Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (3): 548-560.doi: 10.16420/j.issn.0513-353x.2021-0423
• Research Papers • Previous Articles Next Articles
XIA Ming1,2, LI Jingwei1,2, LUO Zhangrui2, ZU Guidong3, WANG Ya4, ZHANG Wanping1,2,*()
Received:
2021-05-06
Revised:
2021-09-09
Online:
2022-03-25
Published:
2022-03-25
Contact:
ZHANG Wanping
E-mail:1226190368@qq.com
CLC Number:
XIA Ming, LI Jingwei, LUO Zhangrui, ZU Guidong, WANG Ya, ZHANG Wanping. Research on Mechanism of Exogenous Melatonin Effects on Radish Growth and Resistence to Alternaria brassicae[J]. Acta Horticulturae Sinica, 2022, 49(3): 548-560.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0423
基因名 Gene ID | 基因名 Gene name | 描述 Description | KEGG通路ID KEGG pathway ID | 引物序列(5′-3′) Primer sequence |
---|---|---|---|---|
108828933 | Aos1 | 丙二烯氧化物合酶,叶绿体 Allene oxide synthase,chloroplastic | Ko00592:α-亚麻酸代谢 α-Linolenic acid metabolism | F:ACCTACATGCCCTCGACGGATC R:TTGGCGTGTTTCGGCTCTGATG |
108859130 | Prp1 | 致病相关类蛋白1 Pathogenesis-related protein 1-like | Ko04626: 植物—病菌互作 Plant-pathogen interaction | F:AACCAAGCACGACAGGCAGTAAG R:ACTCTTAGTCGGTCGGCGTAGC |
108818819 | At-like | 锌指类蛋白ZAT10 Zinc finger protein ZAT10-like | 无Naught | F:TCCACCACCAGAAGAACCTCACC R:GCACTTGTAGGACGACTTCTCAGC |
108834050 | Jub1-like | JUNGBRUNNEN类转录因子1 Transcription factor JUNGBRUNNEN 1-like | Ko04141:内质网中的蛋白质加工Protein processing in endoplasmic reticulum | F:CACAAGCCACACGAGCCACAG R:AATCTCCACCGTCGAGGTTCCC |
108862765 | Edr1 | 丝氨酸/苏氨酸蛋白激酶EDR1 Serine/threonine-protein kinase EDR1 | 无Naught | F:TTCGCAGACCTTAACCCGTTTCAG R:TGCAGGAGACTTACCAACCAGAGG |
108848467 | Ubr | 紫外线B受体UVR8亚型X1 Ultraviolet-B receptor UVR8 isoform X1 | Ko04120:泛素介导的蛋白质水解 Ubiquitin mediated proteolysis | F:AGTCACCGTTCTCCTCCTTCTCG R:TTGTTGCGTGGACTGCTCGATTAG |
108860024 | Usp | 普遍应激蛋白A样蛋白 Universal stress protein A-like protein | 无Naught | F:ACGAAAGCGAAGAGAGCATGGAAG R:CCCTGCGGTGTCAATGGAAGAG |
108807199 | Ech-like | 类内源几丁质酶At2g43590 Endochitinase At2g43590-like | Ko00520:氨基糖和核苷酸糖代谢 Amino sugar and nucleotide sugar metabolism | F:CCTCGGGCGTATGTTGTAGTCAG R:GCAAGGACCTGATCGGCAACC |
108847559 | Actin-1 Actin-2 | actin-7-like actin-7-like | 无Naught 无Naught | F:GCATCACACTTTCTACAAC R:CCTGGATAGCAACATACAT F:GCAAGAGCTGGATACCGCAAAG R:CGATGAGCGATGGCTGGAAC |
Table 1 The RT-qPCR Primers and their sequences for DEGs
基因名 Gene ID | 基因名 Gene name | 描述 Description | KEGG通路ID KEGG pathway ID | 引物序列(5′-3′) Primer sequence |
---|---|---|---|---|
108828933 | Aos1 | 丙二烯氧化物合酶,叶绿体 Allene oxide synthase,chloroplastic | Ko00592:α-亚麻酸代谢 α-Linolenic acid metabolism | F:ACCTACATGCCCTCGACGGATC R:TTGGCGTGTTTCGGCTCTGATG |
108859130 | Prp1 | 致病相关类蛋白1 Pathogenesis-related protein 1-like | Ko04626: 植物—病菌互作 Plant-pathogen interaction | F:AACCAAGCACGACAGGCAGTAAG R:ACTCTTAGTCGGTCGGCGTAGC |
108818819 | At-like | 锌指类蛋白ZAT10 Zinc finger protein ZAT10-like | 无Naught | F:TCCACCACCAGAAGAACCTCACC R:GCACTTGTAGGACGACTTCTCAGC |
108834050 | Jub1-like | JUNGBRUNNEN类转录因子1 Transcription factor JUNGBRUNNEN 1-like | Ko04141:内质网中的蛋白质加工Protein processing in endoplasmic reticulum | F:CACAAGCCACACGAGCCACAG R:AATCTCCACCGTCGAGGTTCCC |
108862765 | Edr1 | 丝氨酸/苏氨酸蛋白激酶EDR1 Serine/threonine-protein kinase EDR1 | 无Naught | F:TTCGCAGACCTTAACCCGTTTCAG R:TGCAGGAGACTTACCAACCAGAGG |
108848467 | Ubr | 紫外线B受体UVR8亚型X1 Ultraviolet-B receptor UVR8 isoform X1 | Ko04120:泛素介导的蛋白质水解 Ubiquitin mediated proteolysis | F:AGTCACCGTTCTCCTCCTTCTCG R:TTGTTGCGTGGACTGCTCGATTAG |
108860024 | Usp | 普遍应激蛋白A样蛋白 Universal stress protein A-like protein | 无Naught | F:ACGAAAGCGAAGAGAGCATGGAAG R:CCCTGCGGTGTCAATGGAAGAG |
108807199 | Ech-like | 类内源几丁质酶At2g43590 Endochitinase At2g43590-like | Ko00520:氨基糖和核苷酸糖代谢 Amino sugar and nucleotide sugar metabolism | F:CCTCGGGCGTATGTTGTAGTCAG R:GCAAGGACCTGATCGGCAACC |
108847559 | Actin-1 Actin-2 | actin-7-like actin-7-like | 无Naught 无Naught | F:GCATCACACTTTCTACAAC R:CCTGGATAGCAACATACAT F:GCAAGAGCTGGATACCGCAAAG R:CGATGAGCGATGGCTGGAAC |
褪黑素/(μmol · L-1) Melatonin | 株高/cm Plant height | 茎粗/mm Stem diameter | 鲜质量/g Fresh weight | 干质量/g Dry weight |
---|---|---|---|---|
ddH2O(对照Control) | 13.57 ± 0.19 d | 3.37 ± 0.04 cd | 126.33 ± 0.93 d | 10.75 ± 0.05 d |
50 | 14.47 ± 0.18 c | 3.73 ± 0.03 b | 130.07 ± 0.87 c | 11.81 ± 0.08 c |
100 | 15.33 ± 0.22 b | 3.90 ± 0.03 ab | 139.17 ± 0.83 b | 12.34 ± 0.06 b |
500 | 16.11 ± 0.10 a | 4.05 ± 0.07 a | 156.27 ± 0.83 a | 12.76 ± 0.04 a |
1 000 | 14.79 ± 0.14 c | 3.52 ± 0.05 c | 126.53 ± 0.45 d | 10.78 ± 0.16 d |
1 500 | 12.91 ± 0.08 e | 3.29 ± 0.03 d | 123.61 ± 0.66 e | 10.41 ± 0.10 e |
Table 2 Effects of exogenous melatonin on growth indexes of‘Jiangnan Yuanbai’radish seedlings
褪黑素/(μmol · L-1) Melatonin | 株高/cm Plant height | 茎粗/mm Stem diameter | 鲜质量/g Fresh weight | 干质量/g Dry weight |
---|---|---|---|---|
ddH2O(对照Control) | 13.57 ± 0.19 d | 3.37 ± 0.04 cd | 126.33 ± 0.93 d | 10.75 ± 0.05 d |
50 | 14.47 ± 0.18 c | 3.73 ± 0.03 b | 130.07 ± 0.87 c | 11.81 ± 0.08 c |
100 | 15.33 ± 0.22 b | 3.90 ± 0.03 ab | 139.17 ± 0.83 b | 12.34 ± 0.06 b |
500 | 16.11 ± 0.10 a | 4.05 ± 0.07 a | 156.27 ± 0.83 a | 12.76 ± 0.04 a |
1 000 | 14.79 ± 0.14 c | 3.52 ± 0.05 c | 126.53 ± 0.45 d | 10.78 ± 0.16 d |
1 500 | 12.91 ± 0.08 e | 3.29 ± 0.03 d | 123.61 ± 0.66 e | 10.41 ± 0.10 e |
褪黑素/(μmol · L-1) Melatonin | 叶片褪黑素含量/(ng · mL-1) Melatonin content of leaf | SPAD | H2O2含量/(mmol · g-1 FW) H2O2 content | APX活性/(μmol · g-1 FW) APX activity |
---|---|---|---|---|
ddH2O(对照Control) | 14.36 ± 1.12 c | 32.66 ± 0.54 d | 7.35 ± 0.12 a | 0.372 ± 0.009 e |
50 | — | 34.98 ± 0.24 c | 6.37 ± 0.08 b | 0.551 ± 0.037 d |
100 | — | 36.94 ± 0.23 b | 5.64 ± 0.08 c | 0.752 ± 0.017 c |
500 | 19.23 ± 0.60 b | 38.49 ± 0.27 a | 4.69 ± 0.17 d | 1.070 ± 0.023 a |
1 000 | — | 35.58 ± 0.06 c | 5.73 ± 0.06 c | 0.863 ± 0.034 b |
1 500 | 25.04 ± 0.82 a | 32.79 ± 0.63 d | 6.51 ± 0.14 b | 0.422 ± 0.005 e |
Table 3 Effects of exogenous melatonin treatment on melatonin,chlorophyll,H2O2 content and APX activity in leaves of ‘Jiangnan Yuanbai’radish seedlings
褪黑素/(μmol · L-1) Melatonin | 叶片褪黑素含量/(ng · mL-1) Melatonin content of leaf | SPAD | H2O2含量/(mmol · g-1 FW) H2O2 content | APX活性/(μmol · g-1 FW) APX activity |
---|---|---|---|---|
ddH2O(对照Control) | 14.36 ± 1.12 c | 32.66 ± 0.54 d | 7.35 ± 0.12 a | 0.372 ± 0.009 e |
50 | — | 34.98 ± 0.24 c | 6.37 ± 0.08 b | 0.551 ± 0.037 d |
100 | — | 36.94 ± 0.23 b | 5.64 ± 0.08 c | 0.752 ± 0.017 c |
500 | 19.23 ± 0.60 b | 38.49 ± 0.27 a | 4.69 ± 0.17 d | 1.070 ± 0.023 a |
1 000 | — | 35.58 ± 0.06 c | 5.73 ± 0.06 c | 0.863 ± 0.034 b |
1 500 | 25.04 ± 0.82 a | 32.79 ± 0.63 d | 6.51 ± 0.14 b | 0.422 ± 0.005 e |
Fig. 2 Effects of melatonin treatment of different concentration on subcellular structure of radish mesophyll cell V:Vacuole;CW:Cell wall;C:Chloroplast;S:Starch grain.
基因ID Gene ID | 基因名 Gene name | 褪黑素处理(μmol · L-1) Melatonin treatment | Log2比值 Log2 Ratio | ||||
---|---|---|---|---|---|---|---|
ddH2O | 500 | 1 500 | 500 vs ddH2O | 1 500 vs ddH2O | 500 vs 1 500 | ||
108828933 | Aos1 | 6.04 | 37.51 | 4.12 | 6.21 | 0.68 | 9.10 |
108859130 | Prp1 | 12.48 | 65.54 | 29.11 | 5.25 | 2.33 | 2.25 |
108818819 | Zat-like | 17.79 | 41.10 | 18.44 | 2.30 | 1.04 | 2.23 |
108834050 | Jub1-like | 0.05 | 0.65 | 0.44 | 13.00 | 8.80 | 1.47 |
108862765 | Edr1 | 6.34 | 6.70 | 4.18 | 1.06 | 0.65 | 1.60 |
108848467 | Ubr | 2.65 | 3.88 | 2.13 | 1.46 | 0.80 | 1.82 |
108860024 | Usp | 180.23 | 268.96 | 9.09 | 1.49 | 0.05 | 29.58 |
108807199 | Ech-like | 251.88 | 670.56 | 5.13 | 2.66 | 0.02 | 130.71 |
Table 4 RNA-seq FPKM value of DEGs
基因ID Gene ID | 基因名 Gene name | 褪黑素处理(μmol · L-1) Melatonin treatment | Log2比值 Log2 Ratio | ||||
---|---|---|---|---|---|---|---|
ddH2O | 500 | 1 500 | 500 vs ddH2O | 1 500 vs ddH2O | 500 vs 1 500 | ||
108828933 | Aos1 | 6.04 | 37.51 | 4.12 | 6.21 | 0.68 | 9.10 |
108859130 | Prp1 | 12.48 | 65.54 | 29.11 | 5.25 | 2.33 | 2.25 |
108818819 | Zat-like | 17.79 | 41.10 | 18.44 | 2.30 | 1.04 | 2.23 |
108834050 | Jub1-like | 0.05 | 0.65 | 0.44 | 13.00 | 8.80 | 1.47 |
108862765 | Edr1 | 6.34 | 6.70 | 4.18 | 1.06 | 0.65 | 1.60 |
108848467 | Ubr | 2.65 | 3.88 | 2.13 | 1.46 | 0.80 | 1.82 |
108860024 | Usp | 180.23 | 268.96 | 9.09 | 1.49 | 0.05 | 29.58 |
108807199 | Ech-like | 251.88 | 670.56 | 5.13 | 2.66 | 0.02 | 130.71 |
基因ID Gene ID | 基因名 Gene name | 褪黑素处理(μmol · L-1) Melatonin treatment | Log2比值 Log2 Ratio | ||||
---|---|---|---|---|---|---|---|
ddH2O | 500 | 1 500 | 500 vs ddH2O | 1 500 vs ddH2O | 500 vs 1 500 | ||
108828933 | Aos1 | 0.95 ± 0.14 a | 1.19 ± 0.13 a | 0.21 ± 0.01 b | 1.25 | 0.22 | 5.66 |
108859130 | Prp1 | 0.12 ± 0.14 c | 1.26 ± 0.03 a | 0.65 ± 0.00 b | 10.50 | 5.41 | 1.93 |
108818819 | Zat-like | 1.02 ± 0.15 b | 1.92 ± 0.11 a | 1.11 ± 0.01 b | 1.88 | 1.08 | 1.79 |
108834050 | Jub1-like | 2.30 ± 0.10 b | 3.24 ± 0.29 a | 2.55 ± 0.07 b | 1.41 | 1.11 | 1.27 |
108862765 | Edr1 | 1.36 ± 0.01 b | 2.33 ± 0.18 a | 1.14 ± 0.06 b | 1.71 | 0.84 | 2.04 |
108848467 | Ubr | 0.10 ± 0.003 b | 0.21 ± 0.01 a | 0.07 ± 0.002 c | 2.10 | 0.70 | 3.00 |
108860024 | Usp | 16.21 ± 0.65 b | 23.48 ± 1.13 a | 12.66 ± 0.12 c | 1.45 | 0.78 | 1.85 |
108807199 | Ech-like | 1.16 ± 0.04 a | 1.31 ± 0.08 a | 1.14 ± 0.11 a | 1.12 | 0.98 | 1.14 |
Table 5 RT-qPCR verification of DEGs
基因ID Gene ID | 基因名 Gene name | 褪黑素处理(μmol · L-1) Melatonin treatment | Log2比值 Log2 Ratio | ||||
---|---|---|---|---|---|---|---|
ddH2O | 500 | 1 500 | 500 vs ddH2O | 1 500 vs ddH2O | 500 vs 1 500 | ||
108828933 | Aos1 | 0.95 ± 0.14 a | 1.19 ± 0.13 a | 0.21 ± 0.01 b | 1.25 | 0.22 | 5.66 |
108859130 | Prp1 | 0.12 ± 0.14 c | 1.26 ± 0.03 a | 0.65 ± 0.00 b | 10.50 | 5.41 | 1.93 |
108818819 | Zat-like | 1.02 ± 0.15 b | 1.92 ± 0.11 a | 1.11 ± 0.01 b | 1.88 | 1.08 | 1.79 |
108834050 | Jub1-like | 2.30 ± 0.10 b | 3.24 ± 0.29 a | 2.55 ± 0.07 b | 1.41 | 1.11 | 1.27 |
108862765 | Edr1 | 1.36 ± 0.01 b | 2.33 ± 0.18 a | 1.14 ± 0.06 b | 1.71 | 0.84 | 2.04 |
108848467 | Ubr | 0.10 ± 0.003 b | 0.21 ± 0.01 a | 0.07 ± 0.002 c | 2.10 | 0.70 | 3.00 |
108860024 | Usp | 16.21 ± 0.65 b | 23.48 ± 1.13 a | 12.66 ± 0.12 c | 1.45 | 0.78 | 1.85 |
108807199 | Ech-like | 1.16 ± 0.04 a | 1.31 ± 0.08 a | 1.14 ± 0.11 a | 1.12 | 0.98 | 1.14 |
[1] | Acuna-Castroviejo D, Escames G, Rodriguez M I, Lopez L C. 2007. Melatonin role in the mitochondrial function. Frontiers in Bioscience A Journal & Virtual Library, 12(4):947-963. |
[2] | Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong T B, Niyogi K K, Ulm R, Michel G C. 2017. Uv-b photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, 113(51):14864-14869. |
[3] |
Alshareef N O, Wang J Y, Ali S, Babili S A, Tester M, Schmockel S M. 2019. Overexpression of the NAC transcription factor JUNGBRUNNEN1(JUB1)increases salinity tolerance in tomato. Plant Physiology and Biochemistry, 140:113-121.
doi: S0981-9428(19)30172-X pmid: 31100704 |
[4] |
Arnao M B, Hernandez-Ruiz J. 2015. Functions of melatonin in plants:a review. Journal of Pineal Research, 59(2):133-150.
doi: 10.1111/jpi.12253 URL |
[5] |
Arnao M B, Hernández-Ruiz J. 2018. Melatonin:A new plant hormone and/or a plant master regulator? Trends in Plant Science, 24(1):38-49.
doi: 10.1016/j.tplants.2018.10.010 URL |
[6] | Bian Fenge, Tang Cuihua, Xing Hao, Xu Yuhan, Huang Lipeng, Zhang Xue, Lu Wenli, Du Yuanpeng, Zhai Heng, Sun Yongjiang. 2018. Effect of exogenous melatonin on endogenous melatonin and chlorophyll fluorescence characteristics in grapevine under drought stress. Plant Physiology Communications, 54(10):1615-1623. (in Chinese) |
卞凤娥, 唐翠花, 邢浩, 徐玉涵, 黄丽鹏, 张雪, 陆文利, 杜远鹏, 翟衡, 孙永江. 2018. 外源褪黑素对干旱胁迫下葡萄内源褪黑素及叶绿素荧光特性的影响. 植物生理学报, 54(10):1615-1623. | |
[7] |
Botelho R V, Roberti R, Tessarin P, Garcia-Mina J M, Rombolà A D. 2016. Physiological responses of grapevines to biodynamic management. Renewable Agriculture and Food Systems, 31:402-413.
doi: 10.1017/S1742170515000320 URL |
[8] | Browse J. 2009. Jasmonate passes muster:a receptor and targets for the defense hormone. Annual Review of Plant Molecular Biology, 60:183-205. |
[9] |
Butsanets P A, Baik A S, Shugaev A G, Kuznetsov V V. 2019. Melatonin inhibits peroxide production in plant mitochondria. Doklady Biochemistry and Biophysics, 489(1):367-369.
doi: 10.1134/S1607672919060036 pmid: 32130601 |
[10] |
Chen K, Sun X, Amombo E, Zhu Q, Zhao Z, Chen L, Xu Q, Fu J. 2014. High correlation between thermotolerance and photosystem II activity in tall fescue. Photosynthesis Research, 122:305-314.
doi: 10.1007/s11120-014-0035-3 pmid: 25145554 |
[11] | Chen L, Fan J B, Hu Z, Huang X, Erick A, Liu A, Bi A Y, Chen K, Xie Y, Fu J M. 2017. Melatonin is involved in regulation of bermudagrass growth and development and response to low K+ stress. Frontiers in Plan Science, 8:2038-2047. |
[12] |
Davey M P, Susanti N I, Wargent J J, Findlay J E, Quick W P, Paul N D, Jenkins G I. 2012. The UV-B photoreceptor uvr8 promotes photosynthetic efficiency in Arabidopsis thaliana exposed to elevated levels of UV-B. Photosynthesis Research, 114(2):121-131.
doi: 10.1007/s11120-012-9785-y URL |
[13] | Ding W, Zhao Y T, Xu J W, Zhao P, Li T, Ma H X, Russel J, Yu X Y. 2018. Melatonin:a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis. Food and Chemical Toxicology, 66:7701-7711. |
[14] | Fan J B, Hu Z R, Xie Y, Chan Z L, Chen K, Amombo E, Chen L, Fu J M. 2015. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Frontiers in Plant Science, 6:925-939. |
[15] | Fonseca S, Chico J M, Solano R. 2009. The jasmonate pathway:the ligand,the receptor and the core signalling module. Current Opinion of Plant Molecular Biology, 12:539-547. |
[16] |
Fu J J, Wu Y, Miao Y J, Xu Y M, Zhao E H, Wang J, Sun H E, Liu Q, Xue Y W, Xu Y F, Hu T M. 2017. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA dependent and ABA-independent pathways. Scientific Reports, 7:39865-39876.
doi: 10.1038/srep39865 URL |
[17] |
Gu Q, Chen Z P, Yu X L, Cui W T, Pan J C, Zhao G, Xu S, Wang R, Shen W B. 2017. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microrna-mediated redox homeostasis. Plant Science, 261(17):28-37.
doi: 10.1016/j.plantsci.2017.05.001 URL |
[18] |
Hu Z R, Fan J B, Chen K, Amombo E, Chen L, Fu J M. 2016. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. Photosynthesis Research, 128:59-72.
doi: 10.1007/s11120-015-0199-5 URL |
[19] |
Jarolim K, Favero D G, Pahlke G, Dostal V, Zimmermann K, Heiss E, Ellmer D, Stark T D, Hofmann T, Marko D. 2017. Activation of the Nrf2-ARE pathway by the Alternaria alternata mycotoxins altertoxin I and II. Archives of Toxicology, 91:203-216.
doi: 10.1007/s00204-016-1726-7 URL |
[20] |
Jopcik M, Moravcikova J, Matusikova I, Bauer M, Libantova J. 2016. Structural and functional characterisation of a classⅠendochitinase of the carnivorous sundew(Drosera rotundifolia L.). Planta, 245(2):1-15.
doi: 10.1007/s00425-016-2607-2 URL |
[21] | Jung Y J, Melencion S M B, Lee E S, Park J H, Alinapon C V, Oh H T, Yun D J, Chi Y H, Lee S Y. 2015. Universal stress protein exhibits a redox-dependent Chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Frontiers in Plant Science, 6:1141-1152. |
[22] | King S R. 1994. Screening,selection,and genetics of resistance to Alternaria diseases in Brassica oleracea[Ph. D. Dissertation]. New York:Cornell University. |
[23] |
Lee H Y, Back K. 2016. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. Journal of Pineal Research, 60:327-335.
doi: 10.1111/jpi.12314 URL |
[24] |
Lee H Y, Back K. 2017. Melatonin is required for H2O2 and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. Journal of Pineal Research, 62:e12379-12421.
doi: 10.1111/jpi.2017.62.issue-2 URL |
[25] | Lee H Y, Byeon Y, Back K. 2014. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. Journal of Pineal Reserch, 57:262-268. |
[26] |
Lee H Y, Byeon Y, Tan D X, Reiter R J, Back K. 2015. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. Journal of Pineal Research, 58:291-299.
doi: 10.1111/jpi.12214 URL |
[27] | Li Cheng. 2019. Mechanism of melatonin enhancing the resistance of upland cotton to Verticillium wilt[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
李诚. 2019. 褪黑素增强陆地棉黄萎病抗性的机理研究[博士论文]. 杭州: 浙江大学. | |
[28] |
Li H R, Li Y X, Deng H, Sun X C, Wang A Q, Tang X F, Gao Y F, Zhang N, Wang L, Yang S Z, Liu Y S, Wang S H. 2018. Tomato UV-B receptor SIUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SLGLK2. Scientific Reports, 8(1):6097-6109.
doi: 10.1038/s41598-018-24309-y URL |
[29] |
Lin Z F, Alexander L, Hackett R, Grierson D. 2008. Lectr2,a CTR1-like protein kinase from tomato,plays a role in ethylene signalling,development and defence. The Plant Journal, 54:1083-1093.
doi: 10.1111/j.1365-313X.2008.03481.x URL |
[30] |
Liu C X, Chen L L, Zhao R R, Li R, Zhang S J, Yu W Q, Sheng J P, Shen L. 2019. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. Journal of Agricultural And Food Chemistry, 67(22):6116-6124.
doi: 10.1021/acs.jafc.9b00058 URL |
[31] | Liu Jianlong. 2019. Regulatory function of exogenous melatonin on fruit development,postharvest fruit quality and ring rot disease resistance in pears[Ph. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
刘建龙. 2019. 外源褪黑素对梨果实发育、采后品质和抗轮纹病的影响及其调控机制研究[博士论文]. 杨凌: 西北农林科技大学. | |
[32] | Mehterov N, Balazadeh S, Hille J, Toneva V, Mueller-Roeber B, Gechev T. 2012. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time pcr analysis of ros marker and antioxidant genes. Plant Physiology & Biochemistry, 59(2):20-29. |
[33] |
Nawaz M A, Jiao Y Y, Chen C, Shireen F, Zheng Z H, Imtiaz M, Bie Z L, Huang Y. 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology, 220:115-127.
doi: 10.1016/j.jplph.2017.11.003 URL |
[34] | Niu J S, Zhang L N, Hong D F, Wang Y H. 2005. Cloning,characterization and expression of wheat EDR1(enhanced disease resistance)gene. Journal of Plant Physiology and Molecular Biology, 31(5):477-484. |
[35] | Norman-Setterblad C, Vidal S, Palva E T. 2000. Interacting signal pathways control defense gene expression in arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Molecular Plant Pathology, 13:430-438. |
[36] |
Pajerowska-Mukhtar K M, Mukhtar M S, Guex N, Halim V A, Rosahl S, Gebhardt S C. 2008. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta, 228(2):293-306.
doi: 10.1007/s00425-008-0737-x pmid: 18431595 |
[37] | Pinto V E, Patriarca A. 2017. Alternaria species and their associated mycotoxins. Methods in Molecular Biology, 1542:13-32. |
[38] | Ren S X, Rutto L, Katuuramu D. 2019. Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in arabidopsis thaliana. PLoS ONE, 14(8):e0221687-221706. |
[39] |
Reymond P, Farmer E E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 1:404-411.
pmid: 10066616 |
[40] |
Rychlik M, Zappa G, Anorga L, Belc N, Isabel C, Olivier F X D, Lenka K, Ogrinc N, Marga C O, Presser K, Zoani C. 2018. Ensuring food integrity by metrology and FAIR data principles. Frontiers in Chemistry, 6:49-56.
doi: 10.3389/fchem.2018.00049 URL |
[41] | Sinha P, Pazhamala L T, Singh V K, Saxena R K, Krishnamurthy L, Azam S, Khan A W, Varshney R K. 2014. Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeonpea(Cajanus cajan L.). Frontiers in Plant science, 6:1065-1075. |
[42] | Szafránska K, Reiter R J, Posmyk M M. 2016. Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Frontiers in Plant Science, 7(575):1663-1675. |
[43] |
Turk H, Genisel M. 2020. Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants-sciencedirect. Cryobiology, 92:76-85.
doi: 10.1016/j.cryobiol.2019.11.006 URL |
[44] | Wang Tan. 2012. Studies on Identification and control of the causal organism of black spot,a new Ligustrum × vicaryi Disease[M. D. Dissertation]. Nanning: Guangxi University. (in Chinese) |
王坦. 2012. 金叶女贞新病害—黑斑病的病原鉴定及其防治研究[硕士论文]. 南宁: 广西大学. | |
[45] | Wang X, Li F, Chen Z Y, Yang B X, Zhou S L. 2020. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. Journal of Proteomics, https://doi.org/10.1016/j.jprot.2020.104064. |
[46] | Wei Y X, Hu W, Wang Q N, Zeng H Q, Li X L, Yan Y, Reiter R J, He C Z, Shi H T. 2017. Identification,transcriptional and functional analysis of heat-shock protein 90s in banana(Musa acuminata L.)highlight their novel role in melatonin-mediated plant response to Fusarium wilt. Journal of Pineal Research, 62:e12367-e12404. |
[47] | Wei Y X, Zeng H Q, Hu W, Chen L Z, He C Z, Shi H T. 2016. Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice. Frontiers in Plant Science, 7:676-691. |
[48] |
Wu A H, Allu A D, Garapati P, Siddiqui H, Dortay H, Zanor M I, Asensi-Fabado M A, Munne-Bosch S, Antonio C, Tohge T, Fernie A R, Kaufmann K, Xue G P, Mueller-Roeber B, Balazadeh S. 2012. JUNGBRUNNEN1,a reactive oxygen species-responsive NAC transcription factor,regulates longevity in Arabidopsis. Plant Cell, 24(2):482-506.
doi: 10.1105/tpc.111.090894 URL |
[49] | Xie Y J, Mao Y, Lai D W, Zhang W, Shen W B. 2012. H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS ONE, 7(11):e49800-e49812. |
[50] |
Xu L L, Xiang G Q, Sun Q H, Ni Y, Jin Z X, Gao S W, Yao Y X. 2019. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Horticulture Research, 6:114-128.
doi: 10.1038/s41438-019-0197-4 URL |
[51] | Yin L H, Wang P, Li M J, Ke X W, Li C Y, Liang D, Wu S, Ma X L, Li C, Zou Y J, Ma F W. 2013. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. Journal of Pineal Reserch, 54:426-434. |
[52] |
Yoeun S, Cho K, Han O. 2018. Structural evidence for the substrate channeling of rice allene oxide cyclase in biologically analogous nazarov reaction. Frontiers in Chemistry, 6:500-511.
doi: 10.3389/fchem.2018.00500 URL |
[53] |
Zhang S M, Zheng X Z, Reiter R J, Feng S, Wang Y, Liu S, Jin L, Li Z G, Datla R, Ren M Z. 2017. Melatonin attenuates potato late blight by disrupting cell growth,stress tolerance,fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Frontiers in Plant Science, 8:1993-2012.
doi: 10.3389/fpls.2017.01993 URL |
[54] | Zhao D K, Wang H P, Chen S Y, Yu D Q, Reiter R J. 2020. Phytomelatonin:an emerging regulator of plant biotic stress resistance. Trends in Plant Science, 13:2027-2040. |
[55] | Zhao Shen. 2010. Cloning and expression analysis of VpUSP gen in chinese wild Vitis pseudoreticulata[Ph. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
赵莘. 2010. 中国野生华东葡萄抗白粉病基因(VpUSP)克隆及表达分析[博士论文]. 杨凌: 西北农林科技大学. |
[1] | JIANG Yu, TU Xunliang, and HE Junrong. Analysis of Differential Expression Genes in Leaves of Leaf Color Mutant of Chinese Orchid [J]. Acta Horticulturae Sinica, 2023, 50(2): 371-381. |
[2] | ZHAO Xueyan, WANG Qi, WANG Li, WANG Fangyuan, WANG Qing, LI Yan. Comparative Transcriptome Analysis of Differential Expression in Different Tissues of Corydalis yanhusuo [J]. Acta Horticulturae Sinica, 2023, 50(1): 177-187. |
[3] | WANG Xiaoling, QIU Xiaojing, LIU Shuyi, LI Zhihui, LI Xumao, MAO Yongmin, and SHEN Lianying. A New Kernel Used Sour Jujube Cultivar‘Liyuan Zhenzhu 4’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 59-60. |
[4] | XIAO Xuechen, LIU Mengyu, JIANG Mengqi, CHEN Yan, XUE Xiaodong, ZHOU Chengzhe, WU Xingjian, WU Junnan, GUO Yinsheng, YEH Kaiwen, LAI Zhongxiong, LIN Yuling. Whole-genome Identification and Expression Analysis of SNAT,ASMT and COMT Families of Melatonin Synthesis Pathway in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(5): 1031-1046. |
[5] | ZHOU Xuzixin, YANG Wei, MAO Meiqin, XUE Yanbin, MA Jun. Identification of Pigment Components and Key Genes in Carotenoid Pathway in Mutants of Chimeric Ananas comosus var. bracteatus [J]. Acta Horticulturae Sinica, 2022, 49(5): 1081-1091. |
[6] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[7] | SHEN Nan, ZHANG Jingcheng, WANG Chengchen, BIAN Yinbing, XIAO Yang. Studies on Transcriptome During Fruiting Body Development of Lentinula edodes [J]. Acta Horticulturae Sinica, 2022, 49(4): 801-815. |
[8] | DENG Jiao, SU Mengyue, LIU Xuelian, OU Kefang, HU Zhengrong, YANG Pingfang. Transcriptome Analysis Revealed the Formation Mechanism of Floral Color of Lotus‘Dasajin’with Bicolor Petal [J]. Acta Horticulturae Sinica, 2022, 49(2): 365-377. |
[9] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[10] | WANG Ronghua, WANG Shubin, LIU Shuantao, LI Qiaoyun, ZHANG Zhigang, WANG Lihua, ZHAO Zhizhong. Transcriptome Analysis of Waxy Near-isogenic Lines in Chinese Cabbage Floral Axis [J]. Acta Horticulturae Sinica, 2022, 49(1): 62-72. |
[11] | XU Hongxia, ZHOU Huifen, LI Xiaoying, JIANG Luhua, CHEN Junwei. Comparative Transcriptome Analysis of Different Developmental Stages of Flowers and Fruits in Loquat Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2021, 48(9): 1680-1694. |
[12] | GAN Caixia, CUI Lei, PANG Wenxing, WANG Aihua, YU Xiaoqing, DENG Xiaohui, SONG Liping, PIAO Zhongyun. QTL Mapping of Bolting and Flowering Traits Based on High Density Genetic Map of Radish [J]. Acta Horticulturae Sinica, 2021, 48(7): 1273-1281. |
[13] | LIU Jianfeng, SUN Ying, WEI Heng, HE Hongli, ZHANG Xingzheng, CHENG Yunqing. Analysis and Identification of circRNAs of Hazel Ovule at Different Developmental Stages [J]. Acta Horticulturae Sinica, 2021, 48(6): 1053-1066. |
[14] | ZHAO Yuqing, CHEN Tao, YUAN Ming. Review of the Role of Melatonin in Fruit Development and Postharvest Preservation [J]. Acta Horticulturae Sinica, 2021, 48(6): 1233-1249. |
[15] | LAN Liming, LUO Changguo, WANG Sanhong. Analysis of Resistance Mechanism to Powdery Mildew Based on Transcriptome Sequencing in Malus hupehensis [J]. Acta Horticulturae Sinica, 2021, 48(5): 860-872. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd