Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (5): 897-907.doi: 10.16420/j.issn.0513-353x.2020-0608
• Research Papers • Previous Articles Next Articles
JIANG Xibing1, ZHANG Pingsheng1, XU Yang1, WU Conglian2, ZHANG Dongbei2, GONG Bangchu1,*(), WU Kaiyun1, LAI Junsheng2
Received:
2020-09-03
Revised:
2020-11-17
Online:
2021-05-25
Published:
2021-06-07
Contact:
GONG Bangchu
E-mail:gongbc@126.com
CLC Number:
JIANG Xibing, ZHANG Pingsheng, XU Yang, WU Conglian, ZHANG Dongbei, GONG Bangchu, WU Kaiyun, LAI Junsheng. Genetic Diversity of F1 Hybrids of Chestnut Based on SSR Markers[J]. Acta Horticulturae Sinica, 2021, 48(5): 897-907.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0608
组合编号 Combination No. | 杂交组合 Combination | 子代数量 Number of hybrids |
---|---|---|
C1 | YLZ 26 × YLZ 14 | 14 |
C2 | YLZ 26 × YLZ 15 | 30 |
C3 | YLZ 24 × YLZ 1 | 30 |
C4 | YLZ 24 × YLZ 15 | 30 |
C5 | YLZ 1 × YLZ 24 | 30 |
C6 | YLZ 1 × YLZ 2 | 17 |
C7 | YLZ 14 × YLZ 1 | 24 |
C8 | 魁栗 Kuili × YLZ 15 | 30 |
C9 | 魁栗 Kuili × YLZ 1 | 30 |
Table 1 Cross combination of chestnut
组合编号 Combination No. | 杂交组合 Combination | 子代数量 Number of hybrids |
---|---|---|
C1 | YLZ 26 × YLZ 14 | 14 |
C2 | YLZ 26 × YLZ 15 | 30 |
C3 | YLZ 24 × YLZ 1 | 30 |
C4 | YLZ 24 × YLZ 15 | 30 |
C5 | YLZ 1 × YLZ 24 | 30 |
C6 | YLZ 1 × YLZ 2 | 17 |
C7 | YLZ 14 × YLZ 1 | 24 |
C8 | 魁栗 Kuili × YLZ 15 | 30 |
C9 | 魁栗 Kuili × YLZ 1 | 30 |
引物名称 Primer name | 重复碱基 Repeat base | 引物序列 Primer sequence | 退火温度/℃ Annealing temperature |
---|---|---|---|
CmTCR2 | (CA)23 | F:ATCAGAGTGGGAAGCCAGAA;R:GGGTACAGTGGCAAGACA | 52 |
CmTCR4 | (AC)21 | F:CATAGGTTCAAACCATACCCGTG;R:CTCATCTTTGTAGGGTATAATACC | 52 |
CmTCR10 | (TG)15 | F:CACTATTTTATCATGGACGG;R:CGAATTGAGAGTTCATACTC | 50 |
CmTCR13 | (AC)7 | F:GTAACTTGAAGCAGTGTGAAC;R:CGCATCATAGTGAGTGACAG | 55 |
CmTCR19 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 56 |
CmTCR22 | (AC)7 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 50 |
CmTCR25 | (GT)28 | F:TCGATGCCATGTTGATTGTT;R:GGTTTTGGGGACGTGTTAGG | 52 |
CsCAT5 | (GA)20 | F:CATTTTCTCATTGTGGCTGC;R:CACTTGCACATCCAATTAGG | 59 |
CsCAT7 | (TG)8CG(TG)4 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 58 |
CsCAT8 | (GT)7(GA)20 | F:CTGCAAGACAAGAATTACAC;R:GAATAACCTGCAGAAGGC | 56 |
CsCAT15 | (TC)12 | F:TTCTGCGACCTCGAAACCGA;R:GCTAGGGTTTTCATTTCTAG | 60 |
CsCAT18 | (CA)12CG(CA)10 | F:GCTTGATTGCACTGATAACC;R:CACATGAGCGCGTGCTCAGAAG | 55 |
CsCAT26 | (CT)25 | F:GAGACTTGAGATTGCAAAGG;R:CTCACATTCAGTTAACAC | 55 |
CsCAT31 | (TG)4T(TG)17 | F:CCCTTTAAATACTGTGTGTG;R:CTACAGGAACACTCTGAATAG | 56 |
CsCAT33 | (GA)5GG(GA)11 | F:CTCGGAAACCAAACATGAATC;R:CGTTTTTGCTTCTTAGATTCC | 58 |
CsCAT38 | (CT)7 | F:CTAGAAATGAAAACCCTAGC;R:CGTGAACCACGTATCTACC | 54 |
CsCAT41 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 60 |
EMCs2 | (CGG)7 | F:GCTGATATGGCAATGCTTTTCCTC;R:GCCCTCCAGCCTCACCTTCATCAG | 56 |
EMCs4 | (GGC)7 | F:CGCCGAACTCACCGACCTC;R:GCCAAAACGACACCCAATCC | 56 |
EMCs15 | (CAC)9 | F:CTCTTAGACTCCTTCGCCAATC;R:CAGAATCAAAGAAGAGAAAGGTC | 56 |
ICMA003 | (GA)19 | F:TGTCTGCCTGAAACCATTTCT;R:GGGACCCACAAGTCTCATGT | 60 |
