园艺学报 ›› 2021, Vol. 48 ›› Issue (3): 439-455.doi: 10.16420/j.issn.0513-353x.2020-0421
韩文龙1, 朱振1, 李君茹1, 陈天哲1, 李国辉1, 苏雪强1, 金青1,2, 程曦1,2, 蔡永萍1,2,*()
收稿日期:
2020-09-28
出版日期:
2021-03-25
发布日期:
2021-04-02
通讯作者:
蔡永萍
E-mail:swkx12@ahau.edu.cn
基金资助:
HAN Wenlong1, ZHU Zhen1, LI Junru1, CHEN Tianzhe1, LI Guohui1, SU Xueqiang1, JIN Qin1,2, CHENG Xi1,2, CAI Yongping1,2,*()
Received:
2020-09-28
Online:
2021-03-25
Published:
2021-04-02
Contact:
CAI Yongping
E-mail:swkx12@ahau.edu.cn
摘要:
Trihelix转录因子可以和光应答相关的GT元件结合,因此又称GT转录因子。本研究从梨基因组中鉴定出16个Trihelix家族基因,依次命名为PbGT1 ~ PbGT16,从同属于蔷薇科的草莓和桃基因组中分别鉴定出11和16个Trihelix家族基因。染色体定位与基因复制事件分析表明,梨、草莓和桃Trihelix家族成员分别分布在12、6和8条染色体上,且梨Trihelix家族存在片段复制事件。种间系统进化树分析表明,梨、草莓和桃Trihelix家族成员分为6个亚族,梨家族成员(PbGT)属于GT-2、Subfamily O和SIP1亚族。结合进化关系及qRT-PCR验证,筛选出PbGT15可能参与调控梨果实石细胞团木质化。
中图分类号:
韩文龙, 朱振, 李君茹, 陈天哲, 李国辉, 苏雪强, 金青, 程曦, 蔡永萍. 梨Trihelix转录因子家族成员鉴定及表达分析[J]. 园艺学报, 2021, 48(3): 439-455.
HAN Wenlong, ZHU Zhen, LI Junru, CHEN Tianzhe, LI Guohui, SU Xueqiang, JIN Qin, CHENG Xi, CAI Yongping. Indentification and Expression Analysis of Trihelix Transcription Factor Family in Pear[J]. Acta Horticulturae Sinica, 2021, 48(3): 439-455.
基因名称 Gene name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|
PbGT1 | AGTGAACTGACTCGAGCGATATTGA | ACTAGCATTCCCAACCCCGTTAACC |
PbGT2 | CACGGGTTGTTTTGTTTATTACCTT | TTGTTGCTGCTACGATGGTTACTAG |
PbGT3 | AGATGATGGAGCTGGAGAAACAGAG | AATGATCAAATAAAACCCATAAACA |
PbGT4 | GAATATGTTCATGGATGTTCAGGTG | TGCCTACATTGCAGTAATTCTTAAC |
PbGT5 | AAACCAGTGGTGATGGGACTAAGTG | TGCGACTTCATGATTTTCCATTTTT |
PbGT6 | AAAAGAGTAAAAGGAAGCAGATGGC | CAGATAGATACCGATATTACCCGCT |
PbGT7 | TTCGTATAGAGTGTTGGCGGATTCA | ATCATTCACTGAGATCGTCAACAGA |
PbGT8 | GTTGGAGTTGCAGAAGAAGCAGATT | AGATACCACACACCCTCACCTGCAT |
PbGT9 | TGCCTCTATGACGAGTCGGACCACA | GGAACGCGGTTCCCTCAACTCACAC |
PbGT10 | GCATCGGCAGCTTGTTACTTTCAGA | CACTGGTTTTGGCTTTCCGTGCTGA |
PbGT11 | CTCCTAATGGTGGGAATAATGCAAG | ATCATCACTGGTTTTGGCTTCCCTT |
PbGT12 | GAGGGACTTTCACCATTGTGTTCTA | TTCAAAAAATGCATCACCTGTCCAA |
PbGT13 | AGAATACAGGCCGTTCGTCTAACGG | ATTATCTCATTGAACCATGGCGAGG |
PbGT14 | AATAGGATGGAGGAAGCGGATAGCG | CACATAACTCACTGAACCATGGCGA |
PbGT15 | TAAGAATGATGCTAGTTATGTGGAG | GCCATTCTATCTCACTCGTATCATG |
PbGT16 | GAGGATTCAAAAACATGTCCATATT | TGATGACTCTTTCTAGTTGGTTACC |
Tubulin | AGAACAAGAACTCGTCCTAC | GAACTGCTCGCTCACTCTCC |
表1 本研究中所用的引物序列
Table 1 Primer sequences used in this study
基因名称 Gene name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|
PbGT1 | AGTGAACTGACTCGAGCGATATTGA | ACTAGCATTCCCAACCCCGTTAACC |
PbGT2 | CACGGGTTGTTTTGTTTATTACCTT | TTGTTGCTGCTACGATGGTTACTAG |
PbGT3 | AGATGATGGAGCTGGAGAAACAGAG | AATGATCAAATAAAACCCATAAACA |
PbGT4 | GAATATGTTCATGGATGTTCAGGTG | TGCCTACATTGCAGTAATTCTTAAC |
PbGT5 | AAACCAGTGGTGATGGGACTAAGTG | TGCGACTTCATGATTTTCCATTTTT |
PbGT6 | AAAAGAGTAAAAGGAAGCAGATGGC | CAGATAGATACCGATATTACCCGCT |
PbGT7 | TTCGTATAGAGTGTTGGCGGATTCA | ATCATTCACTGAGATCGTCAACAGA |
PbGT8 | GTTGGAGTTGCAGAAGAAGCAGATT | AGATACCACACACCCTCACCTGCAT |
PbGT9 | TGCCTCTATGACGAGTCGGACCACA | GGAACGCGGTTCCCTCAACTCACAC |
PbGT10 | GCATCGGCAGCTTGTTACTTTCAGA | CACTGGTTTTGGCTTTCCGTGCTGA |
PbGT11 | CTCCTAATGGTGGGAATAATGCAAG | ATCATCACTGGTTTTGGCTTCCCTT |
PbGT12 | GAGGGACTTTCACCATTGTGTTCTA | TTCAAAAAATGCATCACCTGTCCAA |
PbGT13 | AGAATACAGGCCGTTCGTCTAACGG | ATTATCTCATTGAACCATGGCGAGG |
PbGT14 | AATAGGATGGAGGAAGCGGATAGCG | CACATAACTCACTGAACCATGGCGA |
PbGT15 | TAAGAATGATGCTAGTTATGTGGAG | GCCATTCTATCTCACTCGTATCATG |
PbGT16 | GAGGATTCAAAAACATGTCCATATT | TGATGACTCTTTCTAGTTGGTTACC |
Tubulin | AGAACAAGAACTCGTCCTAC | GAACTGCTCGCTCACTCTCC |
物种 Species | 基因编号 Gene ID | 基因名称 Gene name | 染色体 Chr | 蛋白质Protein | |||
---|---|---|---|---|---|---|---|
等电点 pI | 长度/aa Length | 分子质量/kD Molecular weight | 亚细胞定位 Subcellular localization | ||||
梨 | Pbr022283.1 | PbGT1 | Chr17 | 8.34 | 585 | 63.32 | 细胞核 Nuclear |
Pear | Pbr027539.1 | PbGT2 | Chr9 | 9.61 | 350 | 38.01 | 细胞核 Nuclear |
Pbr009547.1 | PbGT3 | Chr1 | 9.27 | 247 | 27.90 | 细胞核 Nuclear | |
Pbr010927.1 | PbGT4 | Chr7 | 9.20 | 241 | 27.34 | 细胞核 Nuclear | |
Pbr016131.2 | PbGT5 | Chr10 | 5.50 | 448 | 49.17 | 细胞核 Nuclear | |
Pbr034589.1 | PbGT6 | Chr5 | 4.70 | 398 | 45.36 | 细胞核 Nuclear | |
Pbr027585.1 | PbGT7 | Chr2 | 4.79 | 363 | 42.82 | 细胞核 Nuclear | |
Pbr015453.1 | PbGT8 | Chr15 | 4.90 | 360 | 42.54 | 细胞核 Nuclear | |
Pbr036250.1 | PbGT9 | Chr16 | 5.95 | 426 | 48.87 | 细胞核 Nuclear | |
Pbr016796.1 | PbGT10 | Chr14 | 6.40 | 532 | 60.38 | 细胞核 Nuclear | |
Pbr005503.1 | PbGT11 | Chr12 | 6.36 | 536 | 60.58 | 细胞核 Nuclear | |
Pbr027610.1 | PbGT12 | Chr7 | 5.76 | 566 | 65.15 | 细胞核 Nuclear | |
Pbr038634.1 | PbGT13 | Chr6 | 5.65 | 758 | 82.46 | 细胞核 Nuclear | |
Pbr010171.1 | PbGT14 | Chr14 | 5.57 | 647 | 71.99 | 细胞核 Nuclear | |
Pbr010535.1 | PbGT15 | Chr5 | 6.60 | 572 | 64.69 | 细胞核 Nuclear | |
Pbr036349.1 | PbGT16 | Chr10 | 8.73 | 534 | 61.13 | 细胞核 Nuclear | |
草莓 | mrna29666 | FvGT1 | LG3 | 5.00 | 318 | 35.19 | 细胞核 Nuclear |
Strawberry | mrna21007 | FvGT2 | LG7 | 8.43 | 284 | 32.41 | 细胞核 Nuclear |
mrna05400 | FvGT3 | LG6 | 9.78 | 378 | 40.84 | 细胞核 Nuclear | |
mrna05956 | FvGT4 | LG6 | 4.68 | 395 | 45.27 | 细胞核 Nuclear | |
mrna02091 | FvGT5 | LG1 | 4.87 | 364 | 42.27 | 细胞核 Nuclear | |
mrna30101 | FvGT6 | LG6 | 6.81 | 591 | 64.60 | 细胞核 Nuclear | |
mrna27722 | FvGT7 | LG5 | 6.55 | 376 | 43.32 | 细胞核 Nuclear | |
mrna01828 | FvGT8 | LG5 | 5.56 | 769 | 83.55 | 细胞核 Nuclear | |
mrna08173 | FvGT9 | LG2 | 6.21 | 578 | 65.76 | 细胞核 Nuclear | |
mrna23617 | FvGT10 | LG7 | 6.19 | 433 | 49.00 | 细胞核 Nuclear | |
mrna30156 | FvGT11 | LG6 | 6.42 | 579 | 65.77 | 细胞核 Nuclear | |
桃 | Prupe.4G061800.1 | PpGT1 | Pp4 | 5.21 | 310 | 34.69 | 细胞核 Nuclear |
Peach | Prupe.3G118000.1 | PpGT2 | Pp3 | 9.88 | 326 | 37.02 | 细胞核 Nuclear |
Prupe.2G253200.1 | PpGT3 | Pp2 | 9.38 | 548 | 61.78 | 叶绿体 Chloroplast | |
Prupe.3G036000.1 | PpGT4 | Pp3 | 9.53 | 364 | 39.55 | 细胞核 Nuclear | |
Prupe.3G071500.1 | PpGT5 | Pp3 | 4.59 | 398 | 45.72 | 细胞核 Nuclear | |
Prupe.7G228600.1 | PpGT6 | Pp7 | 4.85 | 361 | 42.57 | 细胞核 Nuclear | |
Prupe.7G120600.1 | PpGT7 | Pp7 | 6.41 | 527 | 57.10 | 细胞核 Nuclear | |
Prupe.2G090800.1 | PpGT8 | Pp2 | 8.52 | 491 | 53.39 | 细胞核 Nuclear | |
Prupe.1G235200.1 | PpGT9 | Pp1 | 5.90 | 380 | 43.75 | 细胞核 Nuclear | |
Prupe.5G017700.1 | PpGT10 | Pp5 | 8.66 | 286 | 33.26 | 细胞核 Nuclear | |
Prupe.7G116400.1 | PpGT11 | Pp7 | 6.40 | 544 | 61.86 | 细胞核 Nuclear | |
Prupe.2G086500.1 | PpGT12 | Pp2 | 6.20 | 565 | 64.17 | 细胞核 Nuclear | |
Prupe.5G137600.1 | PpGT13 | Pp5 | 5.26 | 776 | 84.46 | 细胞核 Nuclear | |
Prupe.8G028800.1 | PpGT14 | Pp8 | 6.77 | 590 | 66.96 | 细胞核 Nuclear | |
Prupe.8G028700.1 | PpGT15 | Pp8 | 6.05 | 630 | 70.57 | 细胞核 Nuclear | |
Prupe.6G162600.1 | PpGT16 | Pp6 | 5.49 | 547 | 62.28 | 细胞核 Nuclear |
表2 梨、草莓和桃Trihelix家族成员信息及GT蛋白理化性质
Table 2 Information on Trihelix family members and physicochemical properties of GT protein of pear,strawberry and peach
物种 Species | 基因编号 Gene ID | 基因名称 Gene name | 染色体 Chr | 蛋白质Protein | |||
---|---|---|---|---|---|---|---|
等电点 pI | 长度/aa Length | 分子质量/kD Molecular weight | 亚细胞定位 Subcellular localization | ||||
梨 | Pbr022283.1 | PbGT1 | Chr17 | 8.34 | 585 | 63.32 | 细胞核 Nuclear |
Pear | Pbr027539.1 | PbGT2 | Chr9 | 9.61 | 350 | 38.01 | 细胞核 Nuclear |
Pbr009547.1 | PbGT3 | Chr1 | 9.27 | 247 | 27.90 | 细胞核 Nuclear | |
Pbr010927.1 | PbGT4 | Chr7 | 9.20 | 241 | 27.34 | 细胞核 Nuclear | |
Pbr016131.2 | PbGT5 | Chr10 | 5.50 | 448 | 49.17 | 细胞核 Nuclear | |
Pbr034589.1 | PbGT6 | Chr5 | 4.70 | 398 | 45.36 | 细胞核 Nuclear | |
Pbr027585.1 | PbGT7 | Chr2 | 4.79 | 363 | 42.82 | 细胞核 Nuclear | |
Pbr015453.1 | PbGT8 | Chr15 | 4.90 | 360 | 42.54 | 细胞核 Nuclear | |
Pbr036250.1 | PbGT9 | Chr16 | 5.95 | 426 | 48.87 | 细胞核 Nuclear | |
Pbr016796.1 | PbGT10 | Chr14 | 6.40 | 532 | 60.38 | 细胞核 Nuclear | |
Pbr005503.1 | PbGT11 | Chr12 | 6.36 | 536 | 60.58 | 细胞核 Nuclear | |
Pbr027610.1 | PbGT12 | Chr7 | 5.76 | 566 | 65.15 | 细胞核 Nuclear | |
Pbr038634.1 | PbGT13 | Chr6 | 5.65 | 758 | 82.46 | 细胞核 Nuclear | |
Pbr010171.1 | PbGT14 | Chr14 | 5.57 | 647 | 71.99 | 细胞核 Nuclear | |
Pbr010535.1 | PbGT15 | Chr5 | 6.60 | 572 | 64.69 | 细胞核 Nuclear | |
Pbr036349.1 | PbGT16 | Chr10 | 8.73 | 534 | 61.13 | 细胞核 Nuclear | |
草莓 | mrna29666 | FvGT1 | LG3 | 5.00 | 318 | 35.19 | 细胞核 Nuclear |
Strawberry | mrna21007 | FvGT2 | LG7 | 8.43 | 284 | 32.41 | 细胞核 Nuclear |
mrna05400 | FvGT3 | LG6 | 9.78 | 378 | 40.84 | 细胞核 Nuclear | |
mrna05956 | FvGT4 | LG6 | 4.68 | 395 | 45.27 | 细胞核 Nuclear | |
mrna02091 | FvGT5 | LG1 | 4.87 | 364 | 42.27 | 细胞核 Nuclear | |
mrna30101 | FvGT6 | LG6 | 6.81 | 591 | 64.60 | 细胞核 Nuclear | |
mrna27722 | FvGT7 | LG5 | 6.55 | 376 | 43.32 | 细胞核 Nuclear | |
mrna01828 | FvGT8 | LG5 | 5.56 | 769 | 83.55 | 细胞核 Nuclear | |
mrna08173 | FvGT9 | LG2 | 6.21 | 578 | 65.76 | 细胞核 Nuclear | |
mrna23617 | FvGT10 | LG7 | 6.19 | 433 | 49.00 | 细胞核 Nuclear | |
mrna30156 | FvGT11 | LG6 | 6.42 | 579 | 65.77 | 细胞核 Nuclear | |
桃 | Prupe.4G061800.1 | PpGT1 | Pp4 | 5.21 | 310 | 34.69 | 细胞核 Nuclear |
Peach | Prupe.3G118000.1 | PpGT2 | Pp3 | 9.88 | 326 | 37.02 | 细胞核 Nuclear |
Prupe.2G253200.1 | PpGT3 | Pp2 | 9.38 | 548 | 61.78 | 叶绿体 Chloroplast | |
Prupe.3G036000.1 | PpGT4 | Pp3 | 9.53 | 364 | 39.55 | 细胞核 Nuclear | |
Prupe.3G071500.1 | PpGT5 | Pp3 | 4.59 | 398 | 45.72 | 细胞核 Nuclear | |
Prupe.7G228600.1 | PpGT6 | Pp7 | 4.85 | 361 | 42.57 | 细胞核 Nuclear | |
Prupe.7G120600.1 | PpGT7 | Pp7 | 6.41 | 527 | 57.10 | 细胞核 Nuclear | |
Prupe.2G090800.1 | PpGT8 | Pp2 | 8.52 | 491 | 53.39 | 细胞核 Nuclear | |
Prupe.1G235200.1 | PpGT9 | Pp1 | 5.90 | 380 | 43.75 | 细胞核 Nuclear | |
Prupe.5G017700.1 | PpGT10 | Pp5 | 8.66 | 286 | 33.26 | 细胞核 Nuclear | |
Prupe.7G116400.1 | PpGT11 | Pp7 | 6.40 | 544 | 61.86 | 细胞核 Nuclear | |
Prupe.2G086500.1 | PpGT12 | Pp2 | 6.20 | 565 | 64.17 | 细胞核 Nuclear | |
Prupe.5G137600.1 | PpGT13 | Pp5 | 5.26 | 776 | 84.46 | 细胞核 Nuclear | |
Prupe.8G028800.1 | PpGT14 | Pp8 | 6.77 | 590 | 66.96 | 细胞核 Nuclear | |
Prupe.8G028700.1 | PpGT15 | Pp8 | 6.05 | 630 | 70.57 | 细胞核 Nuclear | |
Prupe.6G162600.1 | PpGT16 | Pp6 | 5.49 | 547 | 62.28 | 细胞核 Nuclear |
图1 梨、草莓和桃Trihelix家族成员系统进化(A)、保守基序(B)及基因结构(C)分析
Fig. 1 Phylogenetic tree(A),conserved motifs(B)and gene structures(C)analysis of the Trihelix family members of pear,strawberry and peach
图2 梨、草莓和桃Trihelix家族成员染色体定位与基因复制事件分析 虚线连接的2个基因为片段复制。
Fig. 2 Chromosome localization and gene duplication events analysis of the Trihelix family members of pear, strawberry and peach The two genes connected by dotted lines are segmental duplication.
复制基因对 Duplicated gene pairs | 非同义替换率 Ka | 同义替换率 Ks | 非同义替换率/同义替换率 Ka/Ks | 复制方式 Duplicated type |
---|---|---|---|---|
PbGT7/PbGT8 | 0.0333 | 0.1014 | 0.3284 | 片段复制 Segmental duplication |
PbGT10/PbGT11 | 0.0329 | 0.1718 | 0.1915 | 片段复制 Segmental duplication |
PbGT15/PbGT16 | 0.0646 | 0.1946 | 0.3320 | 片段复制 Segmental duplication |
表3 梨Trihelix家族成员基因复制事件分析
Table 3 Gene duplication events analysis of the Trihelix family members of pear
复制基因对 Duplicated gene pairs | 非同义替换率 Ka | 同义替换率 Ks | 非同义替换率/同义替换率 Ka/Ks | 复制方式 Duplicated type |
---|---|---|---|---|
PbGT7/PbGT8 | 0.0333 | 0.1014 | 0.3284 | 片段复制 Segmental duplication |
PbGT10/PbGT11 | 0.0329 | 0.1718 | 0.1915 | 片段复制 Segmental duplication |
PbGT15/PbGT16 | 0.0646 | 0.1946 | 0.3320 | 片段复制 Segmental duplication |
基因名称 Gene name | ABRE | CGTCA motif | ERE | LTR | MBS | MRE | TGA-element | TC-rich repeats | AC-Ⅰ | AC-Ⅱ |
---|---|---|---|---|---|---|---|---|---|---|
PbGT1 | 1 | 3 | 1 | 2 | 2 | |||||
PbGT2 | 5 | 7 | 1 | 1 | 1 | |||||
PbGT3 | 9 | 5 | 1 | |||||||
PbGT4 | 5 | 4 | 1 | 1 | 2 | 1 | 3 | 1 | ||
PbGT5 | 6 | |||||||||
PbGT6 | 1 | 2 | 3 | 1 | ||||||
PbGT7 | 3 | 5 | 1 | 2 | 1 | 1 | 1 | |||
PbGT8 | 4 | 2 | 1 | 1 | ||||||
PbGT9 | 2 | 2 | ||||||||
PbGT10 | 4 | 4 | 1 | 1 | 1 | |||||
PbGT11 | 3 | 5 | 2 | 2 | ||||||
PbGT12 | 4 | 2 | 1 | 1 | 2 | 1 | ||||
PbGT13 | 1 | 1 | 1 | 1 | ||||||
PbGT14 | 1 | 1 | 1 | |||||||
PbGT15 | 3 | 1 | 1 | 1 | 1 | |||||
PbGT16 | 3 | 5 | 1 | 1 | 1 |
表4 梨Trihelix家族成员启动子顺式作用元件预测
Table 4 Promoter cis-acting elements prediction of the Trihelix family members of pear
基因名称 Gene name | ABRE | CGTCA motif | ERE | LTR | MBS | MRE | TGA-element | TC-rich repeats | AC-Ⅰ | AC-Ⅱ |
---|---|---|---|---|---|---|---|---|---|---|
PbGT1 | 1 | 3 | 1 | 2 | 2 | |||||
PbGT2 | 5 | 7 | 1 | 1 | 1 | |||||
PbGT3 | 9 | 5 | 1 | |||||||
PbGT4 | 5 | 4 | 1 | 1 | 2 | 1 | 3 | 1 | ||
PbGT5 | 6 | |||||||||
PbGT6 | 1 | 2 | 3 | 1 | ||||||
PbGT7 | 3 | 5 | 1 | 2 | 1 | 1 | 1 | |||
PbGT8 | 4 | 2 | 1 | 1 | ||||||
PbGT9 | 2 | 2 | ||||||||
PbGT10 | 4 | 4 | 1 | 1 | 1 | |||||
PbGT11 | 3 | 5 | 2 | 2 | ||||||
PbGT12 | 4 | 2 | 1 | 1 | 2 | 1 | ||||
PbGT13 | 1 | 1 | 1 | 1 | ||||||
PbGT14 | 1 | 1 | 1 | |||||||
PbGT15 | 3 | 1 | 1 | 1 | 1 | |||||
PbGT16 | 3 | 5 | 1 | 1 | 1 |
[1] |
Bremer B, Bremer K, Chase M W, Fay M F, Reveal J L, Soltis D E, Soltis P S, Stevens P F, Anderberg A A, Moore M J, Olmstead R G, Rudall P J, Sytsma K J, Tank D C, Wurdack K, Xiang J Q Y, Zmarzty S. 2009. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG Ⅲ. Botanical Journal of the Linnean Society, 161 (2):105-121.
doi: 10.1111/(ISSN)1095-8339 URL |
[2] |
Brewer P B, Howles P A, Dorian K, Griffith M E, Ishida T, KaplanLevy R N, Kilinc A, Smyth D R. 2004. PETAL LOSS,a Trihelix transcription factor gene,regulates perianth architecture in the Arabidopsis flower. Development, 131 (16):4035-4045.
doi: 10.1242/dev.01279 URL |
[3] |
Cai Yong-ping, Li Guo-hui, Nie Jing-quan, Lin Yi, Nie Fan, Zhang Jin-yun, Xu Yi-liu. 2010. Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Scientia Horticulturae, 125 (3):374-379.
doi: 10.1016/j.scienta.2010.04.029 URL |
[4] | Cheng Xi, Cai Yong-ping, Zhang Jin-yun. 2019. Stone cell development in pear//Schuyler S Korban. The pear genome. Compendium of Plant Genomes. Berlin: Springer Nature:201-225. |
[5] |
Du He-wei, Huang Min, Liu Lei. 2016. The genome wide analysis of GT transcription factors that respond to drought and waterlogging stresses in maize. Euphytica, 208 (1):113-122.
doi: 10.1007/s10681-015-1599-5 URL |
[6] |
Fan Ming-zhu, Herburger K, Jensen J K, Zemelis D S, Brandizzi F, Fry S C, Wilkerson C G. 2018. A Trihelix family transcription factor is associated with key genes in mixed-linkage glucan accumulation. Plant Physiology, 178 (3):1207-1221.
doi: 10.1104/pp.18.00978 URL |
[7] |
Fang Yu-jie, Xie Ka-bin, Hou Xin, Hu Hong-hong, Xiong Li-zhong. 2010. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Molecular Genetics and Genomics, 283 (2):157-169.
doi: 10.1007/s00438-009-0507-x URL |
[8] |
Gao Hong-yan, Huang Rong, Liu Jun, Gao Zhi-min, Zhao Han-sheng, Li Xue-ping. 2019. Genome-wide identification of Trihelix genes in Moso Bamboo( Phyllostachys edulis)and their expression in response to abiotic stress. Journal of Plant Growth Regulation, 38 (3):1127-1140.
doi: 10.1007/s00344-019-09918-9 URL |
[9] |
Green P J, Kay S A, Chua N H. 1987. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. The EMBO Journal, 6 (9):2543-2549.
doi: 10.1002/embj.1987.6.issue-9 URL |
[10] |
Han Li-bo, Li Yuan-bao, Wang Hai-yun, Wu Xiao-min, Li Chun-li, Luo Ming, Wu Shen-jie, Kong Zhao-sheng, Pei Yan, Jiao Gai-li, Xia Gui-xian. 2013. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 25 (11):4421-4438.
doi: 10.1105/tpc.113.116970 URL |
[11] |
Imagawa M, Sakaue R, Tanabe A, Osada S, Nishihara T. 2000. Two nuclear localization signals are required for nuclear translocation of nuclear factor 1-A. FEBS Letters, 484 (2):118-124.
doi: 10.1016/S0014-5793(00)02119-0 URL |
[12] |
Jeroen R, Antje R, Jørgen H C, Yves V P, Wout B. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 133 (3):1051-1071.
doi: 10.1104/pp.103.026484 URL |
[13] | Ji Jian-hui, Zhou Ying-jun, Wu He-he, Yang Li-ming. 2015. Genome-wide analysis and functional prediction of the Trihelix transcription factor family in rice. Herditas, 37 (12):1228-1241. (in Chinese) |
纪剑辉, 周颖君, 吴贺贺, 杨立明. 2015. 水稻Trihelix转录因子家族全基因组分析及功能预测. 遗传, 37 (12):1228-1241. | |
[14] | Ji Qiao-hua, Xue Bao-ping, Zhang Xin-cao, Zhang Hao, Dang Feng-feng, Lin Jin-hui, He Wei-hong, Wang Yan-feng. 2018. Bioinformatics analysis of Trihelix transcription factors from Ziziphus jujuba. Molecular Plant Breeding, 16 (21):6968-6974. (in Chinese) |
姬俏华, 薛宝平, 张新草, 张昊, 党峰峰, 林金辉, 何伟红, 王延峰. 2018. 枣Trihelix转录因子家族生物信息学分析. 分子植物育种, 16 (21):6968-6974. | |
[15] |
Kong Xiang-pai, Lü Wei, Jiang Shan-shan, Zhang Dan, Cai Guo-hua, Pan Jiao-wen, Li De-quan. 2013. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics, 14:433.
doi: 10.1186/1471-2164-14-433 URL |
[16] |
Lampugnani E R, Kilinc A, Smyth D R. 2012. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana. Plant Journal, 71 (5):724-735.
doi: 10.1111/tpj.2012.71.issue-5 URL |
[17] |
Li Guo-hui, Wang Han, Cheng Xi, Su Xue-qiang, Zhao Yu, Jiang Tao-shan. 2019. Comparative genomic analysis of the PAL genes in five Rosaceae species and functional identification of Chinese white pear. PeerJ, 7:e8064. doi: 10.7717/peerj.8064.
doi: 10.7717/peerj.8064 URL |
[18] |
Li Jia-ming, Zhang Ming-hui, Sun Jian, Mao Xin-rui, Wang Jing, Wang Jing-guo, Liu Hua-long, Zheng Hong-liang, Zhen Zhen, Zhao Hong-wei, Zou De-tang. 2019. Genome-wide characterization and identification of Trihelix transcription factor and expression profiling in response to abiotic stresses in rice( Oryza sativa L.). International Journal of Molecular Sciences, 20 (2):251.
doi: 10.3390/ijms20020251 URL |
[19] | Liu Xiao-yang, Li Ling, Zong Mei, Cai Yong-ping. 2004. Contents and distributions of stone cell and their effects on fruit quality of pear. Journal of Anhui Agricultural University, 31 (1):104-106. (in Chinese) |
刘小阳, 李玲, 宗梅, 蔡永萍. 2004. 梨果实石细胞含量分布及其对梨品质的影响. 安徽农业大学学报, 31 (1):104-106. | |
[20] | Li Yue, Sun Jie, Xie Zong-ming, Li Quan-sheng, Si Ai-jun, Chen Shou-yi. 2013. Expression profiling of cotton( Gossypium hirsutum L.)Trihelix genes responsive to abiotic stresses. Scientia Agricultura Sinica, 46 (9):1946-1955. (in Chinese) |
李月, 孙杰, 谢宗铭, 李全胜, 司爱君, 陈受宜. 2013. 陆地棉Trihelix转录因子基因响应非生物胁迫表达谱分析. 中国农业科学, 46 (9):1946-1955. | |
[21] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 25 (4):402-408.
pmid: 11846609 |
[22] | Lu Shi-xiong, Wang Ping, He Hong-hong, Liang Guo-ping, Ma Zong-huan, Qiao Ya-li, Wu Yu-xia, Chen Bai-hong, Mao Juan. 2019. Bioinformatics identification and expression analysis of grape Trihelix transcription factor family. Acta Horticulturae Sinica, 46 (7):1257-1269. (in Chinese) |
卢世雄, 王萍, 何红红, 梁国平, 马宗桓, 乔亚丽, 吴玉霞, 陈佰鸿, 毛娟. 2019. 葡萄Trihelix转录因子家族生物信息及其基因表达分析. 园艺学报, 46 (7):1257-1269. | |
[23] |
Ma Zhao-tang, Liu Mo-yan, Sun Wen-jun, Huang Li, Wu Qi, Bu Tong-liang, Li Cheng-lei, Chen Hui. 2019. Genome-wide identification and expression analysis of the Trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum). BMC Plant Biology, 19 (1):344.
doi: 10.1186/s12870-019-1957-x URL |
[24] |
Mo Hui-juan, Wang Ling-ling, Ma Shu-ya, Yue Dao-qian, Lu Li-li, Yang Zhao-en, Yang Zuo-ren, Li Fu-guang. 2019. Transcriptome profiling of Gossypium arboreum during fiber initiation and the genome-wide identification of Trihelix transcription factors. Gene, 709:36-47.
doi: 10.1016/j.gene.2019.02.091 URL |
[25] |
Ouni R, Anna Zborowska A, Sehic J, Choulak S, Iñaki H J, Garkava-Gustavsson L, Mars M. 2020. Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Horticultural Plant Journal, 6 (2):61-70.
doi: 10.1016/j.hpj.2020.03.003 URL |
[26] | Praveen G, Vineet K. 2020. Plant small RNA biogenesis,regulation and application. London:Elsevier:469-483. |
[27] |
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. 2000. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 290 (5499):2105-2110.
doi: 10.1126/science.290.5499.2105 URL |
[28] |
Su Xue-qiang, Zhao Yu, Wang Han, Li Guo-hui, Cheng Xi, Jin Qing, Cai Yong-ping. 2019. Transcriptomic analysis of early fruit development in Chinese white pear( Pyrus bretschneideri Rehd.)and functional identification of PbCCR1 in lignin biosynthesis. BMC Plant Biology, 19 (1):417.
doi: 10.1186/s12870-019-2046-x URL |
[29] | Tian Lu-ming, Dong Xing-guang, Cao Yu-fen, Zhang Ying, Qi Dan. 2017. Correlation of flesh in Pyrus fruit with its stone cells lignin. Southwest China Journal of Agricultural Sciences, 30 (9):2091-2096. (in Chinese) |
田路明, 董星光, 曹玉芬, 张莹, 齐丹. 2017. 梨属植物果肉和石细胞团木质素相关性分析. 西南农业学报, 30 (9):2091-2096. | |
[30] | Wang Bin, Zhang Nan, Yan Chong-chong, Jin Qing, Lin Yi, Cai Yong-ping, Zhang Jin-yun. 2013. Bagging for the development of stone cell and metabolism of lignin in Pyrus bretschneideri‘Dangshan Suli’. Acta Horticulturae Sinica, 40 (3):531-539. (in Chinese) |
王斌, 张楠, 闫冲冲, 金青, 林毅, 蔡永萍, 张金云. 2013. 套袋对砀山酥梨果实石细胞发育及木质素代谢的影响. 园艺学报, 40 (3):531-539. | |
[31] |
Wang Huan-zhong, Yang J H, Chen Fang, Torres-Jerez I, Tang Yu-hong, Wang Ming-yi, Du Qian, Cheng Xiao-feng, Wen Jiang-qi, Dixon R. 2016. Transcriptome analysis of secondary cell wall development in Medicago truncatula. BMC Genomics, 17:23.
doi: 10.1186/s12864-015-2330-6 URL |
[32] | Wang Ping, Lu Shi-xiong, Liang Guo-ping, Ma Zong-huan, Li Wen-fang, Mao Juan, Chen Bai-hong. 2019. Bioinformatics identification and expression analysis of Trihelix transcription factor family in apple. Acta Horticulturae Sinica, 46 (11):2082-2098. (in Chinese) |
王萍, 卢世雄, 梁国平, 马宗桓, 李文芳, 毛娟, 陈佰鸿. 2019. 苹果Trihelix转录因子家族生物信息学鉴定与基因表达分析. 园艺学报, 46 (11):2082-2098. | |
[33] |
Wang Zhen-yi, Zhao Kang-lu, Pan Yu-xin, Wang Jin-peng, Song Xiao-ming, Ge Wei-na, Yuan Min, Lei Tian-yu, Wang Li, Zhang Lan, Li Yu-xian, Liu Tao, Chen Wei, Meng Wen-jing, Sun Chang-kai, Cui Xiao-bao, Bai Yun, Wang Xi-yin. 2018. Genomic,expressional,protein-protein interactional analysis of Trihelix transcription factor genes in Setaria italia and inference of their evolutionary trajectory. BMC Genomics, 19:665.
doi: 10.1186/s12864-018-5051-9 URL |
[34] | Wei Chao-ling, Yang Hua, Wang Song-bo, Zhao Jian, Liu Chun, Gao Li-ping, Xia En-hua, Lu Ying, Tai Yu-ling, She Guang-biao, Sun Jun, Cao Hai-sheng, Tong Wei, Gao Qiang, Li Ye-yun, Deng Wei-wei, Jiang Xiao-lan, Wang Wen-zhao, Chen Qi, Zhang Shi-hua, Li Hai-jing, Wu Jun-lan, Wang Ping, Li Peng-hui, Shi Cheng-ying, Zheng Feng-ya, Jian Jian-bo, Huang Bei, Shan Dai, Shi Ming-ming, Fang Cong-bing, Yue Yi, Li Fang-dong, Li Da-xiang, Wei Shu, Han Bin, Jiang Chang-jun, Yin Ye, Xia Tao, Zhang Zheng-zhu, Bennetzen J L, Zhao Shan-cen, Wan Xiao-chun. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 115 (18):E4151-E4158. |
[35] | Wu Tao, Zhang Rui-ping, Gu Chao, Wu Ju-you, Wan Hong-jian, Zhang Shu-jun, Zhang Shao-ling. 2012. Evaluation of candidate reference genes for real time quantitative PCR normalization in pear fruit. African Journal of Agricultural Research, 7 (25):3701-3704. |
[36] | Xi Jing, Qiu Yong-jian, Du Li-qun, Poovaiah B W. 2012. Plant-specific Trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Science, 185:274-280. |
[37] |
Yang Si-hai, Zhang Xiao-hui, Yue Jia-xing, Tian Da-cheng, Chen Jian-qun. 2008. Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics and Genomics, 280 (3):187-198.
doi: 10.1007/s00438-008-0355-0 URL |
[38] |
Yu Chu-ying, Cai Xiao-feng, Ye Zhi-biao, Li Han-xia. 2015. Genome-wide identification and expression profiling analysis of Trihelix gene family in tomato. Biochemical and Biophysical Research Communications, 468 (4):653-659.
doi: 10.1016/j.bbrc.2015.11.010 URL |
[39] | Yu Juan-juan, Li Ling, Jin Qing, Cai Yong-ping, Lin Yi, Lü Rui-hong. 2011. Studies on key enzyme POD types of lignin metabolic pathway during stone cell development of Pyrus bretschneideri. Acta Horticulturae Sinica, 38 (6):1037-1044. (in Chinese) |
于娟娟, 李玲, 金青, 蔡永萍, 林毅, 吕芮宏. 2011. 砀山酥梨石细胞发育过程中木质素代谢关键酶POD类型的分析. 园艺学报, 38 (6):1037-1044. | |
[40] | Zhou Hong, Qian Jiao, Li Rong-fang, Chen Dan-dan, Fang Rong-jun, Zhao Wei-guo. 2017. Research of the Arabidopsis Trihelix transcription factor gene family. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 31 (2):231-236. (in Chinese) |
周宏, 钱娇, 李荣芳, 陈丹丹, 方荣俊, 赵卫国. 2017. 拟南芥Trihelix转录因子基因家族研究. 江苏科技大学学报(自然科学版), 31 (2):231-236. |
[1] | 赵雪艳, 王琪, 王莉, 王方圆, 王庆, 李艳. 基于比较转录组的延胡索组织差异性表达分析[J]. 园艺学报, 2023, 50(1): 177-187. |
[2] | 宋健坤, 杨英杰, 李鼎立, 马春晖, 王彩虹, 王 然. 梨新品种‘鲁秀’[J]. 园艺学报, 2022, 49(S2): 3-4. |
[3] | 董星光, 曹玉芬, 张 莹, 田路明, 霍宏亮, 齐 丹, 徐家玉, 刘 超, 王立东. 抗寒脆肉梨新品种‘玉翠香’[J]. 园艺学报, 2022, 49(S2): 5-6. |
[4] | 欧春青, 姜淑苓, 王 斐, 马 力, 张艳杰, 刘振杰. 早熟梨新品种‘兴梨蜜水’[J]. 园艺学报, 2022, 49(S2): 7-8. |
[5] | 张艳杰, 王 斐, 欧春青, 马 力, 姜淑苓, 刘振杰. 梨新品种‘中梨玉脆3’[J]. 园艺学报, 2022, 49(S2): 9-10. |
[6] | 范 净, 陈启亮, 张靖国, 杨晓平, 杜 威, 田 瑞, 周德平, 胡红菊, . 中熟红皮砂梨新品种‘金彤’[J]. 园艺学报, 2022, 49(S2): 11-12. |
[7] | 王苏珂, 李秀根, 杨 健, 王 龙, 苏艳丽, 张向展, 薛华柏. 红皮梨新品种‘丹霞红’[J]. 园艺学报, 2022, 49(S2): 13-14. |
[8] | 王 斐, 欧春青, 张艳杰, 马 力, 姜淑苓. 晚熟耐贮梨新品种‘华秋’[J]. 园艺学报, 2022, 49(S1): 9-10. |
[9] | 宋健坤, 李鼎立, 杨英杰, 马春晖, 王彩虹, 王 然. 梨新品种‘琴岛红’[J]. 园艺学报, 2022, 49(S1): 11-12. |
[10] | 郭伟珍, 赵京献, 李莹. 中早熟梨新品种‘美玉’[J]. 园艺学报, 2022, 49(9): 2051-2052. |
[11] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[12] | 刘金明, 郭彩华, 袁星, 亢超, 全绍文, 牛建新. 梨Dof家族基因鉴定及其在宿存与脱落萼片中的表达分析[J]. 园艺学报, 2022, 49(8): 1637-1649. |
[13] | 邱子文, 刘林敏, 林永盛, 林晓洁, 李永裕, 吴少华, 杨超. 千层金MbEGS基因的克隆与功能分析[J]. 园艺学报, 2022, 49(8): 1747-1760. |
[14] | 陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440. |
[15] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司