https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2023, Vol. 50 ›› Issue (12): 2680-2688.doi: 10.16420/j.issn.0513-353x.2022-1036

• 植物保护 • 上一篇    下一篇

丛枝菌根真菌通过调节枳根系多胺提高抗旱性

梁圣敏1, 张菲2, 吴强盛1,*()   

  1. 1 长江大学园艺园林学院,湖北荆州 434025
    2 黄冈师范学院生物与农业资源学院,湖北黄冈 438000
  • 收稿日期:2023-05-07 修回日期:2023-09-06 出版日期:2023-12-25 发布日期:2023-12-29
  • 通讯作者:
    *(E-mail:
  • 基金资助:
    国家重点研发计划项目(2018YFD1000303)

Arbuscular Mycorrhizal Fungi Improve Drought Tolerance of Trifoliate Orange Seedlings by Regulating Root Polyamines

LIANG Shengmin1, ZHANG Fei2, WU Qiangsheng1,*()   

  1. 1 College of Horticulture and Gardening,Yangtze University,Jingzhou,Hubei 434025,China
    2 College of Biology and Agricultural Resources,Huanggang Normal University,Huanggang,Hubei 438000,China
  • Received:2023-05-07 Revised:2023-09-06 Published:2023-12-25 Online:2023-12-29

摘要:

为明确丛枝菌根真菌是否以及如何调节多胺以提高柑橘的抗旱性,以枳(Poncirus trifoliata)实生苗为材料,接种丛枝菌根真菌——根内根孢囊霉(Rhizophagus intraradices),分析在正常水分和干旱胁迫下枳生长、叶片水势以及根系活性氧、多胺、多胺合成前体物质水平和多胺合成/分解酶活性的变化。干旱处理9周抑制了R. intraradices对根系的侵染,侵染率下降了16.85%。干旱处理也抑制了枳的生长和叶片水势,但R. intraradices显著缓解了这种抑制影响。接种R. intraradices增加了干旱胁迫下枳根系中胍基丁胺、S-腺苷-L-蛋氨酸、腐胺和尸胺含量,但也显著抑制精胺、亚精胺、L-精氨酸和L-鸟氨酸含量以及过氧化氢和超氧阴离子自由基水平。同时,接种R. intraradices还增加了各类多胺合成酶如精氨酸脱羧酶、鸟氨酸脱羧酶、精胺合成酶、亚精胺合成酶以及S-腺苷蛋氨酸脱羧酶活性,也同时提高了多胺分解酶如二胺氧化酶和多胺氧化酶的活性。此外,根系腐胺和尸胺均与超氧阴离子自由基显著负相关,而亚精胺与根系过氧化氢和超氧阴离子自由基显著正相关。因此,推断丛枝菌根真菌改变干旱胁迫下枳根系多胺水平以减轻活性氧爆发。

关键词: 柑橘, 抗旱性, 菌根, 腐胺, 活性氧

Abstract:

In order to clarify whether and how arbuscular mycorrhizal fungi regulate polyamines to enhance drought tolerance of citrus,trifoliate orange(Poncirus trifoliata)seedlings were inoculated with an arbuscular mycorrhizal fungus Rhizophagus intraradices,and the changes in growth,leaf water potential,reactive oxygen species levels,polyamines and polyamine precursors levels,and polyamine synthesis/cleavage enzyme activities were analyzed under well-watered and drought stress. The drought with nine weeks inhibited the colonization rate of R. intraradices in roots by 16.85%. Drought also significantly inhibited the growth and leaf water potential of trifoliate orange,while inoculation with R. intraradices considerably mitigated the inhibitive effect. Inoculation with R. intraradices significantly increased agmatine,S-adenosyl-L-methionine,putrescine,and cadaverine concentrations in roots under drought stress,along with the significant reduction in spermidine,spermine,L-arginine,L-ornithine,hydrogen peroxide,and superoxide anion radicals levels in roots. R. intraradices inoculation also distinctly elevated activities of various polyamine synthetases,such as arginine decarboxylase,ornithine decarboxylase,spermidine synthetase,spermine synthetase,and S-adenosyl methionine decarboxylase,and also increased activities of polyamine metabolism enzymes,such as diamine oxidase and polyamine oxidase. In addition,putrescine and cadaverine concentrations were significantly and negatively correlated with root superoxide anion radicals levels,while spermidine concentrations were positively correlated with root hydrogen peroxide and superoxide anion radicals levels. Therefore,it is concluded that arbuscular mycorrhizal fungi alter polyamine levels in roots of drought-stressed trifoliate orange to reduce reactive oxygen species burst.

Key words: citrus, drought tolerance, mycorrhiza, putrescine, reactive oxygen species