ICMA010 | (CT)6(GT)17 | F:GTTGGAGAGGTCGTCTCACG;R:ATTGCGAGGAAAAGGAAACA | 60 |
ICMA012s | (AC)14 | F:TCCACAGCAAGATCCAAACA;R:ATGATTTGGCCATCACAAGA | 60 |
ICMA014 | (CA)13 | F:GGTGATATTTTTGGCATCATCA;R:GGGTCCTCCACCACAATTAG | 60 |
ICMA017s | (TG)17 | F:CAAGCGGAAATGTTTTCTCA;R:CTTTGGATCAAATGGCGTCT | 60 |
ICMA022 | (CAG)6 | F:CGATGTCTGCGTCAAATCTC;R:CTGCTGGGACAGCTGATGTA | 60 |
KT010a | (GA)10 | F:TAATGTGAAAGAGAGAGGGG;R:ACCGGCCACAAAGAATCAAG | 55 |
KT024a | (GA)12 | F:CACCCACTACCAGTAGTTGT;R:AACATCAACCCACTAACTTT | 55 |
PRA86 | (CT)n | F:ATCCCTGCACCAAGAACAAG;R:GTTTCTTGCCTTTGGTCTCTTGCCAT | 55 |
PRD21 | (TG)n | F:GTGGAACAAGCATCCAACTG;R:GTTTCTTCATGCGTGATGCAGCTTAGT | 55 |
PRD26 | (GA)n | F:TCCTGAACAAGTCAAGGTGC;R:GTTTCTTTCACACCACTGTGTTGCCTA | 55 |
PRD52 | (AG)n | F:CTTGTCATGGTGCATTGGTG;R:GTTTCTTCCGCAGTGGTGATCCATTAT | 55 |
Table 2 Thirty-two pairs of SSR primer sequences
引物名称 Primer name | 重复碱基 Repeat base | 引物序列 Primer sequence | 退火温度/℃ Annealing temperature |
---|---|---|---|
CmTCR2 | (CA)23 | F:ATCAGAGTGGGAAGCCAGAA;R:GGGTACAGTGGCAAGACA | 52 |
CmTCR4 | (AC)21 | F:CATAGGTTCAAACCATACCCGTG;R:CTCATCTTTGTAGGGTATAATACC | 52 |
CmTCR10 | (TG)15 | F:CACTATTTTATCATGGACGG;R:CGAATTGAGAGTTCATACTC | 50 |
CmTCR13 | (AC)7 | F:GTAACTTGAAGCAGTGTGAAC;R:CGCATCATAGTGAGTGACAG | 55 |
CmTCR19 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 56 |
CmTCR22 | (AC)7 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 50 |
CmTCR25 | (GT)28 | F:TCGATGCCATGTTGATTGTT;R:GGTTTTGGGGACGTGTTAGG | 52 |
CsCAT5 | (GA)20 | F:CATTTTCTCATTGTGGCTGC;R:CACTTGCACATCCAATTAGG | 59 |
CsCAT7 | (TG)8CG(TG)4 | F:GAACATGATGATTGGCCTC;R:CCAAACATGACATATGTCCC | 58 |
CsCAT8 | (GT)7(GA)20 | F:CTGCAAGACAAGAATTACAC;R:GAATAACCTGCAGAAGGC | 56 |
CsCAT15 | (TC)12 | F:TTCTGCGACCTCGAAACCGA;R:GCTAGGGTTTTCATTTCTAG | 60 |
CsCAT18 | (CA)12CG(CA)10 | F:GCTTGATTGCACTGATAACC;R:CACATGAGCGCGTGCTCAGAAG | 55 |
CsCAT26 | (CT)25 | F:GAGACTTGAGATTGCAAAGG;R:CTCACATTCAGTTAACAC | 55 |
CsCAT31 | (TG)4T(TG)17 | F:CCCTTTAAATACTGTGTGTG;R:CTACAGGAACACTCTGAATAG | 56 |
CsCAT33 | (GA)5GG(GA)11 | F:CTCGGAAACCAAACATGAATC;R:CGTTTTTGCTTCTTAGATTCC | 58 |
CsCAT38 | (CT)7 | F:CTAGAAATGAAAACCCTAGC;R:CGTGAACCACGTATCTACC | 54 |
CsCAT41 | (AG)20 | F:AAGTCAGCAACACCATATGC;R:CCCACTGTTCATGAGTTTCT | 60 |
EMCs2 | (CGG)7 | F:GCTGATATGGCAATGCTTTTCCTC;R:GCCCTCCAGCCTCACCTTCATCAG | 56 |
EMCs4 | (GGC)7 | F:CGCCGAACTCACCGACCTC;R:GCCAAAACGACACCCAATCC | 56 |
EMCs15 | (CAC)9 | F:CTCTTAGACTCCTTCGCCAATC;R:CAGAATCAAAGAAGAGAAAGGTC | 56 |
ICMA003 | (GA)19 | F:TGTCTGCCTGAAACCATTTCT;R:GGGACCCACAAGTCTCATGT | 60 |
ICMA010 | (CT)6(GT)17 | F:GTTGGAGAGGTCGTCTCACG;R:ATTGCGAGGAAAAGGAAACA | 60 |
ICMA012s | (AC)14 | F:TCCACAGCAAGATCCAAACA;R:ATGATTTGGCCATCACAAGA | 60 |
ICMA014 | (CA)13 | F:GGTGATATTTTTGGCATCATCA;R:GGGTCCTCCACCACAATTAG | 60 |
ICMA017s | (TG)17 | F:CAAGCGGAAATGTTTTCTCA;R:CTTTGGATCAAATGGCGTCT | 60 |
ICMA022 | (CAG)6 | F:CGATGTCTGCGTCAAATCTC;R:CTGCTGGGACAGCTGATGTA | 60 |
KT010a | (GA)10 | F:TAATGTGAAAGAGAGAGGGG;R:ACCGGCCACAAAGAATCAAG | 55 |
KT024a | (GA)12 | F:CACCCACTACCAGTAGTTGT;R:AACATCAACCCACTAACTTT | 55 |
PRA86 | (CT)n | F:ATCCCTGCACCAAGAACAAG;R:GTTTCTTGCCTTTGGTCTCTTGCCAT | 55 |
PRD21 | (TG)n | F:GTGGAACAAGCATCCAACTG;R:GTTTCTTCATGCGTGATGCAGCTTAGT | 55 |
PRD26 | (GA)n | F:TCCTGAACAAGTCAAGGTGC;R:GTTTCTTTCACACCACTGTGTTGCCTA | 55 |
PRD52 | (AG)n | F:CTTGTCATGGTGCATTGGTG;R:GTTTCTTCCGCAGTGGTGATCCATTAT | 55 |
引物 Primer | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | I Shannon’s 信息指数 Shannon’s information index | PIC 多态信息量 Polymorphism information content | Hs 基因遗传 多样性 Genetic diversity | Fst 遗传分化 系数 Genetic differentiation coefficient | Nm 基因流 Gene flow |
---|---|---|---|---|---|---|---|---|---|
CmTCR2 | 12 | 2.900 | 0.1362 | 0.6565 | 1.3106 | 0.6040 | 0.6551 | 0.1438 | 1.4885 |
CmTCR4 | 14 | 6.242 | 0.3191 | 0.8416 | 2.0650 | 0.8222 | 0.8398 | 0.1771 | 1.1617 |
CmTCR10 | 9 | 3.383 | 0.2255 | 0.7059 | 1.4277 | 0.6612 | 0.7044 | 0.0880 | 2.5921 |
CmTCR13 | 24 | 6.627 | 0.6979 | 0.8509 | 2.2389 | 0.8324 | 0.8491 | 0.2213 | 0.8799 |
CmTCR19 | 10 | 2.708 | 0.7021 | 0.6320 | 1.3254 | 0.5829 | 0.6307 | 0.2265 | 0.8539 |
CmTCR22 | 10 | 5.400 | 0.1160 | 0.8165 | 1.8446 | 0.7898 | 0.8148 | 0.1766 | 1.1656 |
CmTCR25 | 5 | 1.622 | 0.8681 | 0.3842 | 0.7621 | 0.3555 | 0.3834 | 0.1375 | 1.5685 |
CsCAT5 | 15 | 5.866 | 0.1453 | 0.8313 | 2.0510 | 0.8090 | 0.8295 | 0.1548 | 1.3679 |
CsCAT7 | 11 | 6.504 | 0.1064 | 0.8481 | 2.0124 | 0.8279 | 0.8462 | 0.1480 | 1.4392 |
CsCAT8 | 9 | 3.823 | 0.3362 | 0.7400 | 1.5976 | 0.7041 | 0.7384 | 0.1156 | 1.9126 |
CsCAT15 | 3 | 2.003 | 0.6045 | 0.5018 | 0.8262 | 0.4252 | 0.5008 | 0.1249 | 1.7513 |
CsCAT18 | 10 | 4.617 | 0.3191 | 0.7851 | 1.7221 | 0.7513 | 0.7834 | 0.1376 | 1.5672 |
CsCAT26 | 16 | 4.370 | 0.3830 | 0.7728 | 1.7692 | 0.7389 | 0.7712 | 0.1329 | 1.6317 |
CsCAT31 | 7 | 2.574 | 0.7362 | 0.6128 | 1.2025 | 0.5645 | 0.6115 | 0.1165 | 1.8964 |
CsCAT33 | 7 | 3.453 | 0.2298 | 0.7119 | 1.3586 | 0.6547 | 0.7104 | 0.1385 | 1.5555 |
CsCAT38 | 4 | 3.179 | 0.3191 | 0.6869 | 1.2163 | 0.6218 | 0.6854 | 0.1060 | 2.1091 |
CsCAT41 | 11 | 3.960 | 0.4890 | 0.7491 | 1.6583 | 0.7152 | 0.7475 | 0.1336 | 1.6215 |
EMCs2 | 10 | 1.966 | 0.4851 | 0.4923 | 1.0327 | 0.4492 | 0.4912 | 0.0977 | 2.3093 |
EMCs4 | 9 | 5.025 | 0.3277 | 0.8027 | 1.7567 | 0.7721 | 0.8010 | 0.1515 | 1.4001 |
EMCs15 | 4 | 1.597 | 0.6128 | 0.3747 | 0.5832 | 0.3070 | 0.3739 | 0.3356 | 0.4949 |
ICMA003 | 7 | 3.354 | 0.2255 | 0.7033 | 1.4438 | 0.6588 | 0.7018 | 0.0889 | 2.5608 |
ICMA010 | 10 | 3.408 | 0.2298 | 0.7081 | 1.4312 | 0.6556 | 0.7066 | 0.1069 | 2.0896 |
ICMA012s | 9 | 2.969 | 0.0723 | 0.6646 | 1.3763 | 0.6147 | 0.6632 | 0.1517 | 1.3980 |
ICMA014 | 5 | 2.049 | 0.1149 | 0.5130 | 0.7752 | 0.3973 | 0.5119 | 0.1109 | 2.0043 |
ICMA017s | 10 | 4.942 | 0.0936 | 0.7994 | 1.8036 | 0.7705 | 0.7977 | 0.1350 | 1.6023 |
ICMA022 | 4 | 1.886 | 0.5872 | 0.4707 | 0.7813 | 0.3965 | 0.4697 | 0.1374 | 1.5700 |
KT010a | 5 | 2.077 | 0.4723 | 0.5196 | 0.8241 | 0.4123 | 0.5185 | 0.1045 | 2.1415 |
KT024a | 2 | 1.693 | 0.5617 | 0.4103 | 0.5997 | 0.3256 | 0.4095 | 0.1116 | 1.9897 |
PRA86 | 6 | 4.339 | 0.1745 | 0.7711 | 1.6289 | 0.7399 | 0.7695 | 0.1820 | 1.1238 |
PRD21 | 10 | 3.005 | 0.5872 | 0.6687 | 1.3184 | 0.6100 | 0.6673 | 0.2533 | 0.7369 |
PRD26 | 6 | 3.403 | 0.1745 | 0.7076 | 1.4798 | 0.6737 | 0.7061 | 0.1145 | 1.9328 |
PRD52 | 4 | 1.529 | 0.6426 | 0.3468 | 0.6400 | 0.3116 | 0.3461 | 0.1814 | 1.1278 |
均值 Mean | 8.69 | 3.510 | 0.3793 | 0.6588 | 1.3707 | 0.6111 | 0.6574 | 0.1482 | 1.5951 |
Table 3 Genetic parameters of 32 pairs of SSR primers in F1 hybrids
引物 Primer | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | I Shannon’s 信息指数 Shannon’s information index | PIC 多态信息量 Polymorphism information content | Hs 基因遗传 多样性 Genetic diversity | Fst 遗传分化 系数 Genetic differentiation coefficient | Nm 基因流 Gene flow |
---|---|---|---|---|---|---|---|---|---|
CmTCR2 | 12 | 2.900 | 0.1362 | 0.6565 | 1.3106 | 0.6040 | 0.6551 | 0.1438 | 1.4885 |
CmTCR4 | 14 | 6.242 | 0.3191 | 0.8416 | 2.0650 | 0.8222 | 0.8398 | 0.1771 | 1.1617 |
CmTCR10 | 9 | 3.383 | 0.2255 | 0.7059 | 1.4277 | 0.6612 | 0.7044 | 0.0880 | 2.5921 |
CmTCR13 | 24 | 6.627 | 0.6979 | 0.8509 | 2.2389 | 0.8324 | 0.8491 | 0.2213 | 0.8799 |
CmTCR19 | 10 | 2.708 | 0.7021 | 0.6320 | 1.3254 | 0.5829 | 0.6307 | 0.2265 | 0.8539 |
CmTCR22 | 10 | 5.400 | 0.1160 | 0.8165 | 1.8446 | 0.7898 | 0.8148 | 0.1766 | 1.1656 |
CmTCR25 | 5 | 1.622 | 0.8681 | 0.3842 | 0.7621 | 0.3555 | 0.3834 | 0.1375 | 1.5685 |
CsCAT5 | 15 | 5.866 | 0.1453 | 0.8313 | 2.0510 | 0.8090 | 0.8295 | 0.1548 | 1.3679 |
CsCAT7 | 11 | 6.504 | 0.1064 | 0.8481 | 2.0124 | 0.8279 | 0.8462 | 0.1480 | 1.4392 |
CsCAT8 | 9 | 3.823 | 0.3362 | 0.7400 | 1.5976 | 0.7041 | 0.7384 | 0.1156 | 1.9126 |
CsCAT15 | 3 | 2.003 | 0.6045 | 0.5018 | 0.8262 | 0.4252 | 0.5008 | 0.1249 | 1.7513 |
CsCAT18 | 10 | 4.617 | 0.3191 | 0.7851 | 1.7221 | 0.7513 | 0.7834 | 0.1376 | 1.5672 |
CsCAT26 | 16 | 4.370 | 0.3830 | 0.7728 | 1.7692 | 0.7389 | 0.7712 | 0.1329 | 1.6317 |
CsCAT31 | 7 | 2.574 | 0.7362 | 0.6128 | 1.2025 | 0.5645 | 0.6115 | 0.1165 | 1.8964 |
CsCAT33 | 7 | 3.453 | 0.2298 | 0.7119 | 1.3586 | 0.6547 | 0.7104 | 0.1385 | 1.5555 |
CsCAT38 | 4 | 3.179 | 0.3191 | 0.6869 | 1.2163 | 0.6218 | 0.6854 | 0.1060 | 2.1091 |
CsCAT41 | 11 | 3.960 | 0.4890 | 0.7491 | 1.6583 | 0.7152 | 0.7475 | 0.1336 | 1.6215 |
EMCs2 | 10 | 1.966 | 0.4851 | 0.4923 | 1.0327 | 0.4492 | 0.4912 | 0.0977 | 2.3093 |
EMCs4 | 9 | 5.025 | 0.3277 | 0.8027 | 1.7567 | 0.7721 | 0.8010 | 0.1515 | 1.4001 |
EMCs15 | 4 | 1.597 | 0.6128 | 0.3747 | 0.5832 | 0.3070 | 0.3739 | 0.3356 | 0.4949 |
ICMA003 | 7 | 3.354 | 0.2255 | 0.7033 | 1.4438 | 0.6588 | 0.7018 | 0.0889 | 2.5608 |
ICMA010 | 10 | 3.408 | 0.2298 | 0.7081 | 1.4312 | 0.6556 | 0.7066 | 0.1069 | 2.0896 |
ICMA012s | 9 | 2.969 | 0.0723 | 0.6646 | 1.3763 | 0.6147 | 0.6632 | 0.1517 | 1.3980 |
ICMA014 | 5 | 2.049 | 0.1149 | 0.5130 | 0.7752 | 0.3973 | 0.5119 | 0.1109 | 2.0043 |
ICMA017s | 10 | 4.942 | 0.0936 | 0.7994 | 1.8036 | 0.7705 | 0.7977 | 0.1350 | 1.6023 |
ICMA022 | 4 | 1.886 | 0.5872 | 0.4707 | 0.7813 | 0.3965 | 0.4697 | 0.1374 | 1.5700 |
KT010a | 5 | 2.077 | 0.4723 | 0.5196 | 0.8241 | 0.4123 | 0.5185 | 0.1045 | 2.1415 |
KT024a | 2 | 1.693 | 0.5617 | 0.4103 | 0.5997 | 0.3256 | 0.4095 | 0.1116 | 1.9897 |
PRA86 | 6 | 4.339 | 0.1745 | 0.7711 | 1.6289 | 0.7399 | 0.7695 | 0.1820 | 1.1238 |
PRD21 | 10 | 3.005 | 0.5872 | 0.6687 | 1.3184 | 0.6100 | 0.6673 | 0.2533 | 0.7369 |
PRD26 | 6 | 3.403 | 0.1745 | 0.7076 | 1.4798 | 0.6737 | 0.7061 | 0.1145 | 1.9328 |
PRD52 | 4 | 1.529 | 0.6426 | 0.3468 | 0.6400 | 0.3116 | 0.3461 | 0.1814 | 1.1278 |
均值 Mean | 8.69 | 3.510 | 0.3793 | 0.6588 | 1.3707 | 0.6111 | 0.6574 | 0.1482 | 1.5951 |
组合编号 Combination No. | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
C1 | 4.22 | 2.96 | 0.3259 | 0.6324 | 0.6098 | 1.1317 |
C2 | 4.31 | 2.55 | 0.3948 | 0.5698 | 0.5603 | 1.0253 |
C3 | 3.43 | 2.63 | 0.3209 | 0.5908 | 0.5809 | 1.0108 |
C4 | 4.19 | 2.70 | 0.3917 | 0.5729 | 0.5634 | 1.0224 |
C5 | 4.66 | 2.79 | 0.3625 | 0.6062 | 0.5961 | 1.1042 |
C6 | 4.25 | 2.67 | 0.4136 | 0.5909 | 0.5735 | 1.0627 |
C7 | 3.88 | 2.25 | 0.4284 | 0.5047 | 0.4942 | 0.8816 |
C8 | 4.81 | 2.94 | 0.3833 | 0.5882 | 0.5784 | 1.1224 |
C9 | 5.16 | 2.73 | 0.3885 | 0.5664 | 0.5569 | 1.0889 |
Table 4 Genetic parameters of F1 generation in different cross combinations
组合编号 Combination No. | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
C1 | 4.22 | 2.96 | 0.3259 | 0.6324 | 0.6098 | 1.1317 |
C2 | 4.31 | 2.55 | 0.3948 | 0.5698 | 0.5603 | 1.0253 |
C3 | 3.43 | 2.63 | 0.3209 | 0.5908 | 0.5809 | 1.0108 |
C4 | 4.19 | 2.70 | 0.3917 | 0.5729 | 0.5634 | 1.0224 |
C5 | 4.66 | 2.79 | 0.3625 | 0.6062 | 0.5961 | 1.1042 |
C6 | 4.25 | 2.67 | 0.4136 | 0.5909 | 0.5735 | 1.0627 |
C7 | 3.88 | 2.25 | 0.4284 | 0.5047 | 0.4942 | 0.8816 |
C8 | 4.81 | 2.94 | 0.3833 | 0.5882 | 0.5784 | 1.1224 |
C9 | 5.16 | 2.73 | 0.3885 | 0.5664 | 0.5569 | 1.0889 |
亲本 Parent | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
魁栗 Kuili | 1.6250 | 1.6250 | 0.3750 | 0.6250 | 0.3125 | 0.4332 |
YLZ 1 | 1.5000 | 1.5000 | 0.5000 | 0.5000 | 0.2500 | 0.3466 |
YLZ 2 | 1.8750 | 1.8750 | 0.1250 | 0.8750 | 0.4375 | 0.6065 |
YLZ 14 | 1.5562 | 1.5562 | 0.4438 | 0.5562 | 0.2781 | 0.3949 |
YLZ 15 | 1.6562 | 1.6562 | 0.3438 | 0.6562 | 0.3281 | 0.4549 |
YLZ 24 | 1.6875 | 1.6875 | 0.3125 | 0.6875 | 0.3438 | 0.4765 |
YLZ 26 | 1.8438 | 1.8438 | 0.1562 | 0.8438 | 0.4219 | 0.5848 |
均值 Mean | 1.6920 | 1.6920 | 0.3080 | 0.6920 | 0.3460 | 0.4800 |
Table 5 Genetic parameters of parents
亲本 Parent | Na 观测等位 基因数 Observed number of alleles | Ne 有效等位 基因数 Effective number of alleles | Ho 观测杂合度 Observed heterozygosity | He 期望杂合度 Expected heterozygosity | Hs Nei’s 遗传多样性 Nei’s genetic diversity | I 多态性信息指数 Shannon’s information index |
---|---|---|---|---|---|---|
魁栗 Kuili | 1.6250 | 1.6250 | 0.3750 | 0.6250 | 0.3125 | 0.4332 |
YLZ 1 | 1.5000 | 1.5000 | 0.5000 | 0.5000 | 0.2500 | 0.3466 |
YLZ 2 | 1.8750 | 1.8750 | 0.1250 | 0.8750 | 0.4375 | 0.6065 |
YLZ 14 | 1.5562 | 1.5562 | 0.4438 | 0.5562 | 0.2781 | 0.3949 |
YLZ 15 | 1.6562 | 1.6562 | 0.3438 | 0.6562 | 0.3281 | 0.4549 |
YLZ 24 | 1.6875 | 1.6875 | 0.3125 | 0.6875 | 0.3438 | 0.4765 |
YLZ 26 | 1.8438 | 1.8438 | 0.1562 | 0.8438 | 0.4219 | 0.5848 |
均值 Mean | 1.6920 | 1.6920 | 0.3080 | 0.6920 | 0.3460 | 0.4800 |
变异来源 Variation source | df 自由度 Free degree | 方差总和 Sum of variance | 平均方差 Mean variance | 变异组分 Variant component | 变异率/% Percentage variation | P值 P value |
---|---|---|---|---|---|---|
组合间 Between combinations | 8 | 434.030 | 54.254 | 1.839 | 21.94 | < 0.01 |
组合内 In combinations | 226 | 1 478.723 | 6.543 | 6.543 | 78.06 | < 0.01 |
误差 Error | 234 | 1 912.753 | 8.382 | 100 |
Table 6 Molecular variance analysis of hybrids
变异来源 Variation source | df 自由度 Free degree | 方差总和 Sum of variance | 平均方差 Mean variance | 变异组分 Variant component | 变异率/% Percentage variation | P值 P value |
---|---|---|---|---|---|---|
组合间 Between combinations | 8 | 434.030 | 54.254 | 1.839 | 21.94 | < 0.01 |
组合内 In combinations | 226 | 1 478.723 | 6.543 | 6.543 | 78.06 | < 0.01 |
误差 Error | 234 | 1 912.753 | 8.382 | 100 |
[1] | Gao Yuan, Wang Kun, Wang Dajiang, Liu Lijun, Li Lianwen, Piao Jicheng. 2019. Genetic diversity and genetic structure of Malus baccataand Malus prunifolia from China as revealed by fluorescent SSR markers . Acta Horticulturae Sinica, 46(7):1225-1237. (in Chinese) |
高源, 王昆, 王大江, 刘立军, 李连文, 朴继成. 2019. 中国山荆子和楸子种质资源遗传多样性和遗传结构的荧光SSR分析. 园艺学报, 46(7):1225-1237. | |
[2] | Gong Bang-chu, Liu Guo-bin. 2013. ISSR analysis of genetic diversity in natural populations of Castanea henryi . Journal of Plant Genetic Resources, 14(4):581-587. (in Chinese) |
龚榜初, 刘国彬. 2013. 锥栗自然居群遗传多样性的ISSR分析. 植物遗传资源学报, 14(4):581-587. | |
[3] | Gu Guang-shi, Li Ying-lin, Liu Dan, Chen Hui, Zheng Guo-hua, Li Yu. 2020. Development of genome SSR and analysis of genetic diversity in Castanea hernryi . Journal of Forest and Environment, 40(1):54-61. (in Chinese) |
顾光仕, 李颖林, 刘丹, 陈辉, 郑国华, 李煜. 2020. 锥栗基因组SSR开发及农家品种的遗传多样性分析. 森林与环境学报, 40(1):54-61. | |
[4] | Guo Jun, Zhu Jie, Xie Shangqian, Zhang Ye, Ye Beilei, Zheng Liyan, Ling Peng. 2020. Development of SSR molecular markers based on transcriptome and analysis of genetic relationship of germplasm resources in avocado. Acta Horticulturae Sinica, 47(8):1552-1564. (in Chinese) |
郭俊, 朱婕, 谢尚潜, 张叶, 叶蓓蕾, 郑丽燕, 凌鹏. 2020. 油梨转录组SSR分子标记开发与种质资源亲缘关系分析. 园艺学报, 47(8):1552-1564. | |
[5] | Han Guo-hui, Xiang Su-qiong, Wang Wei-xing, Wei Xu, He Bo, Li Xiao-lin, Liang Guo-lu. 2010. Identification and genetic diversity of hybrid progenies from shatian Pummelo by SSR. Scientia Agricultura Sinica, 43(22):4678-4686. (in Chinese) |
韩国辉, 向素琼, 汪卫星, 魏旭, 何波, 李晓林, 梁国鲁. 2010. 沙田柚杂交后代群体的SSR鉴定与遗传多样性分析. 中国农业科学, 43(22):4678-4686. | |
[6] | Huang Jin-feng, Lü Tian-xing, Wang Dong-mei, Yan Zhong-ye, Wang Ying-da, Liu Zhi. 2015. Genetic diversity of hybrid progenies derived from apple cross of‘Hanfu’בYueshuai’analyzed by SSR. Molecular Plant Breeding, 13(5):1040-1044. (in Chinese) |
黄金凤, 吕天星, 王冬梅, 闫忠业, 王颖达, 刘志. 2015. ‘寒富’ב岳帅’苹果杂交后代遗传多样性的SSR分析. 分子植物育种, 13(5):1040-1044. | |
[7] |
Inoue E, Lin N, Hara H, Shuan R. 2009. Development of simple sequence repeat markers in Chinese chestnut and their characterization in diverse chestnut cultivars. Journal of the American Society for Horticultural Science, 134(6):610-617.
doi: 10.21273/JASHS.134.6.610 URL |
[8] |
Jiang X B, Tang D, Gong B C. 2017. Genetic diversity and association analysis of Chinese chestnut(Castanea mollissima Blume)cultivars based on SSR markers. Brazilian Journal of Botany, 40(1):235-246.
doi: 10.1007/s40415-016-0321-8 URL |
[9] | Jiang Xi-bing, Tang Dan, Gong Bang-chu, Lai Jun-sheng. 2015. Genetic diversity and association analysis of local cultivars of Chinese chestnut based on SSR makers. Acta Horticulturae Sinica, 42(12):2478-2488. (in Chinese) |
江锡兵, 汤丹, 龚榜初, 赖俊声. 2015. 基于SSR标记的板栗地方品种遗传多样性与关联分析. 园艺学报, 42(12):2478-2488. | |
[10] | Jiang Xi-bing, Zhang Ping-sheng, Yang Long, Wu Qiang, Wu Cong-lian, Wu Xiao-yun, Gong Bang-chu, Lai Jun-sheng. 2019. Genetic variation of leaf phenotypic traits in F1 progeny of interspecific cross between Castanea mollissima and C. henryi . Acta Horticulturae Sinica, 46(11):2129-2142. (in Chinese) |
江锡兵, 章平生, 杨龙, 吴强, 吴聪连, 吴小云, 龚榜初, 赖俊声. 2019. 板栗和锥栗种间杂交F1代叶片表型及其遗传变异研究. 园艺学报, 46(11):2129-2142. | |
[11] |
Kalia R K, Rai M K, Kalia S, Singh R, Dhawan A K. 2011. Microsatellite markers:an overview of the recent progress in plants. Euphytica, 177(3):309-334.
doi: 10.1007/s10681-010-0286-9 URL |
[12] |
Kumar A, Rogstad S H. 1998. A hierarchical analysis of minisatellite DNA diversity in Gambel oak(Quercus gambelii Nutt.;Fagaceae). Molecular Ecology, 7:859-869.
doi: 10.1046/j.1365-294x.1998.00400.x URL |
[13] | Lan Yan-ping, Zhou Lian-di, Yao Yan-wu, Wang Shang-de, Liu Guo-bin. 2010. Analysis of Castanea mollissima germplasm resources by AFLP . Acta Horticulturae Sinica, 37(9):1499-1506. (in Chinese) |
兰彦平, 周连第, 姚研武, 王尚德, 刘国彬. 2010. 中国板栗种质资源的AFLP 分析. 园艺学报, 37(9):1499-1506. | |
[14] | Lang Ping, Huang Hong-wen. 1999. Genetic diversity and geographic variation in natural populations of the endemic Castanea species in China . Acta Batanica Sinica, 41(6):651-657. (in Chinese) |
郎萍, 黄宏文. 1999. 栗属中国特有种居群的遗传多样性及地域差异. 植物学报, 41(6):651-657. | |
[15] | Li Zhi-qiang, Dang Zhi-guo, Zhao Zhi-chang, Huang Jian-feng, Gao Ai-ping, Chen Yeyuan. 2016. Genetic diversity analyze of Mango’s F1 hybrids and construction of genetic map . Molecular Plant Breeding, 14(4):953-958. (in Chinese) |
李志强, 党志国, 赵志常, 黄建峰, 高爱平, 陈业渊. 2016. 芒果杂交F1代群体的遗传多样性分析及遗传图谱的构建. 分子植物育种, 14(4):953-958. | |
[16] | Liu Shuo, Liu Ning, Zhang Qiuping, Zhang Yuping, Zhang Yujun, Xu Ming, Ma Xiaoxue, Liu Weisheng. 2019. Genetic diversity of the apricot germplasms from North & Northeast China. Acta Horticulturae Sinica, 46(6):1045-1056. (in Chinese) |
刘硕, 刘宁, 章秋平, 张玉萍, 张玉君, 徐铭, 马小雪, 刘威生. 2019. 中国华北和东北地区杏种质资源遗传多样性分析. 园艺学报, 46(6):1045-1056. | |
[17] | Liu Wei, Kang Ming, Tian Hua, Huang Hong-wen. 2013. A range wide geographic pattern of genetic diversity and population structure of Castanea mollissima populations inferred from nuclear and chloroplast microsatellites. Tree Genetics & Genomes, 9:975-987. |
[18] | Nishio S, Takada N, Yamamoto T, Terakami H, Sawamura Y, Saito T. 2013. Mapping and pedigree analysis of the gene that controls the easy peel pellicle trait in Japanese chestnut(Castanea crenataSieb. et Zucc.). Tree Genetics & Genomes, 9(3):723-730. |
[19] |
Ouni R, Zborowska A, Sehic J, Choulak S, Hormaza J I, Garkava-Gustavsson L, Mars M. 2020. Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Horticultural Plant Journal, 6(2):61-70.
doi: 10.1016/j.hpj.2020.03.003 URL |
[20] |
Slatkin M. 1987. Gene flow and the geographic structure of natural population. Science, 236:787-792.
doi: 10.1126/science.3576198 URL |
[21] |
Tian Hua, Kang Ming, Li Li, Yao Xiao-hong, Huang Hong-wen. 2009. Genetic diversity in natural populations of Castanea mollissima inferred from nuclear SSR markers . Biodiversity Science, 17(3):296-302. (in Chinese)
doi: 10.3724/SP.J.1003.2009.09043 URL |
田华, 康明, 李丽, 姚小洪, 黄宏文. 2009. 中国板栗自然居群微卫星(SSR)遗传多样性. 生物多样性, 17(3):296-302. | |
[22] | Tian Yan-ting, Li Ji-hong, Wang Jin-nan, Xu Dong, Wang Yi-mei, Xing Shi-yan. 2018. Identification and genetic variation analysis of narrow crownPopulus hybrid progeny by SRAP . Journal of Nuclear Agricultural Sciences, 32(5):875-882. (in Chinese) |
田彦挺, 李际红, 王锦楠, 许东, 王艺玮, 邢世岩. 2018. 窄冠型杨树杂交子代SRAP鉴定及其遗传变异研究. 核农学报, 32(5):875-882. | |
[23] | Wright S. 1978. Evolution and the genetics of population. Chicago: The University of Chicago Press. |
[24] | Wu Kai-zhi. 2009. Genetic diversity and correlation of Walnut parents and F1 hybrid progenies[M. D. Dissertation]. Ya’an:Sichuan Agricultural University. (in Chinese) |
吴开志. 2009. 核桃杂交亲本及F1代的遗传多样性与相关性研究[硕士论文]. 雅安:四川农业大学. | |
[25] | Xie Yue, Pan Mei-ling, Zhuang Qi-guo, Luo Xie-mei, Li Ming-zhang. 2013. Construction of ISSR fingerpriting and analysis of genetic diversity in Hongyang kiwifruit and its of hybrid progenies. Genomics and Applied Biology, 32(1):76-82. (in Chinese) |
谢玥, 潘美玲, 庄启国, 罗雪梅, 李明章. 2013. 红阳猕猴桃及其杂交后代的ISSR指纹图谱构建及遗传多样性分析. 基因组学与应用生物学, 32(1):76-82. | |
[26] | Yan Fen-fen, Zheng Xing-juan, Luo Zhi, Wang Jiu-rui, Liu Meng-jun. 2018. Genetic diversity analysis of hybrid progeny from Chinese jujube and wild jujube by SSR. Journal of Northwest Forestry University, 33(3):91-97. (in Chinese) |
闫芬芬, 郑兴娟, 罗智, 王久瑞, 刘孟军. 2018. 枣和酸枣杂交后代遗传多样性的SSR分析. 西北林学院学报, 33(3):91-97. | |
[27] |
Zhang Tian, Li Zuo-zhou, Liu Ya-ling, Jiang Zheng-wang, Huang Hong-mei. 2007. Genetic diversity,gene introgression and homoplasy in sympatric populations of the genusActinidia as revealed by chloroplast microsatellite markers . Biodiversity Science, 15(1):1-22. (in Chinese)
doi: 10.1360/biodiv.060277 URL |
张田, 李作洲, 刘亚令, 姜正旺, 黄宏文. 2007. 猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑. 生物多样性, 15(1):1-22. |
[1] | NIE Xinghua, LI Yiran, TIAN Shoule, WANG Xuefeng, SU Shuchai, CAO Qingqin, XING Yu, QIN Ling. Construction of DNA Fingerprint Map and Analysis of Genetic Diversity for Chinese Chestnut Cultivars(Lines) [J]. Acta Horticulturae Sinica, 2022, 49(11): 2313-2324. |
[2] | GUO Yan, ZHANG Shuhang, LI Ying, ZHANG Xinfang, WANG Yingjie, WANG Guangpeng. Diversity Analysis of Leaves Phenotypic Traits of Yanshan Chestnut [J]. Acta Horticulturae Sinica, 2022, 49(8): 1673-1688. |
[3] | ZHU Zhoujun, YUAN Deyi, XIAO Shixin, ZHAO Junru, ZOU Feng, FAN Xiaoming. A New Castanea henryi Cultivar‘Huali 3’ [J]. Acta Horticulturae Sinica, 2022, 49(7): 1613-1614. |
[4] | ZHU Zhoujun, YUAN Deyi, FAN Xiaoming, WANG Yaohui, ZOU Feng, XIAO Shixin, ZHAO Junru. A New Early-maturing Castanea henryi Cultivar‘Huali 1’with Large Fruit For Table [J]. Acta Horticulturae Sinica, 2022, 49(1): 235-236. |
[5] | JI Zhiping, LÜ Pinghui, HE Jialin. A New Early Ripening Chestnut Cultivar‘Xinzaoli’ [J]. Acta Horticulturae Sinica, 2021, 48(2): 403-404. |
[6] | XIE Peng, GUO Su-Juan, XIONG Huan, LI Guang-Hui, Lv Wen-Jun . Changes in Sugar,Starch,Some Enzymes Involved and Their Relationships During the Development of Chinese Chestnut [J]. ACTA HORTICULTURAE SINICA, 2012, 39(12): 2369-2376. |
[7] | WANG Guang-Peng, KONG De-Jun, ZHANG Shu-Hang, LIU Qing-Xiang. A New Cold-resistant Chestnut Cultivar‘Yanxing’ [J]. ACTA HORTICULTURAE SINICA, 2012, 39(10): 2085-2086. |
[8] | Gong Bangchu;;Wu Lianghai;Wu Shiyuan;Zhang Ruzhong;Zhang Chengyue. New Superior Cultivars of Castanea henry ‘YLZ 07’and‘YLZ 24’ [J]. ACTA HORTICULTURAE SINICA, 2006, 33(6): 1407-1407. |
[9] | Xu Yue;;Cao Qingqin;Feng Yongqing;Yang Kai;Qin Ling;Liao Kang. AFLP Ana lysis on the Short Ca tkinsMuta tion of Chestnut [J]. ACTA HORTICULTURAE SINICA, 2006, 33(6): 1321-1324. |
[10] | Lü Pinghui;Ji Zhiping;He Jialin. A New Hilly Type Chestnut Var iety ‘Zhen'an 1’ [J]. ACTA HORTICULTURAE SINICA, 2006, 33(6): 1405-1405. |
[11] | Zhang Jiliang;Sun Haiwei;Ma Yumin;Zhao Jinhong. A New Stir-fry ing Chinese Chestnut Cultivar ‘Taili 5’ [J]. ACTA HORTICULTURAE SINICA, 2006, 33(6): 1406-1406. |
[12] | Wang Guixi;Liang Lisong;Sun Xiaozhen. The Effects of Postharvest Low Oxygen Treatment on the Storage Quality ofChestnut [J]. ACTA HORTICULTURAE SINICA, 2004, 31(2): 173-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd