Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (11): 2489-2501.doi: 10.16420/j.issn.0513-353x.2021-0763
• New Technology and New Methods • Previous Articles Next Articles
HOU Tianze1, YI Shuangshuang2,3, ZHANG Zhiqun2,3, WANG Jian1,*(), LI Chonghui2,3,*
Received:
2021-10-15
Revised:
2022-04-30
Online:
2022-11-25
Published:
2022-11-25
Contact:
WANG Jian,LI Chonghui
E-mail:blchh@sina.com
CLC Number:
HOU Tianze, YI Shuangshuang, ZHANG Zhiqun, WANG Jian, LI Chonghui. Selection and Validation of Reference Genes for RT-qPCR in Phalaenopsis- type Dendrobium Hybrid[J]. Acta Horticulturae Sinica, 2022, 49(11): 2489-2501.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0763
基因 Gene | 引物序列(5′-3′) Primer sequences | 产物长 度/bp Product length | Tm/℃ (F/R) | E/% Amplifcation efficiency | r2 Correlation coefficient |
---|---|---|---|---|---|
PGK | F:ATCGGTGAGGAAGTTGAGAAAAC;R:GCCAATTTCTTAGCAAACTCTGG | 165 | 60.6/60.5 | 100 | 0.997 |
TUA | F:CAAAGAAGATGCAGCCAACAAC;R:AAGACCAGTGCAGTTGTCAGCTA | 111 | 60.1/59.4 | 104 | 0.992 |
TUB | F:TCACGGTGAGACGGACCTG;R:TATCCGGGCGAAAAATCTGA | 157 | 59.4/60.6 | 104 | 0.998 |
EF1α | F:GATGGATGCGACCACACCC;R:TCGAGAAGAGTTGGTCCCTTG | 191 | 61.1/59.2 | 105 | 0.996 |
CYP | F:TCTACGCCGACACGACTCCT;R:GGTGAAAGGTAGAGCCCTTGAA | 113 | 60.4/60.3 | 102 | 0.998 |
GADPH | F:AGCTGCACAACCAACTGTTTG;R:GCTCTTCCACCCCTCCAGTC | 151 | 58.7/60.7 | 100 | 0.993 |
β-actin | F:GTCAGGGACATCAAGGAGAAG;R:TGGGCACCTAAATCTCTCAGC | 153 | 60.5/60.6 | 95 | 0.993 |
Table 1 Description of candidate reference genes and a list of primer sequences for RT-qPCR
基因 Gene | 引物序列(5′-3′) Primer sequences | 产物长 度/bp Product length | Tm/℃ (F/R) | E/% Amplifcation efficiency | r2 Correlation coefficient |
---|---|---|---|---|---|
PGK | F:ATCGGTGAGGAAGTTGAGAAAAC;R:GCCAATTTCTTAGCAAACTCTGG | 165 | 60.6/60.5 | 100 | 0.997 |
TUA | F:CAAAGAAGATGCAGCCAACAAC;R:AAGACCAGTGCAGTTGTCAGCTA | 111 | 60.1/59.4 | 104 | 0.992 |
TUB | F:TCACGGTGAGACGGACCTG;R:TATCCGGGCGAAAAATCTGA | 157 | 59.4/60.6 | 104 | 0.998 |
EF1α | F:GATGGATGCGACCACACCC;R:TCGAGAAGAGTTGGTCCCTTG | 191 | 61.1/59.2 | 105 | 0.996 |
CYP | F:TCTACGCCGACACGACTCCT;R:GGTGAAAGGTAGAGCCCTTGAA | 113 | 60.4/60.3 | 102 | 0.998 |
GADPH | F:AGCTGCACAACCAACTGTTTG;R:GCTCTTCCACCCCTCCAGTC | 151 | 58.7/60.7 | 100 | 0.993 |
β-actin | F:GTCAGGGACATCAAGGAGAAG;R:TGGGCACCTAAATCTCTCAGC | 153 | 60.5/60.6 | 95 | 0.993 |
Fig. 3 The RT-qPCR Ct values of seven candidate reference genes across Phalaenopsis-type Dendrobium hybrid test material used in this study Box graph indicates the 25th and 75th percentiles;the line across the box depicts the median;middle circle show the mean values.
排名 Rank | 萼片 Sepal | 花瓣 Petal | 唇瓣 Labellum | 不同品种花芽 Floral bud of different cultivars | 发育不同阶段花芽 Floral bud of different developmental stages | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | ||
1 | TUA | 0.840 | β-actin | 0.759 | CYP | 0.499 | β-actin | 0.857 | β-actin | 1.334 | |
2 | GADPH | 0.840 | CYP | 0.759 | GADPH | 0.499 | TUA | 0.857 | TUA | 1.334 | |
3 | β-actin | 0.954 | TUA | 0.862 | β-actin | 0.587 | GADPH | 0.879 | CYP | 1.434 | |
4 | PGK | 1.225 | GADPH | 0.912 | TUA | 0.628 | CYP | 1.001 | GADPH | 1.461 | |
5 | CYP | 1.478 | PGK | 0.954 | PGK | 0.795 | PGK | 1.125 | PGK | 1.735 | |
6 | TUB | 1.813 | TUB | 1.180 | TUB | 1.142 | TUB | 1.441 | TUB | 2.040 | |
7 | EF1α | 2.254 | EF1α | 1.788 | EF1α | 1.699 | EF1α | 1.977 | EF1α | 2.234 |
Table 2 Ranking of seven candidate reference genes according to geNorm
排名 Rank | 萼片 Sepal | 花瓣 Petal | 唇瓣 Labellum | 不同品种花芽 Floral bud of different cultivars | 发育不同阶段花芽 Floral bud of different developmental stages | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | 内参基因 Reference gene | M值 M | ||
1 | TUA | 0.840 | β-actin | 0.759 | CYP | 0.499 | β-actin | 0.857 | β-actin | 1.334 | |
2 | GADPH | 0.840 | CYP | 0.759 | GADPH | 0.499 | TUA | 0.857 | TUA | 1.334 | |
3 | β-actin | 0.954 | TUA | 0.862 | β-actin | 0.587 | GADPH | 0.879 | CYP | 1.434 | |
4 | PGK | 1.225 | GADPH | 0.912 | TUA | 0.628 | CYP | 1.001 | GADPH | 1.461 | |
5 | CYP | 1.478 | PGK | 0.954 | PGK | 0.795 | PGK | 1.125 | PGK | 1.735 | |
6 | TUB | 1.813 | TUB | 1.180 | TUB | 1.142 | TUB | 1.441 | TUB | 2.040 | |
7 | EF1α | 2.254 | EF1α | 1.788 | EF1α | 1.699 | EF1α | 1.977 | EF1α | 2.234 |
排名 Rank | 萼片 Sepal | 花瓣 Petal | 唇瓣 Labellum | 不同品种花芽 Floral bud of different cultivars | 不同发育阶段花芽 Floral bud of different developmental stages | |||||
---|---|---|---|---|---|---|---|---|---|---|
内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | |
1 | β-actin | 0.022 | β-actin | 0.017 | β-actin | 0.021 | β-actin | 0.019 | β-actin | 0.013 |
2 | TUA | 0.022 | CYP | 0.032 | CYP | 0.022 | TUA | 0.032 | TUA | 0.034 |
3 | PGK | 0.042 | TUB | 0.032 | TUA | 0.030 | PGK | 0.038 | PGK | 0.058 |
4 | GADPH | 0.047 | PGK | 0.032 | GADPH | 0.036 | GADPH | 0.045 | CYP | 0.063 |
5 | TUB | 0.066 | TUA | 0.035 | TUB | 0.042 | TUB | 0.048 | GADPH | 0.074 |
6 | CYP | 0.100 | GADPH | 0.052 | PGK | 0.045 | CYP | 0.065 | TUB | 0.092 |
7 | EF1α | 0.179 | EF1α | 0.163 | EF1α | 0.163 | EF1α | 0.173 | EF1α | 0.121 |
Table 3 Ranking of seven candidate reference genes according to NormFinder
排名 Rank | 萼片 Sepal | 花瓣 Petal | 唇瓣 Labellum | 不同品种花芽 Floral bud of different cultivars | 不同发育阶段花芽 Floral bud of different developmental stages | |||||
---|---|---|---|---|---|---|---|---|---|---|
内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | 内参基因 Reference gene | 稳定值 Stability value | |
1 | β-actin | 0.022 | β-actin | 0.017 | β-actin | 0.021 | β-actin | 0.019 | β-actin | 0.013 |
2 | TUA | 0.022 | CYP | 0.032 | CYP | 0.022 | TUA | 0.032 | TUA | 0.034 |
3 | PGK | 0.042 | TUB | 0.032 | TUA | 0.030 | PGK | 0.038 | PGK | 0.058 |
4 | GADPH | 0.047 | PGK | 0.032 | GADPH | 0.036 | GADPH | 0.045 | CYP | 0.063 |
5 | TUB | 0.066 | TUA | 0.035 | TUB | 0.042 | TUB | 0.048 | GADPH | 0.074 |
6 | CYP | 0.100 | GADPH | 0.052 | PGK | 0.045 | CYP | 0.065 | TUB | 0.092 |
7 | EF1α | 0.179 | EF1α | 0.163 | EF1α | 0.163 | EF1α | 0.173 | EF1α | 0.121 |
排名 | 萼片Sepal | 花瓣Petal | 唇瓣Labellum | ||||||
---|---|---|---|---|---|---|---|---|---|
Rank | 基因 | 标准差 | 变异系数/% | 基因 | 标准差 | 变异系数/% | 基因 | 标准差 | 变异系数/% |
Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | |
1 | β-actin | 0.45 | 2.17 | PGK | 0.99 | 3.88 | PGK | 0.63 | 2.41 |
2 | GADPH | 0.6 | 2.95 | CYP | 0.99 | 4.65 | GADPH | 0.73 | 3.44 |
3 | TUA | 0.79 | 3.48 | β-actin | 1.01 | 4.67 | CYP | 0.89 | 4.2 |
4 | PGK | 0.9 | 3.61 | TUA | 1.04 | 4.56 | TUA | 1.09 | 4.76 |
5 | CYP | 1.33 | 6.2 | GADPH | 1.31 | 6.36 | β-actin | 1.16 | 5.43 |
6 | TUB | 1.87 | 7.11 | TUB | 1.76 | 6.27 | EF1α | 1.83 | 8.86 |
7 | EF1α | 2.3 | 13.03 | EF1α | 1.88 | 9.33 | TUB | 2.23 | 7.98 |
排名 | 不同品种花芽 | 不同发育阶段花芽 | |||||||
Rank | Floral bud of different cultivars | Floral bud of different developmental stages | |||||||
基因 | 标准差 | 变异系数/% | 基因 | 标准差 | 变异系数/% | ||||
Gene | SD | CV | Gene | SD | CV | ||||
1 | β-actin | 0.89 | 4.2 | β-actin | 0.85 | 4.02 | |||
2 | TUA | 0.91 | 3.97 | PGK | 0.91 | 3.64 | |||
3 | GADPH | 0.92 | 4.43 | GADPH | 0.99 | 4.92 | |||
4 | PGK | 0.95 | 3.73 | TUA | 1.04 | 4.59 | |||
5 | CYP | 1 | 4.7 | CYP | 1.14 | 5.44 | |||
6 | TUB | 1.95 | 7.15 | TUB | 1.52 | 5.31 | |||
7 | EF1α | 2.71 | 14.19 | EF1α | 1.77 | 8.39 |
Table 4 Ranking of seven candidate reference genes according to BestKeeper
排名 | 萼片Sepal | 花瓣Petal | 唇瓣Labellum | ||||||
---|---|---|---|---|---|---|---|---|---|
Rank | 基因 | 标准差 | 变异系数/% | 基因 | 标准差 | 变异系数/% | 基因 | 标准差 | 变异系数/% |
Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | |
1 | β-actin | 0.45 | 2.17 | PGK | 0.99 | 3.88 | PGK | 0.63 | 2.41 |
2 | GADPH | 0.6 | 2.95 | CYP | 0.99 | 4.65 | GADPH | 0.73 | 3.44 |
3 | TUA | 0.79 | 3.48 | β-actin | 1.01 | 4.67 | CYP | 0.89 | 4.2 |
4 | PGK | 0.9 | 3.61 | TUA | 1.04 | 4.56 | TUA | 1.09 | 4.76 |
5 | CYP | 1.33 | 6.2 | GADPH | 1.31 | 6.36 | β-actin | 1.16 | 5.43 |
6 | TUB | 1.87 | 7.11 | TUB | 1.76 | 6.27 | EF1α | 1.83 | 8.86 |
7 | EF1α | 2.3 | 13.03 | EF1α | 1.88 | 9.33 | TUB | 2.23 | 7.98 |
排名 | 不同品种花芽 | 不同发育阶段花芽 | |||||||
Rank | Floral bud of different cultivars | Floral bud of different developmental stages | |||||||
基因 | 标准差 | 变异系数/% | 基因 | 标准差 | 变异系数/% | ||||
Gene | SD | CV | Gene | SD | CV | ||||
1 | β-actin | 0.89 | 4.2 | β-actin | 0.85 | 4.02 | |||
2 | TUA | 0.91 | 3.97 | PGK | 0.91 | 3.64 | |||
3 | GADPH | 0.92 | 4.43 | GADPH | 0.99 | 4.92 | |||
4 | PGK | 0.95 | 3.73 | TUA | 1.04 | 4.59 | |||
5 | CYP | 1 | 4.7 | CYP | 1.14 | 5.44 | |||
6 | TUB | 1.95 | 7.15 | TUB | 1.52 | 5.31 | |||
7 | EF1α | 2.71 | 14.19 | EF1α | 1.77 | 8.39 |
Fig. 5 The relative expression of DhCHS(A)and DhbHLH1(B)in different cultivars normalize using the selected reference genes (including the most stable or unstable reference genes) P < 0.05.
Fig. 6 The relative expression of DhCHS(A)and DhbHLH1(B)at different developmental stages normalize using the selected reference genes(including the most stable or unstable reference genes) P < 0.05.
Fig. 7 The relative expression of DhCHS and DhbHLH1 in different tissues normalize using the selected reference genes (including the most stable or unstable reference genes) 1:β-actin;2:CYP;3:PGK;4:β-actin + CYP + PGK;5:CYP;6:TUA;7:PGK;8:CYP + TUA + PGK
[1] |
Andersen C L, Jensen J L, Ørntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization,applied to bladder and colon cancer data sets. Cancer Research, 64 (15):5245-5250.
doi: 10.1158/0008-5472.CAN-04-0496 URL |
[2] |
Artico S, Nardeli S M, Brilhante O, Grossi-de-Sa M F, Alves-Ferreira M. 2010. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology, 10 (1):49.
doi: 10.1186/1471-2229-10-49 URL |
[3] |
Bustin S A, Nolan T. 2004. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of Biomolecular Techniques, 15 (3):155-166.
pmid: 15331581 |
[4] | Bustin S A, Vladimir B, Garson J A, Hellemans J, Huggett J, Kubista M, Wittwer C T. 2009. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry,(4):611. |
[5] | Davies K M, Marshall G B, Lewis D H, Winefield C S, Deroles S C, Boase M R, Bloor S J. 2003. Generation of new ornamental varieties through genetic modification of pigment biosynthesis. Acta Horticulturae, 624:435-447. |
[6] |
Dheda K, Huggett J F, Bustin S A, Johnson M A, Rook G, Zumla A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 37 (1):112-119.
pmid: 15283208 |
[7] |
Die J V, Román B, Nadal S, González-Verdejo C I. 2010. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta, 232 (1):145-153.
doi: 10.1007/s00425-010-1158-1 URL |
[8] |
Derveaux S, Vandesompele J, Hellemans J. 2010. How to do successful gene expression analysis using real-time PCR. Methods, 50 (4):227-230.
doi: 10.1016/j.ymeth.2009.11.001 pmid: 19969088 |
[9] | Enrico P, Tanzarella O A, Paolacci A R, Ciaffi M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMCMolecular Biology, 10 (1):11. |
[10] |
Fulvio F, Martinelli T, Paris R. 2021. Selection and validation of reference genes for RT-qPCR normalization in different tissues of milk thistle(Silybum marianum,Gaert.). Gene, 768:145272.
doi: 10.1016/j.gene.2020.145272 URL |
[11] |
Garrido J, Aguilar M, Prieto P. 2020. Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Scientific Reports, 10 (1):1-12.
doi: 10.1038/s41598-019-56847-4 URL |
[12] |
Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre J F, Louvet R, van Wuytswinkel O. 2008. The lack of a systematic validation of reference genes:a serious pitfall undervalued in reverse transcription-polymerase chain reaction(RT-PCR)analysis in plants. Plant Biotechnology Journal, 6 (6):609-618.
doi: 10.1111/j.1467-7652.2008.00346.x pmid: 18433420 |
[13] |
Huang Y X, Tan H X, Yun J, Chen Y, Guo Z, Wang G, Diao Y. 2017. Stable internal reference genes for normalizing real-time quantitative PCR in Baphicacanthus cusia under hormonal stimuli and UV irradiation and in different plant organs. Frontiers in Plant Science, 8:668.
doi: 10.3389/fpls.2017.00668 URL |
[14] | Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RT-PCR normalisation:strategies and considerations. Genes & Immunity, 6 (4):279-284. |
[15] |
Jin X H, Fu J X, Dai S L, Sun Y, Hong Y. 2013. Reference gene selection for qPCR analysis in cineraria developing flowers. Scientia Horticulturae, 153 (1):64-70.
doi: 10.1016/j.scienta.2013.01.023 URL |
[16] |
Kuehnle A R, Lewis D H, Markham K R, Mitchell K A, Davies K M, Jordan B R. 1997. Floral flavonoids and pH in Dendrobium orchid species and hybrids. Euphytica, 95 (2):187-194.
doi: 10.1023/A:1002945632713 URL |
[17] |
Kriangphan N, Vuttipongchaikij S, Kittiwongwattana C, Suttangkakul A, Pinmanee P, Sakulsathaporn A, Apisitwanich S. 2015. Effects of sequence and expression of eight anthocyanin biosynthesis genes on floral coloration in four Dendrobium hybrids. The Horticulture Journal, 84 (1):83-92.
doi: 10.2503/hortj.MI-020 URL |
[18] | Lee J M, Roche J R, Donaghy D J, Thrush A, Sathish P. 2010. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass(Lolium perenne L.). Molecular Biology, 11 (1):1-14. |
[19] |
Li C H, Qiu J, Ding L, Huang M, Huang S R, Yang G S, Yin J M. 2017a. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Plant Physiology and Biochemistry, 112:335-345.
doi: 10.1016/j.plaphy.2017.01.019 URL |
[20] | Li Chong-hui, Ren Yu, Huang Su-rong, Huang Shao-hua, Yang Guang-sui. 2013. Floral colors of Phalaenopsis type dendrobium and their flavonoid composition. Acta Horticulture Sinica, 40 (1):107-116. (in Chinese) |
李崇晖, 任羽, 黄素荣, 黄少华, 杨光穗. 2013. 蝴蝶石斛兰花色表型及类黄酮成分分析. 园艺学报, 40 (1):107-116. | |
[21] |
Li Chong-hui, Yin Jun-mei. 2019. Genetic engineering progress and breeding tactics on blue flowers. Biotechnology Bulletin, 35 (11):160-168. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0450 |
李崇晖, 尹俊梅. 2019. 蓝色花形成的基因工程进展与育种策略. 生物技术通报, 35 (11):160-168.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0450 |
|
[22] |
Li W G, Zhang L H, Zhang Y D, Wang G, Song D, Zhang Y. 2017b. Selection and validation of appropriate reference genes for quantitative real-time PCR normalization in staminate and perfect flowers of andromonoecious Taihangia rupestris. Frontiers in Plant Science, 8:729.
doi: 10.3389/fpls.2017.00729 URL |
[23] | Liang Jin, Liu Hai-ting, Zhong Rong, Li Hao, Yin Dong-mei, Liu Xiang, Qin Qiao-ping, Zhang Zhi-guo, Duan Ke, Ni Di-an. 2020. Screening of reference genes for quantitative real-time PCR in different organs of Hemerocallis fulva. Plant Physiology Journal, 56 (9):1891-1898. (in Chinese) |
梁锦, 刘海婷, 钟荣, 李昊, 尹冬梅, 刘翔, 秦巧平, 张志国, 段可, 倪迪安. 2020. 萱草不同器官实时荧光定量PCR内参基因的筛选. 植物生理学报, 56 (9):1891-1898. | |
[24] |
Liliana M, Andreia M, Ricardo C P, Miguel C. 2012. Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS ONE, 7 (4):e35113.
doi: 10.1371/journal.pone.0035113 URL |
[25] | Ma Lulin, Duan Qing, Cui Guangfen, Du Wenwen, Jia Wenjie, Wang Xiangning, Wang Jihua, Chen Fadi. 2021. Selection and validation of reference genes for qRT-PCR analysis of the correlated genes in flower pigments biosynthesis pathway of Anemone obtusiloba. Acta Horticulturae Sinica, 48 (2):377-388. (in Chinese) |
马璐琳, 段青, 崔光芬, 杜文文, 贾文杰, 王祥宁, 王继华, 陈发棣. 2021. 钝裂银莲花花色素合成相关基因qRT-PCR内参基因的筛选. 园艺学报, 48 (2):377-388. | |
[26] |
Nikalje G C, Srivastava A K, Sablok G, Pandey G K, Nikam T D, Suprasanna P. 2017. Identification and validation of reference genes for quantitative real-time PCR under salt stress in a halophyte,Sesuvium portulacastrum, Plant Gene, 13:18-24.
doi: 10.1016/j.plgene.2017.11.003 URL |
[27] | Pan Li-jing, Cao You-pei, Xiao Yang, Fan Gan-qun, Chen Wei-ting. 2009. Review of research on breeding technology of Dendrobium. Guangdong Agricultural Sciences,(9):71-73. (in Chinese) |
潘丽晶, 曹友培, 肖杨, 范干群, 陈伟庭. 2009. 观赏石斛育种技术研究综述. 广东农业科学,(9):71-73. | |
[28] |
Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. 2004. Determination of stable housekeeping genes differentially regulated target genes and sample integrity:BestKeeper-Excel-Based tool using pair-wise correlations. Biotechnology Letters, 26 (6):509-515.
doi: 10.1023/B:BILE.0000019559.84305.47 URL |
[29] | Qiao Yong-gang, Wang Yong-fei, Cao Ya-ping, He Jia-xin, Jia Meng-jun, Li Zheng, Zhang Xin-rui, Song Yun. 2020. Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale. Acta Horticulturae Sinica, 47 (6):1153-1164. (in Chinese) |
乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 2020. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析. 园艺学报, 47 (6):1153-1164. | |
[30] |
Rahul G, Rupwate S D, Tumaney A W. 2017. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica. PLoS ONE, 12 (11):e0186978.
doi: 10.1371/journal.pone.0186978 URL |
[31] |
Ransbotyn V, Reusch T B H. 2006. Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera marina subjected to heat stress. Limnology and Oceanography Methods, 4 (10):367-373.
doi: 10.4319/lom.2006.4.367 URL |
[32] |
Ratanasut K, Monmai C, Piluk P. 2015. Transient hairpin RNAi-induced silencing in floral tissues of Dendrobium Sonia‘Earsakul’by agroinfiltration for rapid assay of flower colour modification. Plant Cell Tissue and Organ Culture, 120 (2):643-654.
doi: 10.1007/s11240-014-0632-z URL |
[33] | Reddy D S, Bhatnagar-Mathur P, Cindhuri K S, Sharma K K. 2013. Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS ONE, 8 (10):1-14. |
[34] |
Stéphanie G, Mélanie M, Jérôme P, van Wuytswinkel O, Bellini C, Gutierrez L. 2009. Normalization of qRT-PCR data:the necessity of adopting a systematic,experimental conditions-specific,validation of references. Journal of Experimental Botany, 60 (2):487-493.
doi: 10.1093/jxb/ern305 pmid: 19264760 |
[35] | To K Y, Wang C K. 2006. Molecular breeding of flower color. Floriculture Ornamental and Plant Biotechnology,(1):300-310. |
[36] | Vandesompele J, Preter K D, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3 (7):1-12. |
[37] |
Wang L J, Wang Y C, Zhou P. 2013. Validation of reference genes for quantitative real-time PCR during Chinese wolfberry fruit development. Plant Physiology and Biochemistry, 70:304-310.
doi: 10.1016/j.plaphy.2013.05.038 pmid: 23811043 |
[38] | Wu J Y, Zhang H G, Liu L Q, Li W, Wei Y, Shi S. 2016. Validation of reference genes for RT-qPCR studies of gene expression in preharvest and postharvest longan fruits under different experimental conditions. Frontiers in Plant Science, 7 (439):780. |
[39] |
Xi L, Tang D Q, Shi Y M. 2018. Selection of reference genes for quantitative real-time PCR normalization in Narcissus pseudonarcissus in different cultivars and different organs. Heliyon, 4 (7):e00686.
doi: 10.1016/j.heliyon.2018.e00686 URL |
[40] | Xiao X L, Ma J B, Wang J R, Wu X, Li P, Yao Y. 2015. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. Frontiers in Plant Science, 5:788. |
[41] |
Xu L, Xu H, Cao Y, Yang P, Feng Y, Tang Y, Ming J. 2017. Validation of reference genes for quantitative real-time PCR during bicolor tepal development in asiatic hybrid lilies(Lilium spp.). Frontiers in Plant Science, 8:669-688.
doi: 10.3389/fpls.2017.00669 URL |
[42] | Yang Lan, Yang Guang-sui,Li Chong-hui,Niu Jun-hai,Yin Jun-mei. 2015. Screening of reference genes in Anthurium andraeanum spathes for qRT-PCR analysis. Journal of Tropical and Subtropical Botany, 23 (1):51-58. (in Chinese) |
杨澜, 杨光穗, 李崇晖, 牛俊海, 尹俊梅. 2015. 红掌佛焰苞基因qRT-PCR分析中内参基因的筛选. 热带亚热带植物学报, 23 (1):51-58. | |
[43] | Yin Han-tai, Yin Jun-mei, Liao Yi, Lu Shun-jiao, Li Chong-hui. 2021. Phenotype classification based on flower color,pigment distribution and epidermal cell shape of Dendrobium hybrids. Acta Horticulturae Sinica, 48 (10):1907-1920. (in Chinese) |
殷涵泰, 尹俊梅, 廖易, 陆顺教, 李崇晖. 2021. 基于秋石斛花朵颜色、色素分布及表皮细胞形态的表型分类. 园艺学报, 48 (10):1907-1920. | |
[44] | Zhang Ji-yu, Huang Sheng-nan, Wang Tao, Pan De-lin, Zhai Min, Guo Zhong-ren. 2018. Screening of reference genes for reverse transcription quantitative real-time PCR in Actinidia deliciosa. Acta Agriculture Shanghai, 34 (1):84-88. (in Chinese) |
张计育, 黄胜男, 王涛, 潘德林, 翟敏, 郭忠仁. 2018. 金魁猕猴桃RT-qPCR内参基因的筛选. 上海农业学报, 34 (1):84-88. | |
[45] |
Zhao Y C, Luo J, Xu S, Wang W, Liu T, Han C, Kong L. 2016. Selection of reference genes for gene expression normalization in Peucedanum praeruptorum Dunn under abiotic stresses,hormone treatments and different tissues. PLoS ONE, 11 (3):e0152356.
doi: 10.1371/journal.pone.0152356 URL |
[46] | Zheng X, Sun X B, Liu X Q, Li C, He L, Chen S, Su J. 2016. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don. Frontiers in Plant Science, 7:e0141853. |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[3] | ZHANG Qiuyue, LIU Changlai, YU Xiaojing, YANG Jiading, FENG Chaonian. Screening of Reference Genes for Differentially Expressed Genes in Pyrus betulaefolia Plant Under Salt Stress by qRT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. |
[4] | LI Yamei, MA Fuli, ZHANG Shanqi, HUANG Jinqiu, CHEN Mengting, ZHOU Junyong, SUN Qibao, SUN Jun. Optimization of Jujube Callus Transformation System and Application of ZjBRC1 in Regulating ZjYUCCA Expression [J]. Acta Horticulturae Sinica, 2022, 49(4): 749-757. |
[5] | WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng. Identification and Expression Analysis of Genes Related to DNA Methylation in Chrysanthemum × morifolium and C. nankingense [J]. Acta Horticulturae Sinica, 2022, 49(4): 827-840. |
[6] | ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu. Transcriptome Analysis of the Molecular Mechanism of Saline-alkali Stress Response in Malus halliana Leaves [J]. Acta Horticulturae Sinica, 2022, 49(2): 237-251. |
[7] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[8] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[9] | ZHOU Tie, PAN Bin, LI Feifei, MA Xiaochuan, TANG Mengjing, LIAN Xuefei, CHANG Yuanyuan, CHEN Yuewen, LU Xiaopeng. Effects of Drought Stress at Enlargement Stage on Fruit Quality Formation of Satsuma Mandarin and the Law of Water Absorption and Transportation in Tree After Re-watering [J]. Acta Horticulturae Sinica, 2022, 49(1): 11-22. |
[10] | HE Yan, SUN Yanli, ZHAO Fangfang, DAI Hongjun. Effect of Exogenous Brassinolides Treatment on Sugar Metabolism of Merlot Grape Berries [J]. Acta Horticulturae Sinica, 2022, 49(1): 117-128. |
[11] | LI Maofu, YANG Yuan, WANG Hua, FAN Youwei, SUN Pei, JIN Wanmei. Identification and Analysis of Self Incompatibility S-RNase in Rose [J]. Acta Horticulturae Sinica, 2022, 49(1): 157-165. |
[12] | QI Xiliang, LIU Congli, SONG Lulu, LI Ming. Functional Analysis of Sucrose-phosphate Synthase Genes(SPS)in Sweet Cherry [J]. Acta Horticulturae Sinica, 2021, 48(8): 1446-1456. |
[13] | YAO Fuwen, WANG Meige, SONG Chunhui, SONG Shangwei, JIAO Jian, WANG Miaomiao, WANG Kun, BAI Tuanhui, ZHENG Xianbo. Identification and Expression Analysis of HSP90 Gene Family Under High Temperature Stress in Apple [J]. Acta Horticulturae Sinica, 2021, 48(5): 849-859. |
[14] | CHEN Zumin, XIAO Nuoya, ZHANG Yanxia, SHI Xiaomin, GUO Shuaiqi, GAO Hu, WANG Zhenping. Effects of Water Stress on the Volatile Compounds and Related Biosynthetic Genes Expression in‘Muscat Hamburg’Grape Berries [J]. Acta Horticulturae Sinica, 2021, 48(5): 883-896. |
[15] | NIU Xiqaing, LUO Xiaoyun, KANG Kaicheng, HUANG Xianzhong, HU Nengbing, SUI Yihu, AI Hao. Genome-wide Identification,Comparative Evolution and Expression Analysis of PEBP Gene Family from Capsicum annuum [J]. Acta Horticulturae Sinica, 2021, 48(5): 947-959. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd