Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (1): 187-199.doi: 10.16420/j.issn.0513-353x.2020-0781
• Research Notes • Previous Articles Next Articles
SONG Yun, JIA Mengjun, CAO Yaping, LI Zheng, HE Jiaxin, WANG Yongfei, ZHANG Xinrui, QIAO Yonggang()
Received:
2021-04-28
Revised:
2021-09-09
Online:
2022-01-25
Published:
2022-01-24
Contact:
QIAO Yonggang
E-mail:sxndqyg@126.com
CLC Number:
SONG Yun, JIA Mengjun, CAO Yaping, LI Zheng, HE Jiaxin, WANG Yongfei, ZHANG Xinrui, QIAO Yonggang. Analysis on Chloroplast Genomic Characteristics of Forsythia suspensa[J]. Acta Horticulturae Sinica, 2022, 49(1): 187-199.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0781
类型 Type | 大小/bp Size | 基因数量 Number of genes | GC/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LSC | SSC | IR | 总数 Total | Protein | tRNA | rRNA | 总计 Total | LSC | SSC | IR | 平均 Mean | |
长花柱 Long-styled morph | 87 142 | 17 810 | 25 717 | 156 386 | 80 | 30 | 4 | 114 | 35.8 | 31.8 | 43.2 | 37.8 |
短花柱 Short style type | 87 595 | 17 781 | 25 717 | 156 810 | 80 | 30 | 4 | 114 | 35.8 | 31.9 | 43.2 | 37.8 |
Table 1 Statistics on the chloroplast gene annotation of heterostyly Forsythia suspense
类型 Type | 大小/bp Size | 基因数量 Number of genes | GC/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LSC | SSC | IR | 总数 Total | Protein | tRNA | rRNA | 总计 Total | LSC | SSC | IR | 平均 Mean | |
长花柱 Long-styled morph | 87 142 | 17 810 | 25 717 | 156 386 | 80 | 30 | 4 | 114 | 35.8 | 31.8 | 43.2 | 37.8 |
短花柱 Short style type | 87 595 | 17 781 | 25 717 | 156 810 | 80 | 30 | 4 | 114 | 35.8 | 31.9 | 43.2 | 37.8 |
功能 Function | 基因家族 Family Name | 基因ID Gene ID |
---|---|---|
光合作用相关基因(45) Photosynthesis related genes | 核酮糖-1,5-二磷酸羧化酶 Rubisco | rbcL |
ATP合酶 ATP Synthase | atpA,atpB,atpE,atpF*,atpH,atpI | |
NADH脱氢酶 NADH Dehydrogenase | ndhA*,ndhB*,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
细胞色素 Cytochrome | petA,petB*,petD*,petG,petL,petN,ccsA | |
光合系统Ⅰ PhotosystemⅠ | psaA,psaB,psaC,psaI,psaJ | |
光合系统Ⅱ PhotosystemⅡ | psbA,psbB,psbC,psbD,psbE,psbF,psbH,psbI,psbJ,psbK,psbL,psbM,psbN,psbT,psbZ | |
转录翻译相关基因(60) Transcription and translation related genes | 大亚基核糖体 Large Subunit of Ribosome | rpl2*,rpl14,rpl16*,rpl20,rpl22,rpl23,rpl32,rpl33,rpl36 |
小亚基核糖体Small Subunit of Ribosome | rps2,rps3,rps4,rps7,rps8,rps11,rps12*,rps14,rps15,rps16*,rps18,rps19 | |
DNA依赖性RNA聚合酶 DNA Dependent RNA Polymerase | rpoA,rpoB,rpoC1*,rpoC2 | |
核糖体RNA rRNA Genes | rrn5,rrn4.5,rrn16,rrn23 | |
转运RNA tRNA Genes | trnA-UGC*,trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnfM-CAU,trnG-GCC*,trnG-UCC,trnH-GUG,trnI-CAU,trnI-GAU*,trnK-UUU*,trnL-CAA,trnL-UAA*,trnL-UAG,trnM-CAU,trnN-GUU,trnP-UGG,trnQ-UUG,trnR-ACG,trnR-UCU,trnS-GCU,trnS-GGA,trnS-UGA,trnT-GGU,trnT-UGU,trnV-GAC,trnV-UAC*,trnW-CCA,trnY-GUA | |
翻译起始因子 Translation Initiation Factor | infA | |
其他基因(4) Other genes | 乙酰辅酶A羧化酶 Acety1-CoA carboxylase | accD |
包膜蛋白 Envelop membrane protein | cemA | |
成熟酶 Maturase | matK | |
clpP样蛋白酶 clpP-like protease | clpP* | |
功能未知基因(5) Unknown | 保守开放阅读框Conserved open reading frames | ycf1,ycf2,ycf3*,ycf4,ycf15 |
Table 2 Functional classification of heterostyly Forsythia suspensa chloroplast genes
功能 Function | 基因家族 Family Name | 基因ID Gene ID |
---|---|---|
光合作用相关基因(45) Photosynthesis related genes | 核酮糖-1,5-二磷酸羧化酶 Rubisco | rbcL |
ATP合酶 ATP Synthase | atpA,atpB,atpE,atpF*,atpH,atpI | |
NADH脱氢酶 NADH Dehydrogenase | ndhA*,ndhB*,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
细胞色素 Cytochrome | petA,petB*,petD*,petG,petL,petN,ccsA | |
光合系统Ⅰ PhotosystemⅠ | psaA,psaB,psaC,psaI,psaJ | |
光合系统Ⅱ PhotosystemⅡ | psbA,psbB,psbC,psbD,psbE,psbF,psbH,psbI,psbJ,psbK,psbL,psbM,psbN,psbT,psbZ | |
转录翻译相关基因(60) Transcription and translation related genes | 大亚基核糖体 Large Subunit of Ribosome | rpl2*,rpl14,rpl16*,rpl20,rpl22,rpl23,rpl32,rpl33,rpl36 |
小亚基核糖体Small Subunit of Ribosome | rps2,rps3,rps4,rps7,rps8,rps11,rps12*,rps14,rps15,rps16*,rps18,rps19 | |
DNA依赖性RNA聚合酶 DNA Dependent RNA Polymerase | rpoA,rpoB,rpoC1*,rpoC2 | |
核糖体RNA rRNA Genes | rrn5,rrn4.5,rrn16,rrn23 | |
转运RNA tRNA Genes | trnA-UGC*,trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnfM-CAU,trnG-GCC*,trnG-UCC,trnH-GUG,trnI-CAU,trnI-GAU*,trnK-UUU*,trnL-CAA,trnL-UAA*,trnL-UAG,trnM-CAU,trnN-GUU,trnP-UGG,trnQ-UUG,trnR-ACG,trnR-UCU,trnS-GCU,trnS-GGA,trnS-UGA,trnT-GGU,trnT-UGU,trnV-GAC,trnV-UAC*,trnW-CCA,trnY-GUA | |
翻译起始因子 Translation Initiation Factor | infA | |
其他基因(4) Other genes | 乙酰辅酶A羧化酶 Acety1-CoA carboxylase | accD |
包膜蛋白 Envelop membrane protein | cemA | |
成熟酶 Maturase | matK | |
clpP样蛋白酶 clpP-like protease | clpP* | |
功能未知基因(5) Unknown | 保守开放阅读框Conserved open reading frames | ycf1,ycf2,ycf3*,ycf4,ycf15 |
差异 Difference | 长花柱/bp Long style type site | 短花柱/bp Short style type site |
---|---|---|
SNP1 | - | 4 705(A) |
SNP2 | 6 923(T) | - |
SNP3 | - | 6 973(T) |
SNP4 | 21 955(G) | 21 956(A) |
SNP5 | 21 964(A) | 21 964(C) |
SNP6 | - | 31 777(C) |
Gap1 | - | 31 805 ~ 32 018 |
SNP7 | 32 238(G) | 32 454(T) |
SNP8 | 32 243(G) | 32 459(T) |
Gap2 | - | 32 624 ~ 32 859 |
SNP9 | - | 60 082(C) |
SNP10 | 115 112(A) | - |
Gap3 | 115 316 ~ 115 343 | - |
SNP11 | 115 705(G) | 115 528(C) |
SNP12 | 115 919(A) | 116 343(G) |
Table 3 Sequence differences of chloroplast genome of heterostyly Forsythia suspensa
差异 Difference | 长花柱/bp Long style type site | 短花柱/bp Short style type site |
---|---|---|
SNP1 | - | 4 705(A) |
SNP2 | 6 923(T) | - |
SNP3 | - | 6 973(T) |
SNP4 | 21 955(G) | 21 956(A) |
SNP5 | 21 964(A) | 21 964(C) |
SNP6 | - | 31 777(C) |
Gap1 | - | 31 805 ~ 32 018 |
SNP7 | 32 238(G) | 32 454(T) |
SNP8 | 32 243(G) | 32 459(T) |
Gap2 | - | 32 624 ~ 32 859 |
SNP9 | - | 60 082(C) |
SNP10 | 115 112(A) | - |
Gap3 | 115 316 ~ 115 343 | - |
SNP11 | 115 705(G) | 115 528(C) |
SNP12 | 115 919(A) | 116 343(G) |
名称 Name | 引物序列(5′-3′) Primer sequences | 验证结果 Validation result | |
---|---|---|---|
SNP1 | F:TAGACGAAGTAATCAAACAAT | SNP1长短花柱均有A Both long and short styles at SNP1 locus have A | |
R:TATCTAGTGTCAATCCAAGAC | |||
SNP2,SNP3 | F:TTGGACAGTAAGGATCACATT | SNP2长短花柱均有T Both long and short styles at SNP2 locus have T | |
R:TATCCTATCCCTTTTATTCAC | SNP3长短花柱均无T Both long and short styles at SNP3 locus have no T | ||
SNP4,SNP5 | F:TGGCAGTTCCGTCTATCACTTTATT | SNP4长短花柱均为G Both long and short styles at SNP4 locus are G | |
R:TAGTCCTTTGTGGCTCCGGTGGCGA | SNP5长短花柱均为A Both long and short styles at SNP5 locus are A | ||
Gap1,SNP6 | F:TTATCCATACCGAATCCAAAC | Gap1不存在 Gap1 does not exist | |
R:AGAGTAAAAAACAGATCAATCAAAG | SNP6长短花柱均有C Both long and short styles at SNP6 locus have C | ||
Gap2,SNP7,SNP8 | F:AATTGAGGTTACACAAAACCGGAGC | Gap2不存在 Gap2 does not exist | |
R:TTCCGAAATACCCCATACGAAATAC | SNP7长短花柱均为G, SNP8长短花柱均为G Both long and short styles at SNP7 locus are G; Both long and short styles at SNP8 locus are G; | ||
SNP9 | F:CAAAATCTAAGACTAAATCCAAATCG | SNP9长短花柱均无C Both long and short styles at SNP9 locus have no C | |
R:CAGAATAAACATAGAAATGCAATCAC | |||
Gap3,SNP10, SNP11 | F:CTGGAAGTGGAACAAAAGGTA | 长短花柱均有Gap3序列 Both long and short styles have Gap3 sequence | |
R:TGTTCAAAATGAATCCGTGCT | SNP10长短花柱均有A, SNP11长短花柱均无该位碱基 Both long and short styles at SNP10 locus have A while SNP11 have no it | ||
SNP12 | F:GGAATAATCTGAATCGACTTG | SNP12长短花柱均为G Both long and short styles at SNP12 locus are G | |
R:CAGAAAGTTAGACAAAAGGGT | 长花柱115947位、短花柱116371位均缺少T No.115947 long style and No.116371 short style lack T |
Table 4 PCR verification result statistics
名称 Name | 引物序列(5′-3′) Primer sequences | 验证结果 Validation result | |
---|---|---|---|
SNP1 | F:TAGACGAAGTAATCAAACAAT | SNP1长短花柱均有A Both long and short styles at SNP1 locus have A | |
R:TATCTAGTGTCAATCCAAGAC | |||
SNP2,SNP3 | F:TTGGACAGTAAGGATCACATT | SNP2长短花柱均有T Both long and short styles at SNP2 locus have T | |
R:TATCCTATCCCTTTTATTCAC | SNP3长短花柱均无T Both long and short styles at SNP3 locus have no T | ||
SNP4,SNP5 | F:TGGCAGTTCCGTCTATCACTTTATT | SNP4长短花柱均为G Both long and short styles at SNP4 locus are G | |
R:TAGTCCTTTGTGGCTCCGGTGGCGA | SNP5长短花柱均为A Both long and short styles at SNP5 locus are A | ||
Gap1,SNP6 | F:TTATCCATACCGAATCCAAAC | Gap1不存在 Gap1 does not exist | |
R:AGAGTAAAAAACAGATCAATCAAAG | SNP6长短花柱均有C Both long and short styles at SNP6 locus have C | ||
Gap2,SNP7,SNP8 | F:AATTGAGGTTACACAAAACCGGAGC | Gap2不存在 Gap2 does not exist | |
R:TTCCGAAATACCCCATACGAAATAC | SNP7长短花柱均为G, SNP8长短花柱均为G Both long and short styles at SNP7 locus are G; Both long and short styles at SNP8 locus are G; | ||
SNP9 | F:CAAAATCTAAGACTAAATCCAAATCG | SNP9长短花柱均无C Both long and short styles at SNP9 locus have no C | |
R:CAGAATAAACATAGAAATGCAATCAC | |||
Gap3,SNP10, SNP11 | F:CTGGAAGTGGAACAAAAGGTA | 长短花柱均有Gap3序列 Both long and short styles have Gap3 sequence | |
R:TGTTCAAAATGAATCCGTGCT | SNP10长短花柱均有A, SNP11长短花柱均无该位碱基 Both long and short styles at SNP10 locus have A while SNP11 have no it | ||
SNP12 | F:GGAATAATCTGAATCGACTTG | SNP12长短花柱均为G Both long and short styles at SNP12 locus are G | |
R:CAGAAAGTTAGACAAAAGGGT | 长花柱115947位、短花柱116371位均缺少T No.115947 long style and No.116371 short style lack T |
SSR类型 SSR Type | SSR重复碱基 SSR Repeat Base | SSR起始位置 SSR Start | SSR区域 SSR Region | SSR位置 SSR Location |
---|---|---|---|---|
单核苷酸(37) Mono-nucleotide | (A)10 | 4 842 | LSC | IGS |
(T)12 | 9 030 | LSC | IGS | |
(T)10 | 11 138 | LSC | IGS | |
(A)13 | 12 717 | LSC | IGS | |
(T)13 | 14 085 | LSC | IGS | |
(A)10 | 15 717 | LSC | IGS | |
(A)10 | 16 489 | LSC | IGS | |
(T)11 | 19 653 | LSC | CDS | |
(T)12 | 20 191 | LSC | CDS | |
(A)21 | 29 932 | LSC | IGS | |
(A)10 | 31 831 | LSC | IGS | |
(A)10 | 31 968 | LSC | IGS | |
(A)17 | 33 139 | LSC | IGS | |
(T)10 | 33 817 | LSC | IGS | |
(T)13 | 34 464 | LSC | IGS | |
(T)12 | 37 624 | LSC | IGS | |
(A)10 | 38 003 | LSC | IGS | |
(A)15 | 44 538 | LSC | IGS | |
(A)16 | 46 593 | LSC | intron | |
(A)11 | 46 852 | LSC | IGS | |
(T)14 | 48 603 | LSC | IGS | |
(T)10 | 49 569 | LSC | IGS | |
(T)12 | 50 845 | LSC | IGS | |
(T)10 | 59 736 | LSC | IGS | |
(T)10 | 61 617 | LSC | IGS | |
(T)10 | 63 559 | LSC | IGS | |
(T)10 | 66 245 | LSC | IGS | |
(T)10 | 69 156 | LSC | IGS | |
(T)11 | 72 217 | LSC | IGS | |
(T)10 | 73 677 | LSC | intron | |
(A)11 | 73 841 | LSC | intron | |
(T)10 | 74 697 | LSC | intron | |
(T)12 | 81 215 | LSC | CDS | |
(T)13 | 83 627 | LSC | IGS | |
(A)10 | 85 352 | LSC | intron | |
(T)17 | 86 822 | LSC | IGS | |
(T)17 | 117 894 | SSC | IGS | |
二核苷酸(7) Di-nucleotide | (AT)5 | 4 622 | LSC | IGS |
(AT)5 | 6 532 | LSC | IGS | |
(AT)5 | 21 032 | LSC | CDS | |
(TA)6 | 48 745 | LSC | IGS | |
(TA)6 | 49 264 | LSC | IGS | |
(TA)5 | 69 573 | LSC | IGS | |
(TA)6 | 69 885 | LSC | IGS | |
三核苷酸(1)Tri-nucleotide | (CCT)4 | 69 325 | LSC | IGS |
四核苷酸(5) Tetra-nucleotide | (AAAT)4 | 9 260 | LSC | IGS |
(TCTT)3 | 31 167 | LSC | IGS | |
(TTTA)3 | 55 057 | LSC | IGS | |
(GAAA)3 | 63 543 | LSC | IGS | |
(AAAG)3 | 73 367 | LSC | intron | |
五核苷酸(1) Penta-nucleotide | (TCTAT)3 | 9 434 | LSC | IGS |
复合型 Compound | - | 17 431 | LSC | IGS |
- | 38 479 | LSC | IGS | |
- | 57 033 | LSC | CDS-IGS | |
- | 71 524 | LSC | IGS | |
- | 78 279 | LSC | intron |
Table 5 The chloroplast genome SSR loci distributionin in heterostyly Forsythia suspensa
SSR类型 SSR Type | SSR重复碱基 SSR Repeat Base | SSR起始位置 SSR Start | SSR区域 SSR Region | SSR位置 SSR Location |
---|---|---|---|---|
单核苷酸(37) Mono-nucleotide | (A)10 | 4 842 | LSC | IGS |
(T)12 | 9 030 | LSC | IGS | |
(T)10 | 11 138 | LSC | IGS | |
(A)13 | 12 717 | LSC | IGS | |
(T)13 | 14 085 | LSC | IGS | |
(A)10 | 15 717 | LSC | IGS | |
(A)10 | 16 489 | LSC | IGS | |
(T)11 | 19 653 | LSC | CDS | |
(T)12 | 20 191 | LSC | CDS | |
(A)21 | 29 932 | LSC | IGS | |
(A)10 | 31 831 | LSC | IGS | |
(A)10 | 31 968 | LSC | IGS | |
(A)17 | 33 139 | LSC | IGS | |
(T)10 | 33 817 | LSC | IGS | |
(T)13 | 34 464 | LSC | IGS | |
(T)12 | 37 624 | LSC | IGS | |
(A)10 | 38 003 | LSC | IGS | |
(A)15 | 44 538 | LSC | IGS | |
(A)16 | 46 593 | LSC | intron | |
(A)11 | 46 852 | LSC | IGS | |
(T)14 | 48 603 | LSC | IGS | |
(T)10 | 49 569 | LSC | IGS | |
(T)12 | 50 845 | LSC | IGS | |
(T)10 | 59 736 | LSC | IGS | |
(T)10 | 61 617 | LSC | IGS | |
(T)10 | 63 559 | LSC | IGS | |
(T)10 | 66 245 | LSC | IGS | |
(T)10 | 69 156 | LSC | IGS | |
(T)11 | 72 217 | LSC | IGS | |
(T)10 | 73 677 | LSC | intron | |
(A)11 | 73 841 | LSC | intron | |
(T)10 | 74 697 | LSC | intron | |
(T)12 | 81 215 | LSC | CDS | |
(T)13 | 83 627 | LSC | IGS | |
(A)10 | 85 352 | LSC | intron | |
(T)17 | 86 822 | LSC | IGS | |
(T)17 | 117 894 | SSC | IGS | |
二核苷酸(7) Di-nucleotide | (AT)5 | 4 622 | LSC | IGS |
(AT)5 | 6 532 | LSC | IGS | |
(AT)5 | 21 032 | LSC | CDS | |
(TA)6 | 48 745 | LSC | IGS | |
(TA)6 | 49 264 | LSC | IGS | |
(TA)5 | 69 573 | LSC | IGS | |
(TA)6 | 69 885 | LSC | IGS | |
三核苷酸(1)Tri-nucleotide | (CCT)4 | 69 325 | LSC | IGS |
四核苷酸(5) Tetra-nucleotide | (AAAT)4 | 9 260 | LSC | IGS |
(TCTT)3 | 31 167 | LSC | IGS | |
(TTTA)3 | 55 057 | LSC | IGS | |
(GAAA)3 | 63 543 | LSC | IGS | |
(AAAG)3 | 73 367 | LSC | intron | |
五核苷酸(1) Penta-nucleotide | (TCTAT)3 | 9 434 | LSC | IGS |
复合型 Compound | - | 17 431 | LSC | IGS |
- | 38 479 | LSC | IGS | |
- | 57 033 | LSC | CDS-IGS | |
- | 71 524 | LSC | IGS | |
- | 78 279 | LSC | intron |
氨基酸 Amino acid | 密码子 Codon | 数量 Numer | RSCU | 氨基酸 Amino acid | 密码子 Codon | 数量 Numer | RSCU |
---|---|---|---|---|---|---|---|
Phe | UUU | 2 262 | 1.18 | Ser | UCU | 1 233 | 1.52 |
UUC | 1 582 | 0.82 | UCC | 872 | 1.07 | ||
Leu | UUA | 947 | 1.17 | UCA | 966 | 1.19 | |
UUG | 1 044 | 1.29 | UCG | 622 | 0.77 | ||
CUU | 1 043 | 1.29 | AGU | 700 | 0.86 | ||
CUC | 651 | 0.80 | AGC | 479 | 0.59 | ||
CUA | 700 | 0.87 | Pro | CCU | 703 | 1.10 | |
CUG | 469 | 0.58 | CCC | 619 | 0.97 | ||
Ile | AUU | 1 814 | 1.24 | CCA | 827 | 1.30 | |
AUC | 1 173 | 0.80 | CCG | 403 | 0.63 | ||
AUA | 1 412 | 0.96 | Thr | ACU | 707 | 1.22 | |
Met | AUG | 788 | 1.00 | ACC | 606 | 1.05 | |
Val | GUU | 831 | 1.42 | ACA | 663 | 1.15 | |
GUC | 435 | 0.74 | ACG | 334 | 0.58 | ||
GUA | 711 | 1.22 | Ala | GCU | 513 | 1.32 | |
GUG | 359 | 0.61 | GCC | 347 | 0.89 | ||
Tyr | UAU | 1 357 | 1.33 | GCA | 436 | 1.12 | |
UAC | 676 | 0.67 | GCG | 256 | 0.66 | ||
TER | UAA | 1 095 | 1.11 | Cys | UGU | 686 | 1.21 |
UAG | 786 | 0.80 | UGC | 449 | 0.79 | ||
UGA | 1 084 | 1.10 | Arg | CGU | 377 | 0.66 | |
His | CAU | 970 | 1.42 | CGC | 222 | 0.39 | |
CAC | 392 | 0.58 | CGA | 597 | 1.05 | ||
Gln | CAA | 1 110 | 1.44 | CGG | 397 | 0.70 | |
CAG | 428 | 0.56 | AGA | 1 177 | 2.08 | ||
Asn | AAU | 1 694 | 1.38 | AGG | 632 | 1.11 | |
AAC | 765 | 0.62 | Gly | GGU | 612 | 1.03 | |
Lys | AAA | 2 114 | 1.34 | GGC | 346 | 0.58 | |
AAG | 1 041 | 0.66 | GGA | 885 | 1.49 | ||
Asp | GAU | 1 089 | 1.44 | GGG | 531 | 0.89 | |
GAC | 426 | 0.56 | Glu | GAA | 1 364 | 1.38 | |
Trp | UGG | 706 | 1.00 | GAG | 613 | 0.62 |
Table 6 Relative synonymous codon usage(RSCU)of chloroplast genome in Forsythia suspensa heterostyly
氨基酸 Amino acid | 密码子 Codon | 数量 Numer | RSCU | 氨基酸 Amino acid | 密码子 Codon | 数量 Numer | RSCU |
---|---|---|---|---|---|---|---|
Phe | UUU | 2 262 | 1.18 | Ser | UCU | 1 233 | 1.52 |
UUC | 1 582 | 0.82 | UCC | 872 | 1.07 | ||
Leu | UUA | 947 | 1.17 | UCA | 966 | 1.19 | |
UUG | 1 044 | 1.29 | UCG | 622 | 0.77 | ||
CUU | 1 043 | 1.29 | AGU | 700 | 0.86 | ||
CUC | 651 | 0.80 | AGC | 479 | 0.59 | ||
CUA | 700 | 0.87 | Pro | CCU | 703 | 1.10 | |
CUG | 469 | 0.58 | CCC | 619 | 0.97 | ||
Ile | AUU | 1 814 | 1.24 | CCA | 827 | 1.30 | |
AUC | 1 173 | 0.80 | CCG | 403 | 0.63 | ||
AUA | 1 412 | 0.96 | Thr | ACU | 707 | 1.22 | |
Met | AUG | 788 | 1.00 | ACC | 606 | 1.05 | |
Val | GUU | 831 | 1.42 | ACA | 663 | 1.15 | |
GUC | 435 | 0.74 | ACG | 334 | 0.58 | ||
GUA | 711 | 1.22 | Ala | GCU | 513 | 1.32 | |
GUG | 359 | 0.61 | GCC | 347 | 0.89 | ||
Tyr | UAU | 1 357 | 1.33 | GCA | 436 | 1.12 | |
UAC | 676 | 0.67 | GCG | 256 | 0.66 | ||
TER | UAA | 1 095 | 1.11 | Cys | UGU | 686 | 1.21 |
UAG | 786 | 0.80 | UGC | 449 | 0.79 | ||
UGA | 1 084 | 1.10 | Arg | CGU | 377 | 0.66 | |
His | CAU | 970 | 1.42 | CGC | 222 | 0.39 | |
CAC | 392 | 0.58 | CGA | 597 | 1.05 | ||
Gln | CAA | 1 110 | 1.44 | CGG | 397 | 0.70 | |
CAG | 428 | 0.56 | AGA | 1 177 | 2.08 | ||
Asn | AAU | 1 694 | 1.38 | AGG | 632 | 1.11 | |
AAC | 765 | 0.62 | Gly | GGU | 612 | 1.03 | |
Lys | AAA | 2 114 | 1.34 | GGC | 346 | 0.58 | |
AAG | 1 041 | 0.66 | GGA | 885 | 1.49 | ||
Asp | GAU | 1 089 | 1.44 | GGG | 531 | 0.89 | |
GAC | 426 | 0.56 | Glu | GAA | 1 364 | 1.38 | |
Trp | UGG | 706 | 1.00 | GAG | 613 | 0.62 |
[1] |
Brennan A C. 2017. Distyly supergenes as a model to understand the evolution of genetic architecture. American Journal of Botany, 104 (1):5-7.
doi: 10.3732/ajb.1600363 pmid: 28057688 |
[2] | Christian K, Nguyen H C, Michael L. 2017. A short story gets longer: recent insights into the molecular basis of heterostyly. Journal of Experimental Botany,(21-22):21-22. |
[3] | Dong Xiao-li. 2014. Study on pollen viability,pollen morphology and cell culture of Forsythia suspensa[M. D. Dissertation]. Taiyuan: Shanxi University. (in Chinese) |
董晓莉. 2014. 连翘花粉活力、花粉形态及细胞培养研究[硕士论文]. 太原: 山西大学. | |
[4] | Fang Xin-sheng. 2015. Evaluation for drug resources of Forsythia suspensa in Shandong Province and study on the extraction technology of active components[Ph. D. Dissertation]. Tai'an: Shandong Agricultural University. (in Chinese) |
房信胜. 2015. 山东连翘药物资源评价及活性成分提取技术研究[博士论文]. 泰安: 山东农业大学. | |
[5] | Fang Xin-sheng, Wei Lei, Fu Xin-xin, Wang Tong-qian, Zhang Qiu-lin, Wang Jian-hua. 2018. Study on the leaf and fruit component metabolism of the long and short styles of Forsythia suspensa. Journal of Chinese Medicinal Materials, 41 (3):559-564. (in Chinese) |
房信胜, 魏蕾, 付欣欣, 王同铅, 张秋林, 王建华. 2018. 连翘长花柱与短花柱植株叶和果成分代谢研究. 中药材, 41 (3):559-564. | |
[6] | Fang Xin-sheng, Zhou Hong-ying, Ning An-qi, Su Jie, Wang Jian-hua. 2017. Comparison of pollen morphology and chemical components of flower between long style type and short style type of Forsythia suspensa. Acta Horticulturae Sinica, 44 (2):373-380. (in Chinese) |
房信胜, 周红英, 宁安琪, 苏洁, 王建华. 2017. 连翘长花柱与短花柱植株花粉形态特征和花中化学成分比较. 园艺学报, 44 (2):373-380. | |
[7] | Gao Jing, Jiao Ya, Zhang Wen-guang. 2014. Overview of sequence alignment for high-throughput sequencing data. Life Science Research, 18 (5):458-464. (in Chinese) |
高静, 焦雅, 张文广. 2014. 高通量测序序列比对研究综述. 生命科学研究, 18 (5):458-464. | |
[8] |
Heng L, Nils H. 2010. A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11 (5):473-483.
doi: 10.1093/bib/bbq015 pmid: 20460430 |
[9] | Howe C J. 2006. Chloroplast Genome. John Wiley & Sons,Ltd, Publication. |
[10] | Jiang Ming, Wang Jun-feng, Ying Meng-hao, Yang Ru-mian, Ma Jia-ying. 2020. Assembly and sequence analysis of Tetrastigma hemsleyanum chloroplast genome. Chinese Traditional and Herbal Medicine, 51 (2):461-468. (in Chinese) |
蒋明, 王军峰, 应梦豪, 杨如棉, 马佳莹. 2020. 三叶崖爬藤叶绿体基因组的组装与序列分析. 中草药, 51 (2):461-468. | |
[11] |
Kappel C, Huu C N, Lenhard M. 2017. A short story gets longer:recent insights into the molecular basis of heterostyly. Journal of Experimental Botany, 68 (21-22):5719-5730.
doi: 10.1093/jxb/erx387 URL |
[12] | Lei Wan-jun. 2016. Study on the chloroplast genome of Astragalus mongolia[M. D. Dissertation]. Taigu: Shanxi Agricultural University. (in Chinese) |
雷万钧. 2016. 蒙古黄芪叶绿体基因组研究[硕士论文]. 太谷: 山西农业大学. | |
[13] | Li Jin-yu, Zhang Zhi-xiang, Yin Wu-yuan. 2006. Study on the structure and breeding system of Forsythia suspensa flower. Northwestern Journal of Botany, 26 (8):1548-1553. (in Chinese) |
李进宇, 张志翔, 尹五元. 2006. 连翘花的结构与繁育系统研究. 西北植物学报, 26 (8):1548-1553. | |
[14] | Li Qian, Guo Qiqiang, Gao Chao, Li Huie. 2020. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province. Acta Horticulturae Sinica, 47 (4):779-787. (in Chinese) |
李倩, 郭其强, 高超, 李慧娥. 2020. 贵州威宁红花油茶的叶绿体基因组特征分析. 园艺学报, 47 (4):779-787. | |
[15] |
Matsui Katsuhiro, Yasui Yasuo. 2020. Buckwheat heteromorphic self-incompatibility:genetics,genomics and application to breeding. Breeding Science, 70:32-38.
doi: 10.1270/jsbbs.19083 pmid: 32351302 |
[16] | Qiao Yonggang, Cao Yaping, Jia Mengjun, Wang Yongfei, He Jiaxin, Zhang Xinrui, Wang Wenbin, Song Yun. 2020. Research on flower buds growth development and pollination habits of Forsythia suspensa heterostyly. Acta Horticulture Sinica, 47 (4):699-707. (in Chinese) |
乔永刚, 曹亚萍, 贾孟君, 王勇飞, 贺嘉欣, 张鑫瑞, 王文斌, 宋芸. 2020. 连翘异型花柱植株花芽生长发育与传粉习性研究. 园艺学报, 47 (4):699-707. | |
[17] | Qiao Yong-gang, He Jia-xin, Wang Yong-fei, Cao Ya-ping, Jia Meng-jun, Zhang Xin-rui, Liang Jian-ping, Song Yun. 2019. Analysis of chloroplast genome and its characteristics of medicinal plant Sophora flavescens. Acta Pharmaceutica Sinica, 54 (11):2106-2112. (in Chinese) |
乔永刚, 贺嘉欣, 王勇飞, 曹亚萍, 贾孟君, 张鑫瑞, 梁建萍, 宋芸. 2019. 药用植物苦参的叶绿体基因组及其特征分析. 药学学报, 54 (11):2106-2112. | |
[18] | Tonti-Filippini J, Nevill P G, Dixon K, Small l. 2017. What can we do with 1000 plastid genomes? Plant J, 90 (4):808-818. |
[19] |
Wang W B, Yu H, Wang J H, Lei W J, Gao J H, Qiu X P. 2017. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa(Oleaceae). International Journal of Molecular Sciences, 18 (11):2288-2303.
doi: 10.3390/ijms18112288 URL |
[20] |
Yu X Q, Drew B T, Yang J B, Gao L M, Li D Z. 2017. Comparative chloroplast genomes of eleven Schima(Theaceae)species:insights into DNA barcoding and phylogeny. PLoS ONE, 12 (6):e0178026.
doi: 10.1371/journal.pone.0178026 URL |
[21] | Zheng Yi, Zhang Hui, Wang Qinmei, Gao Yue, Zhang Zhihong, Sun Yuxin. 2020. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Horticulturae Sinica, 47 (12):2439-2450. (in Chinese) |
郑祎, 张卉, 王钦美, 高悦, 张志宏, 孙玉新. 2020. 大花君子兰叶绿体基因组及其特征. 园艺学报, 44 (12):2439-2450. | |
[22] |
Zhou J G, Chen X L, Cui Y X, Sun W, Li Y H, Wang Y, Song J Y, Yao H. 2017. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. International Journal of Molecular Sciences, 18 (9):1839.
doi: 10.3390/ijms18091839 URL |
[23] | Zhou Wei, Wang Hong. 2009. Heterostyly in angiosperms and its evolutionary significance. Chinese Bulletin of Botany, 44 (6):742-751. (in Chinese) |
周伟, 王红. 2009. 被子植物异型花柱及其进化意义. 植物学报, 44 (6):742-751. | |
[24] | Zhu Ting-ting, Zhang Lei, Chen Wan-sheng, Yin Jun, Li Qing. 2017. Analysis of the chloroplast genome of 1342 plants. Genomics and Applied Biology, 36 (10):4323-4333. (in Chinese) |
朱婷婷, 张磊, 陈万生, 殷军, 李卿. 2017. 1342个植物叶绿体基因组分析. 基因组学与应用生物学, 36 (10):4323-4333. |
[1] | WANG Rui, HONG Wenjuan, LUO Hua, ZHAO Lina, CHEN Ying, and WANG Jun, . Construction of SSR Fingerprints of Pomegranate Cultivars and Male Parent Identification of Hybrids [J]. Acta Horticulturae Sinica, 2023, 50(2): 265-278. |
[2] | LIU Yiping, NI Menghui, WU Fangfang, LIU Hongli, HE Dan, KONG Dezheng. Association Analysis of Organ Traits with SSR Markers in Lotus(Nelumbo nucifera) [J]. Acta Horticulturae Sinica, 2023, 50(1): 103-115. |
[3] | JIANG Sisi, YUAN Jun, ZHOU Wenjun, NIU Genhua, ZHOU Junqin. Complete Chloroplast Genome Sequence and Characteristics Analysis of Carya illinoinensis [J]. Acta Horticulturae Sinica, 2022, 49(8): 1772-1784. |
[4] | LIU Peng, LI Qin, ZHANG Weirui, HE Sheqi, ZHANG Suping, MA Xiaoxu, YUAN Wangjun. Identification,Biological Characteristics and Fungicide Sensitivity of the Pathogen Causing Brown Spot Disease on Forsythia [J]. Acta Horticulturae Sinica, 2022, 49(8): 1805-1814. |
[5] | LI Chao, YANG Ying, CHEN Wei, ZHENG Heyun, LIAO Xinfu, SUN Yuping. Construction of DNA Fingerprinting and Clustering Analysis with SSR Markers for the Muskmelon of Xizhoumi Series [J]. Acta Horticulturae Sinica, 2022, 49(3): 622-632. |
[6] | TANG Chenqian, QIU Zhixin, TAN Chao, QIAN Yuming, CHEN Xin. Sorbus koehneana(Rosaceae):Its Complete Chloroplast Genome and Phylogenetic Relationship with S. unguiculata [J]. Acta Horticulturae Sinica, 2022, 49(3): 641-654. |
[7] | NIE Xinghua, LI Yiran, TIAN Shoule, WANG Xuefeng, SU Shuchai, CAO Qingqin, XING Yu, QIN Ling. Construction of DNA Fingerprint Map and Analysis of Genetic Diversity for Chinese Chestnut Cultivars(Lines) [J]. Acta Horticulturae Sinica, 2022, 49(11): 2313-2324. |
[8] | FENG Lixiao, HU Rong, BU Shan, ZHANG Deyong, LUO Xiangwen, LI Fan, DING Ming, ZHANG Zhuo, ZHANG Songbai, LIU Yong. Molecular Detection and Genetic Evolution Analysis of Yunnan Isolates of Lettuce Chlorosis Virus in Tomato [J]. Acta Horticulturae Sinica, 2022, 49(1): 141-147. |
[9] | CHEN Mingkun, CHEN Lu, SUN Weihong, MA Shanhu, LAN Siren, PENG Donghui, LIU Zhongjian, AI Ye. Genetic Diversity Analysis and Core Collection of Cymbidium ensifolium Germplasm Resources [J]. Acta Horticulturae Sinica, 2022, 49(1): 175-186. |
[10] | WANG Xin, LI Mingyang, TIAN Lin, LIU Dongyun. ISSR and rDNA-ITS Sequence Analysis of the Genetic Relationship of Clematis in Hebei Province [J]. Acta Horticulturae Sinica, 2021, 48(9): 1755-1767. |
[11] | DING Yunhua, Budahn Holger, ZHAO Hong, ZHAO Xiuyun. Accurate Identification of Radish Chromosome F in the Backcross Progeny of Brassica rapa and Rape-radish Chromosome F Addition Line [J]. Acta Horticulturae Sinica, 2021, 48(7): 1295-1303. |
[12] | ZHAO Qing, DU Zhenzhen, LI Xixiang, SONG Jiangping, ZHANG Xiaohui, YANG Wenlong, JIA Huixia, WANG Haiping. Genetic Diversity of Garlic Germplasm Resources Based on SSRseq Molecular Markers [J]. Acta Horticulturae Sinica, 2021, 48(7): 1397-1408. |
[13] | JIANG Xibing, ZHANG Pingsheng, XU Yang, WU Conglian, ZHANG Dongbei, GONG Bangchu, WU Kaiyun, LAI Junsheng. Genetic Diversity of F1 Hybrids of Chestnut Based on SSR Markers [J]. Acta Horticulturae Sinica, 2021, 48(5): 897-907. |
[14] | DONG Yi, FENG Yufei, XU Zhongmin, WANG Shimin, TANG Honglü, HUANG Wei. Analysis of the Relationship Between Genetic Distance and Heterosis by SSR Markers in Cabbage(Brassica oleracea var. capitata) [J]. Acta Horticulturae Sinica, 2021, 48(5): 934-946. |
[15] | JIANG Shuang, ZHANG Xueying, AN Haishan, XU Fangjie, ZHANG Jiaying. Development and Analysis of Polymorphism of SSR Markers in the Whole Genome of Loquat [J]. Acta Horticulturae Sinica, 2021, 48(5): 1013-1022. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd