P | 0 ± h | 11.5 ± 0.3 f | 18.8 ± 0.6 i | 强Strong |
3309C | 0 ± h | 1.8 ± 0.2 h | 23.3 ± 0.8 h | 强Strong |
SO4 | 1.3 ± 0.2 f | 11.5 ± 0.7 f | 26.4 ± 0.7 g | 中Medium |
420A | 2.5 ± 0.3 e | 13.2 ± 0.1 e | 26.7 ± 0.8 f | 中Medium |
110R | 4.8 ± 0.2 d | 13.2 ± 0.3 e | 28.1 ± 0.9 e | 中Medium |
抗砧3号 Kangzhen 3 | 1.0 ± 0.1 g | 17.1 ± 0.4 c | 29.2 ± 1.2 d | 中Medium |
101-14 | 13.2 ± 0.3 b | 36.9 ± 1.0 a | 31.9 ± 1.3 c | 弱Sensitive |
贝达Beta | 8.4 ± 0.2 c | 15.3 ± 0.2 d | 36.2 ± 1.1 b | 弱Sensitive |
5BB | 15.2 ± 0.4 a | 25.0 ± 0.1 b | 40.0 ± 1.4 a | 弱Sensitive |
Table 2 Comparison of salt damage index of grape rootstock under salt stress
砧木 Rootstock | 盐害指数Salt damage index | 耐涝性 Salt tolerance | ||
---|---|---|---|---|
2 d | 4 d | 8 d | ||
520A | 0 ± h | 2.8 ± 0.0 g | 12.1 ± 0.4 j | 强Strong |
1103P | 0 ± h | 11.5 ± 0.3 f | 18.8 ± 0.6 i | 强Strong |
3309C | 0 ± h | 1.8 ± 0.2 h | 23.3 ± 0.8 h | 强Strong |
SO4 | 1.3 ± 0.2 f | 11.5 ± 0.7 f | 26.4 ± 0.7 g | 中Medium |
420A | 2.5 ± 0.3 e | 13.2 ± 0.1 e | 26.7 ± 0.8 f | 中Medium |
110R | 4.8 ± 0.2 d | 13.2 ± 0.3 e | 28.1 ± 0.9 e | 中Medium |
抗砧3号 Kangzhen 3 | 1.0 ± 0.1 g | 17.1 ± 0.4 c | 29.2 ± 1.2 d | 中Medium |
101-14 | 13.2 ± 0.3 b | 36.9 ± 1.0 a | 31.9 ± 1.3 c | 弱Sensitive |
贝达Beta | 8.4 ± 0.2 c | 15.3 ± 0.2 d | 36.2 ± 1.1 b | 弱Sensitive |
5BB | 15.2 ± 0.4 a | 25.0 ± 0.1 b | 40.0 ± 1.4 a | 弱Sensitive |
砧木 Rootstock | 旱情指数Drought damage index | 耐旱性 Drought tolerance | ||
---|---|---|---|---|
8 d | 12 d | 16 d | ||
520A | 3.1 ± 0.4 g | 6.7 ± 0.3 j | 19.6 ± 1.1 h | 强Strong |
420A | 2.5 ± 0.2 h | 14.6 ± 0.7 i | 32.9 ± 1.9 g | 强Strong |
110R | 3.1 ± 0.2 g | 29.2 ± 1.3 h | 34.2 ± 1.3 f | 强Strong |
1103P | 13.3 ± 0.9 a | 57.1 ± 2.5 d | 77.1 ± 3.1 e | 中Medium |
贝达Beta | 6.3 ± 0.4 f | 47.9 ± 2.1 g | 77.1 ± 2.9 e | 中Medium |
3309C | 8.3 ± 0.5 e | 56.3 ± 2.7 e | 85.4 ± 4.1 d | 中Medium |
SO4 | 14.6 ± 0.8 b | 50.0 ± 1.8 f | 86.3 ± 3.9 c | 中Medium |
抗砧3号 Kangzhen 3 | 16.7 ± 0.8 d | 65.8 ± 2.9 b | 87.5 ± 4.5 b | 弱Sensitive |
5BB | 33.3 ± 1.6 a | 62.5 ± 3.1 c | 87.5 ± 5.3 b | 弱Sensitive |
101-14 | 18.8 ± 1.0 c | 81.3 ± 4.2 a | 93.8 ± 5.5 a | 弱Sensitive |
Table 3 Comparison of drought index of grape rootstock under drought stress
砧木 Rootstock | 旱情指数Drought damage index | 耐旱性 Drought tolerance | ||
---|---|---|---|---|
8 d | 12 d | 16 d | ||
520A | 3.1 ± 0.4 g | 6.7 ± 0.3 j | 19.6 ± 1.1 h | 强Strong |
420A | 2.5 ± 0.2 h | 14.6 ± 0.7 i | 32.9 ± 1.9 g | 强Strong |
110R | 3.1 ± 0.2 g | 29.2 ± 1.3 h | 34.2 ± 1.3 f | 强Strong |
1103P | 13.3 ± 0.9 a | 57.1 ± 2.5 d | 77.1 ± 3.1 e | 中Medium |
贝达Beta | 6.3 ± 0.4 f | 47.9 ± 2.1 g | 77.1 ± 2.9 e | 中Medium |
3309C | 8.3 ± 0.5 e | 56.3 ± 2.7 e | 85.4 ± 4.1 d | 中Medium |
SO4 | 14.6 ± 0.8 b | 50.0 ± 1.8 f | 86.3 ± 3.9 c | 中Medium |
抗砧3号 Kangzhen 3 | 16.7 ± 0.8 d | 65.8 ± 2.9 b | 87.5 ± 4.5 b | 弱Sensitive |
5BB | 33.3 ± 1.6 a | 62.5 ± 3.1 c | 87.5 ± 5.3 b | 弱Sensitive |
101-14 | 18.8 ± 1.0 c | 81.3 ± 4.2 a | 93.8 ± 5.5 a | 弱Sensitive |
砧木 Rootstock | 涝害指数Flood damage index | 耐涝性 Flood tolerance | ||
---|---|---|---|---|
16 d | 29 d | 43 d | ||
420A | 2.1 ± 0.1 j | 14.6 ± 0.4 i | 33.3 ± 1.3 j | 强Strong |
520A | 4.2 ± 0.2 i | 19.4 ± 0.6 h | 34.4 ± 1.6 i | 强Strong |
5BB | 6.3 ± 0.2 h | 31.7 ± 1.6 g | 55.0 ± 2.4 h | 中Medium |
3309C | 29.6 ± 1.3 d | 38.3 ± 1.9 f | 56.7 ± 2.7 g | 中Medium |
SO4 | 10.4 ± 0.5 g | 45.4 ± 2.2 d | 57.1 ± 2.9 f | 中Medium |
抗砧3号 Kangzhen 3 | 13.8 ± 0.7 f | 38.8 ± 2.1 e | 59.2 ± 3.1 e | 中Medium |
110R | 18.8 ± 0.9 e | 45.4 ± 2.3 d | 61.3 ± 3.3 d | 中Medium |
1103P | 31.3 ± 1.3 c | 52.1 ± 3.1 c | 70.4 ± 2.9 c | 弱Sensitive |
101-14 | 43.8 ± 2.6 a | 55.0 ± 2.6 b | 70.8 ± 3.8 b | 弱Sensitive |
贝达Beta | 36.7 ± 1.7 b | 56.3 ± 3.4 a | 81.7 ± 4.1 a | 弱Sensitive |
Table 4 Comparison of waterlogging index of grape rootstocks under waterlogging stress
砧木 Rootstock | 涝害指数Flood damage index | 耐涝性 Flood tolerance | ||
---|---|---|---|---|
16 d | 29 d | 43 d | ||
420A | 2.1 ± 0.1 j | 14.6 ± 0.4 i | 33.3 ± 1.3 j | 强Strong |
520A | 4.2 ± 0.2 i | 19.4 ± 0.6 h | 34.4 ± 1.6 i | 强Strong |
5BB | 6.3 ± 0.2 h | 31.7 ± 1.6 g | 55.0 ± 2.4 h | 中Medium |
3309C | 29.6 ± 1.3 d | 38.3 ± 1.9 f | 56.7 ± 2.7 g | 中Medium |
SO4 | 10.4 ± 0.5 g | 45.4 ± 2.2 d | 57.1 ± 2.9 f | 中Medium |
抗砧3号 Kangzhen 3 | 13.8 ± 0.7 f | 38.8 ± 2.1 e | 59.2 ± 3.1 e | 中Medium |
110R | 18.8 ± 0.9 e | 45.4 ± 2.3 d | 61.3 ± 3.3 d | 中Medium |
1103P | 31.3 ± 1.3 c | 52.1 ± 3.1 c | 70.4 ± 2.9 c | 弱Sensitive |
101-14 | 43.8 ± 2.6 a | 55.0 ± 2.6 b | 70.8 ± 3.8 b | 弱Sensitive |
贝达Beta | 36.7 ± 1.7 b | 56.3 ± 3.4 a | 81.7 ± 4.1 a | 弱Sensitive |
[1] |
Bailey-Serres J, Chang R. 2005. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of Botany, 96:507-518.
pmid: 16051633 |
[2] |
Bailey-Serres J, Fukao T, Gibbs D J, Holdsworth M J. 2012. Making sense of low oxygen sensing. Trends in Plant Science, 17:129-138.
doi: 10.1016/j.tplants.2011.12.004 pmid: 22280796 |
[3] |
Benito B, Haro R, Amtmann A, Cuin T, Dreyer I. 2014. The twins K+ and Na+ in plants. Journal of Plant Physiology, 171:723-731.
doi: 10.1016/j.jplph.2013.10.014 URL |
[4] |
Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman S. 2017. Chloroplast function and ion regulation in plants growing on saline soils:lessons from halophytes. Journal of Experimental Botany, 68:3129-3143.
doi: 10.1093/jxb/erx142 URL |
[5] |
Chaves M, Oliveira M. 2004. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture. Journal of Experimental Botany, 55:2365-2384.
pmid: 15475377 |
[6] |
de Herralde F, Del Mar Alsina M, Aranda X, Save R, Biel C. 2006. Effects of rootstock and irrigation regime on hydraulic architecture of Vitis vinifera L. cv. Tempranillo. OENO One, 40:133-139.
doi: 10.20870/oeno-one.2006.40.3.868 URL |
[7] |
Demmig-Adams B, Adams Iii W W. 2006. Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation. New Phytologist, 172:11-21.
pmid: 16945085 |
[8] |
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A. 2009. Plant drought stress:effects,mechanisms and management. Agronomy for Sustainable Development, 29:185-212.
doi: 10.1051/agro:2008021 URL |
[9] |
Ferris H, Zheng L, Walker M. 2012. Resistance of grape rootstocks to plant-parasitic nematodes. Journal of Nematology, 44:377.
pmid: 23482972 |
[10] | Fiedler S, Vepraskas M J, Richardson J. 2007. Soil redox potential:importance,field measurements,and observations. Advances in Agronomy, 94:1-54. |
[11] | Flexas J, Diaz‐Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M. 2007. Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant,Cell & Environment, 30:1284-1298. |
[12] |
Haider M S, Kurjogi M M, Khalil-Ur-Rehman M, Fiaz M, Pervaiz T, Jiu S, Jia H, Wang C, Fang J. 2017. Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiology and Biochemistry, 121:187-195.
doi: 10.1016/j.plaphy.2017.10.026 URL |
[13] |
Jogaiah S, Ramteke S D, Sharma J, Upadhyay A K. 2014. Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. International Journal of Agronomy, DOI: 10.1155/2014/789087.
doi: 10.1155/2014/789087 URL |
[14] | Kawai Y, Benz J, Kliewer W M. 1996. Effect of flooding on shoot and root growth of rooted cuttings of four grape rootstocks. Journal of the Japanese Society for Horticultural Science, 65:455-461. |
[15] | Keller M. 2010. Managing grapevines to optimise fruit development in a challenging environment:a climate change primer for viticulturists. Australian Journal of Grape & Wine Research, 16:56-69. |
[16] |
Medici A, Laloi M, Atanassova R. 2014. Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Letters, 588:3989-3997.
doi: 10.1016/j.febslet.2014.09.016 pmid: 25261250 |
[17] |
Miras-Avalos J M, Intrigliolo D S. 2017. Grape composition under abiotic constrains:water stress and salinity. Front Plant Sci, 8:851.
doi: 10.3389/fpls.2017.00851 URL |
[18] |
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[19] |
Peccoux A, Loveys B, Zhu J, Gambetta GA, Serge D, Philippe V, Schultz H R, Nathalie O, Dai Z. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 38:1026-1040.
doi: 10.1093/treephys/tpx153 URL |
[20] | Rivero R M, Ruiz J M, Romero L. 2003. Role of grafting in horticultural plants under stress conditions. Journal of Food Agriculture and Environment, 1:70-74. |
[21] |
Ruperti B, Botton A, Populin F, Eccher G, Meggio F. 2019. Flooding responses on grapevine:a physiological,transcriptional,and metabolic perspective. Frontiers in Plant Science, 10:339.
doi: 10.3389/fpls.2019.00339 URL |
[22] | Samson C, Casteran P. 1971. Techniques for propagation of grapes. Techniques de Multiplication de la Vigne, 2:3-34. |
[23] |
Schmull M, Thomas F M. 2000. Morphological and physiological reactions of young deciduous trees(Quercus robur L.,Q. petraea[Matt.] Liebl.,Fagus sylvatica L.)to waterlogging. Plant and Soil, 225:227-242.
doi: 10.1023/A:1026516027096 URL |
[24] |
Schultz H R, Matthews M A. 1993. Growth,osmotic adjustment,and cell-wall mechanics of expanding grape leaves during water deficits. Crop Science, 33:287-294.
doi: 10.2135/cropsci1993.0011183X003300020015x URL |
[25] |
Serra I, Strever A, Myburgh P, Deloire A. 2014. the interaction between rootstocks and cultivars(Vitis vinifera L.)to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20:1-14.
doi: 10.1111/ajgw.12054 URL |
[26] |
Sharma D K, Dubey A, Srivastav M, Singh AK, Sairam RK, Pandey RN, Dahuja A, Kaur C. 2011. Effect of putrescine and paclobutrazol on growth,physiochemical parameters,and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta(Citrus karna Raf.)under NaCl stress. Journal of Plant Growth Regulation, 30:301-311.
doi: 10.1007/s00344-011-9192-1 URL |
[27] |
Sucu S, Yağcı A, Yıldırım K. 2018. Changes in morphological,physiological traits and enzyme activity of grafted and ungrafted grapevine rootstocks under drought stress. Erwerbs-Obstbau, 60:127-136.
doi: 10.1007/s10341-017-0345-7 URL |
[28] | Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A. 2015. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports, 5:1-12. |
[29] |
Walker R R, Blackmore D H, Clingeleffer P R, Correll R. 2004. Rootstock effects on salt tolerance of irrigated field‐grown grapevines(Vitis vinifera L. cv. Sultana)2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 10:90-99.
doi: 10.1111/j.1755-0238.2004.tb00011.x URL |
[30] | Yeung E, Van Veen H, Vashisht D, Sobral P, Hummel M, Rankenberg T, Steffens B, Steffen A, Sauter M, de Vries M, Schuurink R C, Bazin J, Bailey J, Voesenek L, Sasidharan R. 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 115:E6085-E6094. |
[31] |
Zheng T, Dong T, Muhammad H, Jin H, Jia H, Fang J. 2020. Brassinosteroid regulates 3-Hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development. Journal of Agricultural and Food Chemistry, 68 (43):11987-11996.
doi: 10.1021/acs.jafc.0c04466 pmid: 33059448 |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | WANG Xiqing, JIA Yunhe, YAN Wen, FU Yongkai, YOU Haibo, LI Dongyan, and ZHAO Jingchao. A New Watermelon Cultivar‘Longsheng Jiali’with High Resistance to Fusarium Wilt [J]. Acta Horticulturae Sinica, 2023, 50(2): 455-456. |
[3] | LI Zhiliang, LI Zhenxing, LI Tao, SUN Baojuan, LI Ying, XU Xiaowan, WANG Hengming, HENG Zhou, GONG Chao. A New Eggplant Cultivar‘Xinfeng 3’ [J]. Acta Horticulturae Sinica, 2023, 50(1): 227-228. |
[4] | YANG Xingwang, WANG Haibo, WANG Yingying, WANG Xiaolong, WANG Zhiqiang, LIU Peipei, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Ganshuang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 15-16. |
[5] | YANG Xingwang, WANG Haibo, WANG Yingying, ZHANG Yican, WANG Baoliang, Liu Peipei, SHI Xiangbin, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening Cold Resistant Peach Cultivar‘Zhongnong Baigan’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 17-18. |
[6] | YANG Xingwang, LIU Fengzhi, WANG Haibo, WANG Yingying, WANG Zhiqiang, SHI Xiangbin, JI Xiaohao, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening Cold Resistant Peach Cultivar‘Zhongnong Hanshuimi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 19-20. |
[7] | YANG Xingwang, LIU Fengzhi, WANG Haibo, WANG Yingying, ZHANG Yican, LI Peng, WANG Xiaolong, LIU Wanchun, and WANG Xiaodi. A New Late-ripening Cold Resistant Peach Cultivar‘Zhongnong Qiuxiang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 21-22. |
[8] | ZHANG Xiaoming, YAN Guohua, ZHOU Yu, WANG Jing, DUAN Xuwei, WU Chuanbao, and ZHANG Kaichun. A New Sweet Cherry Rootstock Cultivar‘Jingchun 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 31-32. |
[9] | WANG Baoliang, LIU Fengzhi, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, ZHANG Yican, LI Peng, and WANG Haibo. A New Early Ripening Grape Cultivar‘Huapu Zaoyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 33-34. |
[10] | WANG Baoliang, WANG Haibo, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, WANG Zhiqiang, WANG Xiaolong, and LIU Fengzhi. A New Middle Ripening Grape Cultivar‘Huapu Huangyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 35-36. |
[11] | A Late-maturing Seedless Grape Cultivar‘Zilongzhu’. A Late-maturing Seedless Grape Cultivar‘Zilongzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 37-38. |
[12] | SHI Xiaoxin, DU Guoqiang, YANG Lili, QIAO Yuelian, HUANG Chengli, WANG Suyue, ZHAO Yuexin, WEI Xiaohui, WANG Li, and QI Xiangli. A Late-ripening Seedless Grape Cultivar‘Hongfeng Wuhe’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 39-40. |
[13] | WU Yueyan, CHEN Tianchi, WANG Liru, HAN Shanqi, and FU Tao. A New Table Grape Cultivar‘Yongzaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 41-42. |
[14] | QI Yongjie, GAO Zhenghui, MA Na, WANG Qingming, KE Fanjun, CHEN Qian, and XU Yiliu, . A New Yellow Flesh and Resistant to Canker Disease Kiwifruit Cultivar ‘Wannong Jinguo’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 49-50. |
[15] | YU Yangjun, WANG Weihong, SU Tongbing, ZHANG Fenglan, ZHANG Deshuang, ZHAO Xiuyun, YU Shuancang, LI Peirong, XIN Xiaoyun, and WANG Jiao. A New Chinese Cabbage Cultivar‘Jingchun CR3’with Clubroot Resistance and Bolting Tolerance [J]. Acta Horticulturae Sinica, 2022, 49(S2): 87-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd