Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (6): 1200-1212.doi: 10.16420/j.issn.0513-353x.2021-0367
• Research Papers • Previous Articles Next Articles
Received:
2021-10-05
Revised:
2022-01-29
Online:
2022-06-25
Published:
2022-07-04
Contact:
WANG Yuejin
E-mail:wangyj@nwsuaf.edu.cn
CLC Number:
WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species[J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0367
种 Species | 品种或株系 Cultivaror Clone | 田间自然发病 | 人工接种 | 综合抗性反应 Resistance response | ||
---|---|---|---|---|---|---|
Under natural in the field | Artificial inoculation | |||||
病情指数 Susceptibility index | 表现型 Phenotype | 病情指数 Susceptibility index | 表现型 Phenotype | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 56.09 | 高感 High susceptible | 66.03 | 高感High susceptible | 5 |
红地球 Red Globe | 27.24 | 感病 Susceptible | 45.24 | 感病 Susceptible | 4 | |
佳丽酿 Carinena | 17.60 | 抗病 Resistance | 43.80 | 感病 Susceptible | 4 | |
华东葡萄 | 湖南-1 Hunan-1 | 54.91 | 高感 High susceptible | 74.91 | 高感 High susceptible | 5 |
V. pseudoreticulata | 白河35-1 Baihe 35-1 | 19.65 | 抗病 Resistance | 29.65 | 感病 Susceptible | 4 |
毛葡萄 | 丹凤-2 Danfeng-2 | 2.30 | 高抗 High resistance | 5.30 | 抗病 Resistance | 3 |
V. quinquangularis | 商-24 Shang-24 | 4.12 | 高抗 High resistance | 6.12 | 抗病 Resistance | 3 |
泰山-12 Taishan-12 | 5.35 | 抗病 Resistance | 6.35 | 抗病 Resistance | 3 | |
刺葡萄 V. davidii | 福建-4 Fujian-4 | 0 | 不感病Not susceptible | 1.80 | 高抗 High resistance | 1 ~ 2 |
塘尾 Tangwei | 0 | 不感病 Not susceptible | 2.30 | 高抗 High resistance | 1 ~ 2 |
Table 1 Identification of grape resistance to powdery mildew under naturaland by artificial inoculation in the field
种 Species | 品种或株系 Cultivaror Clone | 田间自然发病 | 人工接种 | 综合抗性反应 Resistance response | ||
---|---|---|---|---|---|---|
Under natural in the field | Artificial inoculation | |||||
病情指数 Susceptibility index | 表现型 Phenotype | 病情指数 Susceptibility index | 表现型 Phenotype | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 56.09 | 高感 High susceptible | 66.03 | 高感High susceptible | 5 |
红地球 Red Globe | 27.24 | 感病 Susceptible | 45.24 | 感病 Susceptible | 4 | |
佳丽酿 Carinena | 17.60 | 抗病 Resistance | 43.80 | 感病 Susceptible | 4 | |
华东葡萄 | 湖南-1 Hunan-1 | 54.91 | 高感 High susceptible | 74.91 | 高感 High susceptible | 5 |
V. pseudoreticulata | 白河35-1 Baihe 35-1 | 19.65 | 抗病 Resistance | 29.65 | 感病 Susceptible | 4 |
毛葡萄 | 丹凤-2 Danfeng-2 | 2.30 | 高抗 High resistance | 5.30 | 抗病 Resistance | 3 |
V. quinquangularis | 商-24 Shang-24 | 4.12 | 高抗 High resistance | 6.12 | 抗病 Resistance | 3 |
泰山-12 Taishan-12 | 5.35 | 抗病 Resistance | 6.35 | 抗病 Resistance | 3 | |
刺葡萄 V. davidii | 福建-4 Fujian-4 | 0 | 不感病Not susceptible | 1.80 | 高抗 High resistance | 1 ~ 2 |
塘尾 Tangwei | 0 | 不感病 Not susceptible | 2.30 | 高抗 High resistance | 1 ~ 2 |
Fig. 3 Comparison of fruit tissue structure of of different grape germplasm 1:Thompson Seedless;2:Red Globe;3:Carinena;4:Baihe 35-1;5:Hunan-1;6:Danfeng-2;7:Taishan-12;8:Shang-24;9:Fujian-4;10:Tangwei.
种 Species | 品种或株系 Cultivar or clone | 角质层厚度/μm Thickness of cuticle | 细胞排列 Cellular state | ||
---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 5.61 ± 0.33 c | 9.31 ± 0.49 e | 7.69 ± 0.19 g | 平整 Flat |
红地球 Red Globe | 5.56 ± 0.29 c | 8.83 ± 0.25 e | 9.17 ± 0.30 f | 较为平整 Relatively flat | |
佳丽酿 Carinena | 8.79 ± 0.44 b | 12.73 ± 0.16 d | 14.53 ± 0.39 de | 平整光滑 Flat and smooth | |
华东葡萄 | 白河35-1 Baihe 35-1 | 8.55 ± 0.28 b | 12.48 ± 0.33 d | 15.37 ± 0.28 d | 较光滑 Relatively smooth |
V. pseudoreticulata | 湖南-1 Hunan-1 | 9.41 ± 0.31 b | 13.86 ± 18.27 cd | 13.81 ± 0.37 e | 较平整 Relatively flat |
毛葡萄 | 丹凤-2 Danfeng-2 | 10.47 ± 0.73 a | 13.21 ± 0.36 d | 19.05 ± 0.26 ab | 较为平整 Relatively flat |
V. quinquangularis | 商-24 Shang-24 | 10.04 ± 0.22 ab | 15.73 ± 0.43 b | 18.23 ± 0.25 b | 光滑较规则 Smooth,relatively regular |
泰山-12 Taishan-12 | 10.08 ± 0.26 ab | 14.47 ± 0.56 c | 17.26 ± 0.35 c | 光滑规则 Smooth and regular | |
刺葡萄 | 福建-4 Fujian-4 | 9.51 ± 0.27 ab | 18.64 ± 0.59 a | 18.61 ± 0.42 ab | 规则较光滑 Regular,relatively smooth |
V. davidii | 塘尾 Tangwei | 9.86 ± 0.22 ab | 19.34 ± 0.55 a | 19.41 ± 0.39 a | 规则光滑 Regular and smooth |
Table 2 Differences in fruit cuticle structure of different grape germplasm
种 Species | 品种或株系 Cultivar or clone | 角质层厚度/μm Thickness of cuticle | 细胞排列 Cellular state | ||
---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | |||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 5.61 ± 0.33 c | 9.31 ± 0.49 e | 7.69 ± 0.19 g | 平整 Flat |
红地球 Red Globe | 5.56 ± 0.29 c | 8.83 ± 0.25 e | 9.17 ± 0.30 f | 较为平整 Relatively flat | |
佳丽酿 Carinena | 8.79 ± 0.44 b | 12.73 ± 0.16 d | 14.53 ± 0.39 de | 平整光滑 Flat and smooth | |
华东葡萄 | 白河35-1 Baihe 35-1 | 8.55 ± 0.28 b | 12.48 ± 0.33 d | 15.37 ± 0.28 d | 较光滑 Relatively smooth |
V. pseudoreticulata | 湖南-1 Hunan-1 | 9.41 ± 0.31 b | 13.86 ± 18.27 cd | 13.81 ± 0.37 e | 较平整 Relatively flat |
毛葡萄 | 丹凤-2 Danfeng-2 | 10.47 ± 0.73 a | 13.21 ± 0.36 d | 19.05 ± 0.26 ab | 较为平整 Relatively flat |
V. quinquangularis | 商-24 Shang-24 | 10.04 ± 0.22 ab | 15.73 ± 0.43 b | 18.23 ± 0.25 b | 光滑较规则 Smooth,relatively regular |
泰山-12 Taishan-12 | 10.08 ± 0.26 ab | 14.47 ± 0.56 c | 17.26 ± 0.35 c | 光滑规则 Smooth and regular | |
刺葡萄 | 福建-4 Fujian-4 | 9.51 ± 0.27 ab | 18.64 ± 0.59 a | 18.61 ± 0.42 ab | 规则较光滑 Regular,relatively smooth |
V. davidii | 塘尾 Tangwei | 9.86 ± 0.22 ab | 19.34 ± 0.55 a | 19.41 ± 0.39 a | 规则光滑 Regular and smooth |
种 Species | 品种或株系 Cultivar or clone | 表皮细胞厚度/μm Epidermal cell thickness | 表皮细胞 Epidermal cell | |||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | 层数 Layers | 细胞排列 Cellular state | ||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 11.56 ± 0.38 g | 15.89 ± 1.34 d | 19.47 ± 1.31 a | 2 | 较松散 Relatively loose |
红地球 Red Globe | 12.37 ± 0.41 g | 14.61 ± 0.78 d | 48.97 ± 0.58 a | 2 | 松散 Loose | |
佳丽酿 Carinena | 19.22 ± 0.46 cd | 17.89 ± 0.81 cd | 29.68 ± 1.26 b | 2 ~ 3 | 紧密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 19.09 ± 0.39 d | 19.61 ± 0.34 c | 28.54 ± 0.66 b | 2 | 较紧密 Relatively tight |
V. pseudoreticulata | 湖南-1 Hunan-1 | 16.26 ± 0.38 f | 17.41 ± 0.29 cd | 27.94 ± 0.75 b | 2 | 较紧密 Relatively tight |
毛葡萄 | 丹凤-2 Danfeng-2 | 25.15 ± 0.36 ab | 24.59 ± 1.52 b | 22.09 ± 1.11 c | 2 | 非常紧密 Very tightly |
V. quinquangularis | 商-24 Shang-24 | 20.49 ± 0.44 c | 25.08 ± 0.84 b | 20.62 ± 0.61 c | 2 | 非常紧密 Very tightly |
泰山-12 Taishan-12 | 17.74 ± 0.83 e | 19.06 ± 0.75 c | 17.90 ± 0.34 d | 2 | 非常紧密 Very tightly | |
刺葡萄 | 福建-4 Fujian-4 | 24.28 ± 0.56 b | 30.26 ± 0.82 a | 15.58 ± 0.47 d | 2 ~ 3 | 非常紧密 Very tightly |
V. davidii | 塘尾 Tangwei | 26.49 ± 0.31 a | 30.80 ± 1.10 a | 12.09 ± 0.42 e | 2 ~ 3 | 非常紧密 Very tightly |
Table 3 Differences in the epidermal structureof different grape germplasm
种 Species | 品种或株系 Cultivar or clone | 表皮细胞厚度/μm Epidermal cell thickness | 表皮细胞 Epidermal cell | |||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | 层数 Layers | 细胞排列 Cellular state | ||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 11.56 ± 0.38 g | 15.89 ± 1.34 d | 19.47 ± 1.31 a | 2 | 较松散 Relatively loose |
红地球 Red Globe | 12.37 ± 0.41 g | 14.61 ± 0.78 d | 48.97 ± 0.58 a | 2 | 松散 Loose | |
佳丽酿 Carinena | 19.22 ± 0.46 cd | 17.89 ± 0.81 cd | 29.68 ± 1.26 b | 2 ~ 3 | 紧密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 19.09 ± 0.39 d | 19.61 ± 0.34 c | 28.54 ± 0.66 b | 2 | 较紧密 Relatively tight |
V. pseudoreticulata | 湖南-1 Hunan-1 | 16.26 ± 0.38 f | 17.41 ± 0.29 cd | 27.94 ± 0.75 b | 2 | 较紧密 Relatively tight |
毛葡萄 | 丹凤-2 Danfeng-2 | 25.15 ± 0.36 ab | 24.59 ± 1.52 b | 22.09 ± 1.11 c | 2 | 非常紧密 Very tightly |
V. quinquangularis | 商-24 Shang-24 | 20.49 ± 0.44 c | 25.08 ± 0.84 b | 20.62 ± 0.61 c | 2 | 非常紧密 Very tightly |
泰山-12 Taishan-12 | 17.74 ± 0.83 e | 19.06 ± 0.75 c | 17.90 ± 0.34 d | 2 | 非常紧密 Very tightly | |
刺葡萄 | 福建-4 Fujian-4 | 24.28 ± 0.56 b | 30.26 ± 0.82 a | 15.58 ± 0.47 d | 2 ~ 3 | 非常紧密 Very tightly |
V. davidii | 塘尾 Tangwei | 26.49 ± 0.31 a | 30.80 ± 1.10 a | 12.09 ± 0.42 e | 2 ~ 3 | 非常紧密 Very tightly |
种 Species | 品种或株系 Cultivar or clone | 亚表皮细胞厚度/μm Sub Epidermal cell thickness | 亚表皮细 胞层数 Subepidermal cell layers | 细胞排列 Cellular state | ||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 125.77 ± 5.60 e | 127.00 ± 5.36 f | 128.16 ± 1.48 d | 3 | 疏松 Loose |
红地球 Red Globe | 132.02 ± 4.69 e | 143.95 ± 3.73 e | 166.84 ± 9.58 c | 3 ~ 5 | 疏松 Loose | |
佳丽酿 Carinena | 198.43 ± 3.28 b | 193.69 ± 4.16 b | 190.31 ± 7.63 b | 5 ~ 6 | 致密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 148.47 ± 1.00 d | 162.49 ± 3.72 d | 154.58 ± 14.26 c | 6 ~ 8 | 疏松 Loose |
V. pseudoreticulata | 湖南-1 Hunan-1 | 100.18 ± 3.01 f | 142.81 ± 3.63 e | 143.77 ± 3.85 cd | 6 ~ 8 | 疏松 Loose |
毛葡萄 V. quinquangularis | 丹凤-2 Danfeng-2 | 151.01 ± 7.99 d | 192.80 ± 5.97 b | 188.03 ± 9.90 bc | 7 ~ 9 | 致密 Tightly |
商-24 Shang-24 | 168.99 ± 3.56 c | 183.55 ± 4.96 bc | 187.65 ± 3.07 bc | 7 ~ 8 | 致密 Tightly | |
泰山-12 Taishan-12 | 175.23 ± 7.99 c | 176.04 ± 2.28 c | 182.09 ± 1.50 bc | 8 ~ 9 | 致密 Tightly | |
刺葡萄 | 福建-4 Fujian-4 | 279.77 ± 4.08 a | 292.06 ± 4.09 a | 311.04 ± 11.77 a | 10 ~ 12 | 致密 Tightly |
V. davidii | 塘尾 Tangwei | 284.11 ± 5.93 a | 301.81 ± 4.07 a | 334.42 ± 7.24 a | 9 ~ 12 | 致密Tightly |
Table 4 Differences in sub epidermal structureof different grape germplasm
种 Species | 品种或株系 Cultivar or clone | 亚表皮细胞厚度/μm Sub Epidermal cell thickness | 亚表皮细 胞层数 Subepidermal cell layers | 细胞排列 Cellular state | ||
---|---|---|---|---|---|---|
绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||
欧洲葡萄 Vitis vinifera | 无核白 Thompson Seedless | 125.77 ± 5.60 e | 127.00 ± 5.36 f | 128.16 ± 1.48 d | 3 | 疏松 Loose |
红地球 Red Globe | 132.02 ± 4.69 e | 143.95 ± 3.73 e | 166.84 ± 9.58 c | 3 ~ 5 | 疏松 Loose | |
佳丽酿 Carinena | 198.43 ± 3.28 b | 193.69 ± 4.16 b | 190.31 ± 7.63 b | 5 ~ 6 | 致密 Tightly | |
华东葡萄 | 白河35-1 Baihe-35-1 | 148.47 ± 1.00 d | 162.49 ± 3.72 d | 154.58 ± 14.26 c | 6 ~ 8 | 疏松 Loose |
V. pseudoreticulata | 湖南-1 Hunan-1 | 100.18 ± 3.01 f | 142.81 ± 3.63 e | 143.77 ± 3.85 cd | 6 ~ 8 | 疏松 Loose |
毛葡萄 V. quinquangularis | 丹凤-2 Danfeng-2 | 151.01 ± 7.99 d | 192.80 ± 5.97 b | 188.03 ± 9.90 bc | 7 ~ 9 | 致密 Tightly |
商-24 Shang-24 | 168.99 ± 3.56 c | 183.55 ± 4.96 bc | 187.65 ± 3.07 bc | 7 ~ 8 | 致密 Tightly | |
泰山-12 Taishan-12 | 175.23 ± 7.99 c | 176.04 ± 2.28 c | 182.09 ± 1.50 bc | 8 ~ 9 | 致密 Tightly | |
刺葡萄 | 福建-4 Fujian-4 | 279.77 ± 4.08 a | 292.06 ± 4.09 a | 311.04 ± 11.77 a | 10 ~ 12 | 致密 Tightly |
V. davidii | 塘尾 Tangwei | 284.11 ± 5.93 a | 301.81 ± 4.07 a | 334.42 ± 7.24 a | 9 ~ 12 | 致密Tightly |
时期 Stage | 指标 Item | 病情指数 Disease index | 绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | E | S | W | C | E | S | W | C | E | S | |||
绿果期Green hard | C | -0.728* | |||||||||||
E | -0.683* | 0.806** | |||||||||||
S | -0.545 | 0.401 | 0.731* | ||||||||||
W | -0.586 | 0.664* | 0.403 | 0.108 | |||||||||
转色期Berry veraison | C | -0.750* | 0.767** | 0.835** | 0.810** | 0.335 | |||||||
E | -0.719* | 0.651* | 0.908** | 0.827** | 0.336 | 0.906** | |||||||
S | -0.644* | 0.518 | 0.841** | 0.966** | 0.116 | 0.881** | 0.913** | ||||||
W | -0.197 | 0.554 | 0.540 | 0.567 | 0.227 | 0.572 | 0.439 | 0.501 | |||||
成熟期Berry ripening | C | -0.764* | 0.942** | 0.927** | 0.617 | 0.646* | 0.854** | 0.827** | 0.716* | 0.550 | |||
E | -0.660* | 0.567 | 0.869** | 0.951** | 0.139 | 0.894** | 0.924** | 0.993** | 0.558 | 0.750* | |||
S | -0.643* | 0.431 | 0.773** | 0.959** | 0.061 | 0.850** | 0.881** | 0.988** | 0.405 | 0.644* | 0.970** | ||
W | -0.758* | 0.782** | 0.892** | 0.778** | 0.636* | 0.821** | 0.866** | 0.801** | 0.651* | 0.905** | 0.830** | 0.736* |
Table 5 Correlation between the thickness of cuticle(C),epidermis(E),sub-epidermis(S)and wax quality(W)with disease index
时期 Stage | 指标 Item | 病情指数 Disease index | 绿果期 Green hard | 转色期 Berry veraison | 成熟期 Berry ripening | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | E | S | W | C | E | S | W | C | E | S | |||
绿果期Green hard | C | -0.728* | |||||||||||
E | -0.683* | 0.806** | |||||||||||
S | -0.545 | 0.401 | 0.731* | ||||||||||
W | -0.586 | 0.664* | 0.403 | 0.108 | |||||||||
转色期Berry veraison | C | -0.750* | 0.767** | 0.835** | 0.810** | 0.335 | |||||||
E | -0.719* | 0.651* | 0.908** | 0.827** | 0.336 | 0.906** | |||||||
S | -0.644* | 0.518 | 0.841** | 0.966** | 0.116 | 0.881** | 0.913** | ||||||
W | -0.197 | 0.554 | 0.540 | 0.567 | 0.227 | 0.572 | 0.439 | 0.501 | |||||
成熟期Berry ripening | C | -0.764* | 0.942** | 0.927** | 0.617 | 0.646* | 0.854** | 0.827** | 0.716* | 0.550 | |||
E | -0.660* | 0.567 | 0.869** | 0.951** | 0.139 | 0.894** | 0.924** | 0.993** | 0.558 | 0.750* | |||
S | -0.643* | 0.431 | 0.773** | 0.959** | 0.061 | 0.850** | 0.881** | 0.988** | 0.405 | 0.644* | 0.970** | ||
W | -0.758* | 0.782** | 0.892** | 0.778** | 0.636* | 0.821** | 0.866** | 0.801** | 0.651* | 0.905** | 0.830** | 0.736* |
Fig. 4 Comparison of ultrastructure of different grape pericarp a:The skin of the fruit in its natural state;b:Fruit epidermis after artificial inoculation(The arrow points to the site where the mycelium punctures the epidermis). 1:Thompson Seedless;2:Red Globe;3:Carinena;4:Baihe 35-1;5:Hunan-1;6:Danfeng-2;7:Taishan-12;8:Shang-24;9:Fujian-4;10:Tangwei.
[1] |
Aarrouf J, Garcin A, Lizzi Y, Maâtaoui M E. 2008. Immunolocalization and histocytopathological effects of Xanthomonas arboricola pv. pruni on naturally infected leaf and fruit tissues of peach(Prunus persica L. Batsch). Journal of Phytopathology, 156:338-345.
doi: 10.1111/j.1439-0434.2007.01364.x URL |
[2] |
Bally I S E. 1999. Changes in the cuticular surface during the development of mango(Mangifera indica L.)cv. Kensington Pride. Scientia Horticulturae, 79 (1):13-22.
doi: 10.1016/S0304-4238(98)00159-9 URL |
[3] |
Bargel H, Neinhuis C. 2005. Tomato(Lycopersicon esculentum Mill.)fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56 (413):1049-1060.
doi: 10.1093/jxb/eri098 URL |
[4] |
Bechinger C, Giebel K F, Schnell M, Leiderer P, Deising H B, Bastmeyer M. 1999. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science, 285 (5435):1896-1899.
pmid: 10489364 |
[5] | Chang Jin-mei, Zhang Lu-bin, Liu Feng, Zhan Ru-lin. 2012. The relationship between the disease resistance and pericarp structure in mango (Mangifern indica). Chinese Journal of Tropical Crops, 33 (11):2040-2043. (in Chinese) |
常金梅, 张鲁斌, 柳凤, 詹儒林. 2012. 芒果果实抗病性差异及其与果皮结构相关性初探. 热带作物学报, 33 (11):2040-2043. | |
[6] |
Comménil P, Brunet L, Audran J C. 1997. The development of the grape berry cuticle in relation to susceptibility to bunch rot disease. Journal of Experimental Botany, 48 (313):1599-1607.
doi: 10.1093/jxb/48.8.1599 URL |
[7] |
de Leeuw G T N. 1985. Deposition of lignin,suberin and callose in relation to the restriction of infection by Botrytis cinerea in ghost spots of tomato fruits. Journal of Phytopathology, 112 (2):143-152.
doi: 10.1111/j.1439-0434.1985.tb04822.x URL |
[8] |
Domínguez E, Heredia-Guerrero J A, Heredia A. 2011. The biophysical design of plant cuticles:an overview. New Phytologist, 189 (4):938-949.
pmid: 21374891 |
[9] | FAO. 2019. FAO-OIV focus 2019 table and dried grapes:non-alcoholic products of the Vitivinicultural sector intended for human consumption. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/. |
[10] |
Gabler F M, Smilanick J L, Ghosoph J M, Margosan D A. 2005. Impact of postharvest hot water or ethanol treatment of table grapes on gray mold incidence,quality,and ethanol content. Plant Disease, 89 (3):309-316.
doi: 10.1094/PD-89-0309 URL |
[11] |
Gabler F M, Smilanick J L, Mansour M, Ramming D W, Mackey B E. 2003. Correlations ofmorphological,anatomical,and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology, 93 (10):1263-1273.
doi: 10.1094/PHYTO.2003.93.10.1263 URL |
[12] | Gao Hai-yan, Liu Lin-wei, Zhang Hua-yun, Xiu De-ren. 2001. Study of SO2 acute injury on postharvest table grape. Acta Agriculturae Boreali-occidentalis Sinica, 10 (1):14-16. (in Chinese) |
高海燕, 刘邻渭, 张华云, 修德仁. 2001. SO2对采后葡萄的急性伤害研究. 西北农业学报, 10 (1):14-16. | |
[13] | Guan Ye-qing. 2015. Role of surface structure on susceptibility of apple fruit to Botryosphaeria dothidea[Ph. D. Dissertation]. Beijing:China Agricultural University. (in Chinese) |
关晔晴. 2015. 苹果果面结构与轮纹病抗病性关系的研究[博士论文]. 北京: 中国农业大学. | |
[14] |
Hansjakob A, Riederer M, Hildebrandt U. 2011. Wax matters:absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathology, 60 (6):1151-1161.
doi: 10.1111/j.1365-3059.2011.02467.x URL |
[15] | He Pu-chao. 1999. Grapeology. Beijing: Agriculture Press. (in Chinese) |
贺普超. 1999. 葡萄学. 北京: 农业出版社. | |
[16] | He Pu-chao, Wang Yue-jin, Wang Guo-Ying, Ren Zhi-bang, He Chun-cheng. 1991. The studies on the disease-resistance of Vitis wild species originated in China. Scientia Agricultura Sinica, 24 (3):50-56. (in Chinese) |
贺普超, 王跃进, 王国英, 任治邦, 和纯成. 1991. 中国葡萄属野生种抗病性的研究. 中国农业科学, 24 (3):50-56. | |
[17] |
Heredia-Guerrero J A, Guzman-Puyol S, Benitez J J, Athanassiou A, Heredia A, Dominguez E. 2018. Plant cuticle under global change:biophysical implications. Glob Chang Biol, 24 (7):2749-2751.
doi: 10.1111/gcb.14276 URL |
[18] |
Hetzroni A, Vana A, Mizrach A. 2011. Biomechanical characteristics of tomato fruit peels. Postharvest Biology and Technology, 59 (1):80-84.
doi: 10.1016/j.postharvbio.2010.08.008 URL |
[19] |
Isabel L, Burcu B, Luis F G. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology, 87:103-112.
doi: 10.1016/j.postharvbio.2013.08.012 URL |
[20] | Konarska A. 2012. Differences in the fruit peel structures between two apple cultivars during storage. Acta Scientiarum Polonorum-Hortorum Cultus, 11 (2):105-116. |
[21] |
Lafuente M T, GonzcLlez-Candelas L, Reig-Armiclana J, Veyrat A, Cajuste J F, Garcca-Breijo F J. 2010. Epicuticular wax content and morphology as related to ethylene and storage performance of‘Navelate’orange fruit. Postharvest Biology and Technology, 55 (1):29-35.
doi: 10.1016/j.postharvbio.2009.07.005 URL |
[22] |
Lewandowska M, Keyl A, Feussner I. 2020. Wax biosynthesis in response to danger:its regulation upon abiotic and biotic stress. New Phytologist, 227 (3):698-713.
doi: 10.1111/nph.16571 pmid: 32242934 |
[23] | Marois J J, Bledsoe A M, Gubler G. 1985. Effects of surfactants on epicuticular wax and infection of grape berries by Botrytis cinerea. Phytopathology, 75:1329. |
[24] | Marois J J, Nelson J K, Morrison J C, Lile L S, Bledso A M. 1986. The influence of berry contact within grape clusters on the development of Botrytis cinerea and epicuticular wax. Am J Enol Vitic, 37:293-296. |
[25] |
Oliveira L L, Quilot-Turion B, Dufour C, Corre M N, Lessire R, Genard M, Poessel J L. 2020. Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. Journal of Experimental Botany, 71 (18):5521-5537.
doi: 10.1093/jxb/eraa284 pmid: 32556164 |
[26] |
Scott R J, Spielman M, Dickinson H G. 2004. Stamen structure and function. Plant Cell, 16 (Suppl):S46-S60.
doi: 10.1105/tpc.017012 URL |
[27] | Sharma P, Prasad J, Kothari S L, Gour V S. 2020. Evaluation of variation in cuticular wax yield with season,solvent,and species in Calotropis. National Academy Science Letters-India, 43 (1):99-101. |
[28] |
Silva A, Noronha H, Dai Z, Delrot S, Geros H. 2017. Low source-sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels. Planta, 246 (3):525-535.
doi: 10.1007/s00425-017-2708-6 URL |
[29] | Suzuki T, Shinogi T, Narusaka Y, Park P. 2003. Infection behavior of Alternaria alternata Japanese pear pathotype and localization of 1,3-beta-D-glucan in compatible and incompatible interactions between the pathogen and host plants. Journal of General Plant Pathology, 2 (69):91-100. |
[30] | Tian Xin. 2012. Study on the relationship between the physical structure,enzymatic activities and fruit shrink disease resistance in different jujube varieties[Ph. D. Dissertation]. Beijing:Beijing Forestry University. (in Chinese) |
田昕. 2012. 不同枣树品种果实结构和酶活性与缩果病抗性关系分析[博士论文]. 北京: 北京林业大学. | |
[31] | Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J. 1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild vitis species. Vitis, 34 (3):159-164. |
[32] | Wang Yue-jin, He Pu-chao. 1997. Study on the inheritance of resistance to powdery mildew in Chinese native wild Vitis L. species. Scientia Agricultura Sinica, 30 (1):20-26. (in Chinese) |
王跃进, 贺普超. 1997. 中国葡萄属野生种叶片抗白粉病遗传研究. 中国农业科学, 30 (1):20-26. | |
[33] | Wang Yuejin, He Pu-chao, Zhang Jian-xia. 1999. Studies on the methods of resistance to Uncinula necator in Vitis. Journal of Northwest A & F University,(5):6-10. (in Chinese) |
王跃进, 贺普超, 张剑侠. 1999. 葡萄抗白粉病鉴定方法的研究. 西北农业大学学报,(5):6-10. | |
[34] | Wu Fengying, Liu Mengqi, Wang Yuejin. 2020. Function analysis of the stilbene synthase genes VqSTS12 and VqSTS25of the resistance topowdery mildew in Vitis quinquanqularis. Acta Horticulturae Sinica, 47 (2):205-219.. (in Chinese) |
吴凤颖, 刘梦琦, 王跃进. 2020. 中国野生毛葡萄芪合酶基因抗白粉病功能分析. 园艺学报, 47 (2):205-219. | |
[35] |
Xie X, Wang Y. 2016. VqDUF642,a gene isolated from the Chinese grape Vitis quinquangularis,is involved in berry development and pathogen resistance. Planta, 244 (5):1075-1094.
doi: 10.1007/s00425-016-2569-4 URL |
[36] |
Yang M, Luo Z, Gao S, Belwal T, Wang L, Qi M, Ban Z, Wu B, Wang F, Li L. 2021. The chemical composition and potential role of epicuticular and intracuticular wax in four cultivars of table grapes. Postharvest Biology and Technology, 173:111430.
doi: 10.1016/j.postharvbio.2020.111430 URL |
[37] |
Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. 2017. VpPUB24,a novel gene from Chinese grapevine,Vitis pseudoreticulata,targets VpICE 1 to enhance cold tolerance. Journal of Experimental Botany, 68 (11):2933-2949.
doi: 10.1093/jxb/erx136 URL |
[38] |
Yeats T H, Rose J K C. 2013. The formation and function of plant cuticles. Plant Physiology, 163 (1):5-20.
doi: 10.1104/pp.113.222737 URL |
[39] | Yu Meng-meng, Shen Lin, Sheng Ji-ping. 2012. MeJA-Induced disease resistance in postharvest tomato fruits. Food Science, 33 (9):11-15. (in Chinese) |
于萌萌, 申琳, 生吉萍. 2012. 茉莉酸甲酯诱导采后番茄果实抗病的作用. 食品科学, 33 (9):11-15. | |
[40] | Yu Yi-he. 2013. Fuction study on the disease-resistance to powdery mildew of ubiquitin ligase gene from Chinese wild Vitis pseudoreticulata.[Ph. D. Dissertation]. Yangling:Northwest A & F University. (in Chinese) |
余义和. 2013. 中国野生华东葡萄泛素连接酶基因抗白粉病功能研究[博士论文]. 杨凌: 西北农林科技大学. | |
[41] |
Yuan Shu-zhi, Ding Xin-yuan, Wang Jiao, Li Li-li, Cao Jian-kang. 2015. Progress in studies on the structural resistance of fruit tissues after harvest. Food Science, 36 (7):206-210. (in Chinese)
doi: 10.1111/j.1365-2621.1971.tb04025.x URL |
袁树枝, 丁薪源, 王姣, 李丽莉, 曹建康. 2015. 采后果实组织结构抗病性研究进展. 食品科学, 36 (7):206-210. | |
[42] | Zhou Hui-ling, Li Jia-rui. 2006. The relationship between fruit texture and storage character in grapes. Acta Horticulturae Sinica, 33 (1):28-32. (in Chinese) |
周会玲, 李嘉瑞. 2006. 葡萄果实组织结构与耐贮性的关系. 园艺学报, 33 (1):28-32. |
[1] | YANG Zhi, ZHANG Chuanjiang, YANG Xinfang, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. Analysis of Fruit Genetic Tendency and Mixed Inheritance in Hybrid Progeny of Jujube and Wild Jujube [J]. Acta Horticulturae Sinica, 2023, 50(1): 36-52. |
[2] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[3] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
[4] | WANG Yingying, LIU Lichang, LIU Zhiwu, YANG Xingwang, LIU Wanchun, and WANG Xiaodi, . A New Little Nectarine Cultivar‘Zhongnong Zhenzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 25-26. |
[5] | SONG Fang, CHEN Qi, YUAN Yanliang, CHEN Sha, YIN Haijun, and JIANG Yingchun, . A New Yellow-fleshed Kiwifruit Cultivar‘Xianwo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 47-48. |
[6] | QI Yongjie, GAO Zhenghui, MA Na, WANG Qingming, KE Fanjun, CHEN Qian, and XU Yiliu, . A New Yellow Flesh and Resistant to Canker Disease Kiwifruit Cultivar ‘Wannong Jinguo’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 49-50. |
[7] | ZHANG Huiqin, LOU Guorong, LU Linghong, GU Xianbin, SONG Genhua, and XIE Ming. A New Yellow-fleshed Kiwifruit Cultivar‘Jinyi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 51-52. |
[8] | Patiguli Maimaitituerxun, Gulinisha Kasimu, LUO Qinghong, LIU Liyan, LIU Qiaoling, and Reyihan Awutitashi. A New Cultivar of Elaeagnus moorcroftii‘Yafeng’in Xinjiang [J]. Acta Horticulturae Sinica, 2022, 49(S2): 69-70. |
[9] | ZHAO Xia, LI Gang, LIU Lifeng, SONG Yanhong, and ZHOU Houcheng. A New Strawberry Cultivar‘Huashuo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 81-82. |
[10] | LI Zhengli, ZHANG Li, and MA Licang. A New Capsicum frutescens Cultivar‘Huangla Chaotian’with Yellow Fruit [J]. Acta Horticulturae Sinica, 2022, 49(S2): 123-124. |
[11] | GAO Zhihong, NI Zhaojun, SHI Ting, HAN Jian, and ZHANG Zhen. A Novel Cultivar of Prunus mume‘Nannong Fengyu’for Ornamental Value and Fruit Production [J]. Acta Horticulturae Sinica, 2022, 49(S2): 259-260. |
[12] | LU Lu, LI Wenqing, WU Dan, WANG Zhen, LIU Li, WANG Lei, XIE Xiaoman, and ZHAO Yongjun, . A New Xanthoceras sorbifolium Cultivar‘Xiaozhenzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 275-276. |
[13] | QIN Gaihua, LIU Chunyan, LI Jiyu, and XU Yiliu, . A New Pomegranate Cultivar‘Suzi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 39-40. |
[14] | WANG Yan, LIU Zhenshan, ZHANG Jing, YANG Pengfei, MA Lan, WANG Zhiyi, TU Hongxia, YANG Shaofeng, WANG Hao, CHEN Tao, WANG Xiaorong. Inheritance Trend of Flower and Fruit Traits in F1 Progenies of Chinese Cherry [J]. Acta Horticulturae Sinica, 2022, 49(9): 1853-1865. |
[15] | MENG Xiaoyu, MU Yue, HU Yang, WU Xiao, ZHU Chen, WANG Huimin, TAO Shutian, ZHANG Shaoling, YIN Hao. Determination of Fruit Surface Area of Several Fruit by 3D Laser Scanning Technology [J]. Acta Horticulturae Sinica, 2022, 49(9): 1998-2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd