Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (3): 487-504.doi: 10.16420/j.issn.0513-353x.2020-0438
• Research Papers • Previous Articles Next Articles
YU Shangqi1,2,4, ZHANG Rui2,3,4,*(), GUO Zhongzhong1,2, SONG Yan2,3, FU Jiazhi2,3, WU Pengyu2,3, MA Zhihao3
Received:
2020-11-16
Online:
2021-03-25
Published:
2021-04-02
Contact:
ZHANG Rui
E-mail:zhrgsh@163.com
CLC Number:
YU Shangqi, ZHANG Rui, GUO Zhongzhong, SONG Yan, FU Jiazhi, WU Pengyu, MA Zhihao. Dynamic Changes of Auxin and Analysis of Differentially Expressed Genes in Walnut Endocarp During Hardening[J]. Acta Horticulturae Sinica, 2021, 48(3): 487-504.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0438
引物名称 | 引物序列(5′-3′) | 长度/bp | 退火温度/℃ |
---|---|---|---|
Primer name | Primer sequence | Length | Annealing temperature |
JrIAA9-F | TCTGGGTTCATCAGCAGCACG | 21 | 59.52 |
JrIAA9-R | TGCGATGCTGTCCTCAAGGT | 20 | 57.45 |
JrIAA16-F | AGTGCTTGACCGCACAGGTT | 20 | 57.45 |
JrIAA16-R | TGCTTGTAGGCGATGTGCCA | 20 | 57.45 |
JrIAA27-F | GCTAGCACCAAGGGCAATGGA | 21 | 59.52 |
JrIAA27-R | AGGGAAAGGGTGGGGCCTAAT | 21 | 59.52 |
JrPAL1-F | ACAACCGGCTTCCGGTACTCCT | 22 | 61.40 |
JrPAL1-R | AACGGCAACGGCAACGGCAA | 20 | 59.50 |
Jr4CL1-F | ACTGTGCGTATTGCCGCTGT | 20 | 59.52 |
Jr4CL1-R | TCGCCAAGACAATCGGTGGA | 20 | 57.45 |
JrC4H1-F | GTTAGCCCTGTTTGTAGCCGC | 21 | 57.45 |
JrC4H1-R | TTGGCCATGTCGGTGAGGTT | 20 | 57.45 |
JrC3H1-F | TTGCACGTGATCCGGCAGT | 19 | 57.32 |
JrC3H1-R | TGGTGCAGTAGGTGAGCAAGC | 21 | 59.52 |
JrF5H1-F | TTCACAGGCTTGCCGATGCT | 20 | 57.45 |
JrF5H1-R | ACATGGCCTTCGCTCACTACG | 21 | 59.52 |
JrCAD1-F | ACAACACGACCTCTGCTTGTTA | 22 | 55.81 |
JrCAD1-R | CGTTGTGGATGTTGCTGGAAGT | 22 | 57.67 |
JrCCR1-F | TTCTGCAGCGCGGTTACACT | 20 | 57.45 |
JrCCR1-R | TCACAGCCCTGAATAGCAGCA | 21 | 57.57 |
JrCOMT1-F | TCTTCTCAGATCCTCGCCCGTGTC | 24 | 62.98 |
JrCOMT1-R | TTCTCTCGGAGTCGGAGTCGTTGG | 24 | 62.98 |
JrCCOAOMT1-F | AGCGGTATTCGGGGGTTTGGT | 21 | 59.52 |
JrCCOAOMT1-R | CGTCGTGGCGCCTCCTGATG | 20 | 63.60 |
JrPER1-F | TGCTTCGCTGCTGCTGGACTCAA | 23 | 61.33 |
JrPER1-R | TCCCACCGCAACAATGCCATCTCT | 24 | 61.28 |
JrLACC1-F | AGCTGACAGTTGTGGGTGCGGATG | 24 | 62.98 |
JrLACC1-R | AGAATGGCGGTGGTGGTGGTGTTG | 24 | 62.98 |
JrLTPG1-F | TGCGGTGGTGTTGGTCGCAA | 20 | 59.50 |
JrLTPG1-R | AGCAACTGCTGGGTGCTTCG | 20 | 59.50 |
Table 1 The primers of qRT-PCR
引物名称 | 引物序列(5′-3′) | 长度/bp | 退火温度/℃ |
---|---|---|---|
Primer name | Primer sequence | Length | Annealing temperature |
JrIAA9-F | TCTGGGTTCATCAGCAGCACG | 21 | 59.52 |
JrIAA9-R | TGCGATGCTGTCCTCAAGGT | 20 | 57.45 |
JrIAA16-F | AGTGCTTGACCGCACAGGTT | 20 | 57.45 |
JrIAA16-R | TGCTTGTAGGCGATGTGCCA | 20 | 57.45 |
JrIAA27-F | GCTAGCACCAAGGGCAATGGA | 21 | 59.52 |
JrIAA27-R | AGGGAAAGGGTGGGGCCTAAT | 21 | 59.52 |
JrPAL1-F | ACAACCGGCTTCCGGTACTCCT | 22 | 61.40 |
JrPAL1-R | AACGGCAACGGCAACGGCAA | 20 | 59.50 |
Jr4CL1-F | ACTGTGCGTATTGCCGCTGT | 20 | 59.52 |
Jr4CL1-R | TCGCCAAGACAATCGGTGGA | 20 | 57.45 |
JrC4H1-F | GTTAGCCCTGTTTGTAGCCGC | 21 | 57.45 |
JrC4H1-R | TTGGCCATGTCGGTGAGGTT | 20 | 57.45 |
JrC3H1-F | TTGCACGTGATCCGGCAGT | 19 | 57.32 |
JrC3H1-R | TGGTGCAGTAGGTGAGCAAGC | 21 | 59.52 |
JrF5H1-F | TTCACAGGCTTGCCGATGCT | 20 | 57.45 |
JrF5H1-R | ACATGGCCTTCGCTCACTACG | 21 | 59.52 |
JrCAD1-F | ACAACACGACCTCTGCTTGTTA | 22 | 55.81 |
JrCAD1-R | CGTTGTGGATGTTGCTGGAAGT | 22 | 57.67 |
JrCCR1-F | TTCTGCAGCGCGGTTACACT | 20 | 57.45 |
JrCCR1-R | TCACAGCCCTGAATAGCAGCA | 21 | 57.57 |
JrCOMT1-F | TCTTCTCAGATCCTCGCCCGTGTC | 24 | 62.98 |
JrCOMT1-R | TTCTCTCGGAGTCGGAGTCGTTGG | 24 | 62.98 |
JrCCOAOMT1-F | AGCGGTATTCGGGGGTTTGGT | 21 | 59.52 |
JrCCOAOMT1-R | CGTCGTGGCGCCTCCTGATG | 20 | 63.60 |
JrPER1-F | TGCTTCGCTGCTGCTGGACTCAA | 23 | 61.33 |
JrPER1-R | TCCCACCGCAACAATGCCATCTCT | 24 | 61.28 |
JrLACC1-F | AGCTGACAGTTGTGGGTGCGGATG | 24 | 62.98 |
JrLACC1-R | AGAATGGCGGTGGTGGTGGTGTTG | 24 | 62.98 |
JrLTPG1-F | TGCGGTGGTGTTGGTCGCAA | 20 | 59.50 |
JrLTPG1-R | AGCAACTGCTGGGTGCTTCG | 20 | 59.50 |
Fig. 1 Dynamic changes of endocarp development of walnut in different days after florescence A-D:Changes of lignin accumulation in endocarp of the‘Zhipi’walnut during 37,44,66 and 80 days after florescence. E-J:Changes of lignin accumulation in endocarp of the‘Xinlu’walnut during 50,57,64,71,78 and 85 days after florescence. K-L:The form of endocarp of the‘Xinlu’walnut before ripening. M-P:The cell form of ovary wall of the‘Xinlu’walnut. Q-S:The form of endocarp of the‘Xinlu’walnut after ripening. Te:Testa;Co:Cotyledon;Ex:Exocarp;Me:Mesocarp;En:Endocarp;Pu:Pulpy;Sc:Sclerotic;Va:Vascular bundle;Iwo:Inner wall of ovary;Mwo:Middle wall of ovary;Owo:Outer wall of ovary.
Fig. 2 Endogenous hormone levels in endocarp of‘Xinlu’walnut Lower case letters indicate that the same endogenous auxin has significant difference at the 5% level.
Fig. 3 Changes of intermediate metabolites of lignin synthesis and schematic diagram of the lignin metabolism pathway X is for something else,and the arrows represent the upstream and downstream relationships of metabolite production.A:Cinnamic acid;B:L-Phenylalanine;C:p-Coumaric acid;D:Caffeic acid;E:Ferulic acid;F:Sinapic acid;G:p-Coumaraldehyde;H:Caffeyl aldehyde;I:4-Hydroxy-3-methoxycinnamaldehyde;J:Sinapinaldehyde; K:p-Coumaryl alcohol;L:Caffeyl alcohol;M:Coniferyl alcohol;N:Sinapyl alcohol; “*”means that the content of metabolite is significantly different between the two regions of endocarp during the same period, and“**”means that the content of metabolite is extremely significanly different between the two regions of endocarp during the same period. The same below.
比对组 Group name | 关联水平 Type of correlations | 蛋白质数量 Number of proteins | 基因数量 Number of genes | 关联数量 Number of correlations |
---|---|---|---|---|
57 d-VS-71 d | 鉴定Identification | 6 776 | 75 654 | 6 751 |
定量Quantitative | 6 765 | 75 654 | 6 740 | |
差异表达Differentially expressed | 545 | 8 339 | 110 | |
57 d-VS-85 d | 鉴定 Identification | 6 776 | 76 053 | 6 756 |
定量Quantitative | 6 770 | 76 053 | 6 750 | |
差异表达Differentially expressed | 1 260 | 9 985 | 300 |
Table 2 Association statistics of transcriptome and proteome
比对组 Group name | 关联水平 Type of correlations | 蛋白质数量 Number of proteins | 基因数量 Number of genes | 关联数量 Number of correlations |
---|---|---|---|---|
57 d-VS-71 d | 鉴定Identification | 6 776 | 75 654 | 6 751 |
定量Quantitative | 6 765 | 75 654 | 6 740 | |
差异表达Differentially expressed | 545 | 8 339 | 110 | |
57 d-VS-85 d | 鉴定 Identification | 6 776 | 76 053 | 6 756 |
定量Quantitative | 6 770 | 76 053 | 6 750 | |
差异表达Differentially expressed | 1 260 | 9 985 | 300 |
Fig. 4 Enrichment analysis of differentially expressed genes in comparison group(57 d-VS-71 d and 57 d-VS-85 d) Bar graph of enriched terms across input gene lists, colored by p-values. The smaller the p value is,the more reliable the enriched item is,i.e. the larger the -log10 (p) value is, the more reliable the enriched item is. A1:M00138:Flavonoid biosynthesis, naringenin => pelargonidin;A2:ath00520:Amino sugar and nucleotide sugar metabolism;A3:GO:0044036:Cell wall macromolecule metabolic process;A4:GO:0009408:Response to heat;A5:GO:0019751:Polyol metabolic process;A6:GO:0017144:Drug metabolic process;A7:GO:0016052:Carbohydrate catabolic process;A8:GO:0006979:Response to oxidative stress;A9:GO:0010038:Response to metal ion;B1:ath00940:Phenylpropanoid biosynthesis;B2:GO:0046686:Response to cadmium ion;B3:GO:0017144:Drug metabolic process;B4:ath00360:Phenylalanine metabolism;B5:GO:0009266:Response to temperature stimulus;B6:GO:0071554:Cell wall organization or biogenesis;B7:ath01230:Biosynthesis of amino acids;B8:GO:0006826:Iron ion transport;B9:GO:0051186:Cofactor metabolic process;B10:GO:0009226:Nucleotide-sugar biosynthetic process;B11:GO:0009636:Response to toxic substance;B12:ath00500:Starch and sucrose metabolism;B13:GO:0006575:Cellular modified amino acid metabolic process;B14:GO:0009072:Aromatic amino acid family metabolic process;B15:GO:0006457:Protein folding;B16:M00002:Glycolysis, core module involving three-carbon compounds;B17:ath00960:Tropane, piperidine and pyridine alkaloid biosynthesis;B18:GO:0042133:Neurotransmitter metabolic process;B19:GO:0018298:Protein-chromophore linkage. B20:GO:0010431:Seed maturation.
比对组 | 亚组类型 | 斯皮尔曼相关系数(R) |
---|---|---|
Group name | Type of subgroup | Spearman correlation coefficient |
57 d-VS-71 d | DEPs_DEGs | 0.481 24 |
DEPs_DEGs_Same Trend | 0.802 57 | |
DEPs_DEGs_Opposite | -0.821 57 | |
DEPs_NDEGs | 0.020 74 | |
NDEPs_DEGs | 0.123 15 | |
NDEPs_NDEGs | 0.045 00 | |
ALL | 0.073 99 | |
57 d-VS-85 d | DEPs_DEGs | 0.700 65 |
DEPs_DEGs_Same Trend | 0.833 35 | |
DEPs_DEGs_Opposite | -0.573 34 | |
DEPs_NDEGs | 0.225 70 | |
NDEPs_DEGs | 0.356 13 | |
NDEPs_NDEGs | 0.085 44 | |
ALL | 0.221 12 |
Table 3 Correlation coefficient between mRNA expression and protein expression of the differentially expressed genes
比对组 | 亚组类型 | 斯皮尔曼相关系数(R) |
---|---|---|
Group name | Type of subgroup | Spearman correlation coefficient |
57 d-VS-71 d | DEPs_DEGs | 0.481 24 |
DEPs_DEGs_Same Trend | 0.802 57 | |
DEPs_DEGs_Opposite | -0.821 57 | |
DEPs_NDEGs | 0.020 74 | |
NDEPs_DEGs | 0.123 15 | |
NDEPs_NDEGs | 0.045 00 | |
ALL | 0.073 99 | |
57 d-VS-85 d | DEPs_DEGs | 0.700 65 |
DEPs_DEGs_Same Trend | 0.833 35 | |
DEPs_DEGs_Opposite | -0.573 34 | |
DEPs_NDEGs | 0.225 70 | |
NDEPs_DEGs | 0.356 13 | |
NDEPs_NDEGs | 0.085 44 | |
ALL | 0.221 12 |
Fig. 6 Network of the enriched function for hardening of walnut endocarp The picture shows the visual relationship network among the Terms of the clusters that were enriched the top 20 significantly. For the convenience of drawing,selected the Terms with the best P-value in each cluster,but the number of Term does not exceed 15. In 20 clusters,the total number of Term does not exceed 250. Each node represents a Term. When the member similarity between Term > 0.3,the Term is connected by edges. Different colors in Pic1 represent different clusters,and Term in the same cluster has the same color. The name of the cluster is the name of the term with the most significant statistical significance in a cluster. Different colors in Pic2 represent the conversion value of Term's P-value[Log10(P)]. The darker the color,the higher the significance of Term. A:Phenylpropanoid metabolic process;B:Response to oxidative stress;C:Cell wall organization or biogenesis;D:Response to metal ion;E:Response to temperature stimulus;F:Flavonoid biosynthesis;G:Flavanone biosynthesis,phenylalanine => naringenin;H:Hemicellulose metabolic process;I:Amino sugar and nucleotide sugar metabolism;J:Small molecule biosynthetic process;K:Response to toxic substance;L:Phenylpropanoid catabolic process;M:S-adenosylmethionine biosynthetic process;N:Protein folding;O:Response to water deprivation;P:Coumarin biosynthetic process;Q:Response to UV;R:Starch and sucrose metabolism;S:Cellular response to toxic substance;T:Small molecule catabolic process.
Fig. 8 Expression of three auxin related genes in walnut endocarp at sclerosis stage Different capital indicates there are significant difference in same gene at the 1% level in different periods.
Fig. 9 Expression of 12 genes related to lignin synthesis pathway “*”means that the expression of gene is significant difference between the two regions of endocarp during the same period,and“**”means that the expression of gene is extremely significant difference between the two regions of endocarp during the same period.
[1] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. 2009. MEME SUITE:tools for motif discovery and searching. Nucleic Acids Res, 37 (2):202-208. |
[2] | Bailey T L, Williams N, Misleh C, Li W W. 2006. MEME:discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 34 (2):369-373. |
[3] | Bureau of Statistics of Xinjiang Uygur Autonomous Region. 2016. Xinjiang statistical yearbook. Beijing: China Statistical Press. (in Chinese) |
新疆维吾尔自治区统计局. 2016. 新疆统计年鉴. 北京: 中国统计出版社. | |
[4] |
Hou Y X, Wang X T, Zhu Z J, Sun M X, Li M L, Hou L P. 2020. Expression analysis of genes related to auxin metabolism at different growth stages of Pak Choi. Horticultural Plant Journal, 6 (1):25-33.
doi: 10.1016/j.hpj.2019.12.003 URL |
[5] | Jin Lixin, Chen Menghua, Wang Yulian, Zhang Xuemei, Li Baoguo. 2015. Research progress on walnut shell development. Northern Horticulture,(5):183-187. (in Chinese) |
靳丽鑫, 陈梦华, 王玉莲, 张雪梅, 李保国. 2015. 核桃坚果硬壳发育研究进展. 北方园艺,(5):183-187. | |
[6] | Li Junnan, Yan Xiaojie, Li Shuhang, Zhang Rongshu. 2018. Plants AUX/IAA gene family:research progress. Chinese Agricultural Science Bulletin, 34 (15):89-92. (in Chinese) |
李俊男, 燕晓杰, 李枢航, 张荣沭. 2018. 植物 AUX/IAA基因家族研究进展. 中国农学通报, 34 (15):89-92. | |
[7] |
Lin R Z, Li R Q, Lu A M, Zhu J Y, Chen Z D. 2016. Comparative flower development of Juglans regia, Cyclocarya paliurus and Engelhardia spicata:homology of floral envelopes in Juglandaceae. Botanical Journal of the Linnean Society, 181:279-293.
doi: 10.1111/boj.12413 URL |
[8] |
Pinney K, Polito V S. 1983. English walnut fruit growth and development. Scientia Horticulturae, 21 (1):19-28.
doi: 10.1016/0304-4238(83)90182-6 URL |
[9] | Wang Ping, Lu Shixiong, Liang Guoping, Ma Zonghuan, Li Wenfang, Mao Juan, Chen Baihong. 2019. Bioinformatics identification and expression analysis of Trihelix transcription factor family in apple. Acta Horticulturae Sinica, 46 (11):2082-2098. (in Chinese) |
王萍, 卢世雄, 梁国平, 马宗桓, 李文芳, 毛娟, 陈佰鸿. 2019. 苹果Trihelix转录因子家族生物信息学鉴定与基因表达分析. 园艺学报, 46 (11):2082-2098. | |
[10] |
Wu G L, Liu Q L, Teixeira da Silva J A. 2009. Ultrastructure of pericarp and seed capsule cells in the developing walnut(Juglans regia L.)fruit. South African Journal of Botany, 75 (1):128-136.
doi: 10.1016/j.sajb.2008.09.001 URL |
[11] | Xiao Ling, Xu Yaoping, Zhao Xiangui, Luo Jihua. 1998. The developmental anatomy on the pericarp of Juglans regia L. Acta Botanica Boreali-Occidentalia Sinica,(4):104-107+185-186. (in Chinese) |
肖玲, 胥耀平, 赵先贵, 骆吉花. 1998. 核桃果皮的发育解剖学研究. 西北植物学报,(4):104-107+185-186. | |
[12] | Yu Shangqi, Jia Changlu, Song Yan, Liu Chunhua, Guo Yongcui, Zhang Wentao, Chen Liping, Zhang Rui. 2019. Screening and functional prediction of differential expression genes at lignification stage of endocarp in‘Zhipi’walnut. Journal of Fruit Science, 36 (4):410-420. (in Chinese) |
鱼尚奇, 贾昌路, 宋岩, 刘春花, 郭永翠, 张文涛, 陈立平, 张锐. 2019. 纸皮核桃内果皮硬化期差异表达基因筛选及功能预测. 果树学报, 36 (4):410-420. | |
[13] | Zhang Weiwei, Liu Fuzhong, Zhang Ying, Zhao Zhen, Chen Yuhui, Lian Yong. 2014. Cloning and Characterization of IAA Family Gene SmIAA19 in Eggplant. Acta Horticulturae Sinica, 41 (11):2231-2240. (in Chinese) |
张伟伟, 刘富中, 张映, 赵祯, 陈钰辉, 连勇. 2014. 茄子生长素诱导基因 SmIAA19的克隆和分析. 园艺学报, 41 (11):2231-2240. | |
[14] | Zhao Shugang, Liu Kai, Wen Jing, Wang Hongxia, Zhang Zhihua, Hua Lei. 2019. Effect of GA 3 and 6-BA on the development of walnut shell. Acta Horticulturae Sinica, 46 (11):2119-2128. (in Chinese) |
赵书岗, 刘凯, 文菁, 王红霞, 张志华, 滑磊. 2019. GA 3和6-BA对核桃果壳发育的影响. 园艺学报, 46 (11):2119-2128. | |
[15] | Zheng Yanfu. 1986. Breeding of fine varieties of Xinfeng,Xinguang and Xinlu walnut. Xinjiang Agricultural Sciences,(3):26-27. (in Chinese) |
郑炎甫. 1986. 新丰、新光、新露核桃优良品种的选育. 新疆农业科学,(3):26-27. | |
[16] |
Zheng L W, Gao C, Zhao C D, Zhang L Z, Han M Y, An N, Ren X L. 2019. Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Horticultural Plant Journal, 5 (3):93-108.
doi: 10.1016/j.hpj.2019.04.006 URL |
[17] | Zheng Zhifeng, Zou Ju Chun, Hua Bo, Zhang Hongjian, Wang Rong. 2006. Study on chemical components of walnut shell. Journal of Southwest Forestry University(Natural Sciences),(2):33-36. (in Chinese) |
郑志锋, 邹局春, 花勃, 张宏健, 汪蓉. 2006. 核桃壳化学组分的研究. 西南林学院学报,(2):33-36. | |
[18] |
Zhou Y Y, Zhou B, Pache L, Chang M, Khodabakhshi A H, Tanaseichuk O, Benner C, Chanda S K. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10 (1):1523-1533.
doi: 10.1038/s41467-019-09234-6 URL |
[1] | JIANG Yu, TU Xunliang, and HE Junrong. Analysis of Differential Expression Genes in Leaves of Leaf Color Mutant of Chinese Orchid [J]. Acta Horticulturae Sinica, 2023, 50(2): 371-381. |
[2] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[3] | ZHENG Qingbo, BAO Zeyang, LAN Qingqing, ZHOU Yuwen, ZHOU Yufei, ZHENG Caixia, and LI Xu, . Advances in Studies on Adventitious Root Formation by Juvenile- and Auxin-determined [J]. Acta Horticulturae Sinica, 2023, 50(2): 441-450. |
[4] | ZHAO Xueyan, WANG Qi, WANG Li, WANG Fangyuan, WANG Qing, LI Yan. Comparative Transcriptome Analysis of Differential Expression in Different Tissues of Corydalis yanhusuo [J]. Acta Horticulturae Sinica, 2023, 50(1): 177-187. |
[5] | XING Wenxi, WANG Zeliang, WU Ningzi, LI Pijun, and WANG Jing. An Improved Walnut Cultivar‘Yanyuanzao’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 33-34. |
[6] | WANG Yan, LIU Zhenshan, ZHANG Jing, YANG Pengfei, MA Lan, WANG Zhiyi, TU Hongxia, YANG Shaofeng, WANG Hao, CHEN Tao, WANG Xiaorong. Inheritance Trend of Flower and Fruit Traits in F1 Progenies of Chinese Cherry [J]. Acta Horticulturae Sinica, 2022, 49(9): 1853-1865. |
[7] | HU Ruolin, WANG Jiali, YANG Huiqin, YUAN Chao, NIU Yi, TANG Qinglin, WEI Dayong, TIAN Shibing, YANG Yang, WANG Zhimin. Cloning and Functional Analysis of Auxin Response Factor Gene SmARF5 in Solanum melongena [J]. Acta Horticulturae Sinica, 2022, 49(9): 1895-1906. |
[8] | XUE Weiwen, ZHOU Xianfang, ZHANG Zhaoqi, FANG Fang. Advances in Lignin Accumulation and Its Regulation on the Quality of Postharvest Fruit and Vegetables [J]. Acta Horticulturae Sinica, 2022, 49(9): 2023-2036. |
[9] | ZHOU Xuzixin, YANG Wei, MAO Meiqin, XUE Yanbin, MA Jun. Identification of Pigment Components and Key Genes in Carotenoid Pathway in Mutants of Chimeric Ananas comosus var. bracteatus [J]. Acta Horticulturae Sinica, 2022, 49(5): 1081-1091. |
[10] | SHEN Nan, ZHANG Jingcheng, WANG Chengchen, BIAN Yinbing, XIAO Yang. Studies on Transcriptome During Fruiting Body Development of Lentinula edodes [J]. Acta Horticulturae Sinica, 2022, 49(4): 801-815. |
[11] | XIA Ming, LI Jingwei, LUO Zhangrui, ZU Guidong, WANG Ya, ZHANG Wanping. Research on Mechanism of Exogenous Melatonin Effects on Radish Growth and Resistence to Alternaria brassicae [J]. Acta Horticulturae Sinica, 2022, 49(3): 548-560. |
[12] | DENG Jiao, SU Mengyue, LIU Xuelian, OU Kefang, HU Zhengrong, YANG Pingfang. Transcriptome Analysis Revealed the Formation Mechanism of Floral Color of Lotus‘Dasajin’with Bicolor Petal [J]. Acta Horticulturae Sinica, 2022, 49(2): 365-377. |
[13] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[14] | WANG Ronghua, WANG Shubin, LIU Shuantao, LI Qiaoyun, ZHANG Zhigang, WANG Lihua, ZHAO Zhizhong. Transcriptome Analysis of Waxy Near-isogenic Lines in Chinese Cabbage Floral Axis [J]. Acta Horticulturae Sinica, 2022, 49(1): 62-72. |
[15] | WANG Cuixiang, LIANG Yan, HAN Chuanming, SUN Chao, MENG Xiaoye, TAN Shuling, ZHANG Yanxing, CHEN Aichang, and CUI Peng. A New Juglans regia Cultivar‘Lumian 2’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2801-2802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd