园艺学报 ›› 2022, Vol. 49 ›› Issue (10): 2223-2235.doi: 10.16420/j.issn.0513-353x.2022-0423
于建强1,2, 顾凯迪1, 王传增3,**(), 胡大刚1,**()
收稿日期:
2022-04-18
修回日期:
2022-07-27
出版日期:
2022-10-25
发布日期:
2022-10-31
通讯作者:
王传增,胡大刚
E-mail:fap_296566@163.com;dazeng123321@163.com
基金资助:
YU Jianqiang1,2, GU Kaidi1, WANG Chuanzeng3,**(), HU Dagang1,**()
Received:
2022-04-18
Revised:
2022-07-27
Online:
2022-10-25
Published:
2022-10-31
Contact:
WANG Chuanzeng,HU Dagang
E-mail:fap_296566@163.com;dazeng123321@163.com
摘要:
为阐明苹果(Malus × domestica Borkh.)磷酸果糖激酶基因MdPFPβ(Pyrophosphate-fructose 6-phosphate 1-phosphotransferase subunit beta,基因序列号MD09G1112800)的生物学功能,首先分析了基因启动子和全长序列信息,该基因包含全长为483 bp完整的开放阅读框,编码161个氨基酸。利用PlantCare数据库进行基因启动子顺式作用元件分析发现,MdPFPβ启动子序列中含有与脱落酸(abscisic acid,ABA)、低温及干旱信号相关的调控元件。荧光定量PCR分析发现,MdPFPβ在苹果叶片和成熟果实中表达量较高,并且受外源ABA的诱导表达。在外施ABA的条件下,MdPFPβ过量表达的苹果愈伤组织中可溶性糖含量明显上升。此外,MdPFPβ转基因番茄植株的光合性能增强,MdPFPβ可能通过调控糖代谢酶的活性最终影响果实中的可溶性糖含量。
中图分类号:
于建强, 顾凯迪, 王传增, 胡大刚. 苹果磷酸果糖激酶基因MdPFPβ调控果实可溶性糖积累的功能[J]. 园艺学报, 2022, 49(10): 2223-2235.
YU Jianqiang, GU Kaidi, WANG Chuanzeng, HU Dagang. Functional Characterization of An Apple Pyrophosphate-dependent Phosphofructokinase Gene MdPFPβ in Regulating Soluble Sugar Accumulation[J]. Acta Horticulturae Sinica, 2022, 49(10): 2223-2235.
用途Application | 引物名称Primer name | 引物序列(5′-3′)Primer sequence |
---|---|---|
cDNA clone | MdPFPβ-F | ATGTACTCCATGAATGGCAAGG |
MdPFPβ-R 18S-F 18S-R | TGCTTGTGCTCCAAGTTCC ACACGGGGAGGTAGTGACAA CCTCCAATGGATCCTCGTTA | |
内参基因Reference gene | ||
qRT-PCR | MdPFPβ-For1 | TCTCGACGTTCCGCTTCCTCTC |
MdPFPβ-Rev1 | CTGGCCGTAGCATTGCTGAAGG |
表1 本研究中所用的引物
Table 1 Primers used in this study
用途Application | 引物名称Primer name | 引物序列(5′-3′)Primer sequence |
---|---|---|
cDNA clone | MdPFPβ-F | ATGTACTCCATGAATGGCAAGG |
MdPFPβ-R 18S-F 18S-R | TGCTTGTGCTCCAAGTTCC ACACGGGGAGGTAGTGACAA CCTCCAATGGATCCTCGTTA | |
内参基因Reference gene | ||
qRT-PCR | MdPFPβ-For1 | TCTCGACGTTCCGCTTCCTCTC |
MdPFPβ-Rev1 | CTGGCCGTAGCATTGCTGAAGG |
调控序列 | 序列 | 位点功能 | 位置 |
---|---|---|---|
Regulatory sequence | Sequence | Function of site | Location |
ABRE | ACGTG | 参与ABA响应元件cis-acting element involved in the abscisic acid responsiveness | -619,+1 719 |
ARE | AAACCA | 参与厌氧响应元件cis-acting regulatory element essential for the anaerobic induction | +485,-1 210 |
G-box | TACGTG | 参与光响应元件cis-acting regulatory element involved in light responsiveness | -1 739,+1 926 |
LTR | CCGAAA | 参与低温响应元件cis-acting regulatory element essential for the anaerobic induction | +415,-697 |
MBS | CAACTG | 参与干旱胁迫响应元件MYB binding site involved in drought-inducibility | +43 |
TC-rich repeats | GTTTTCTTAC | 参与防御和胁迫响应元件MYB binding site involved in drought-inducibility | +1 269 |
CGTCA-motif | CGTCA | 参与茉莉酸响应元件cis-acting regulatory element involved in the MeJA-responsiveness | -1 099 |
表2 MdPFPβ的启动子元件分析
Table 2 Some important cis-acting regulatory elements in the promoter of MdPFPβ
调控序列 | 序列 | 位点功能 | 位置 |
---|---|---|---|
Regulatory sequence | Sequence | Function of site | Location |
ABRE | ACGTG | 参与ABA响应元件cis-acting element involved in the abscisic acid responsiveness | -619,+1 719 |
ARE | AAACCA | 参与厌氧响应元件cis-acting regulatory element essential for the anaerobic induction | +485,-1 210 |
G-box | TACGTG | 参与光响应元件cis-acting regulatory element involved in light responsiveness | -1 739,+1 926 |
LTR | CCGAAA | 参与低温响应元件cis-acting regulatory element essential for the anaerobic induction | +415,-697 |
MBS | CAACTG | 参与干旱胁迫响应元件MYB binding site involved in drought-inducibility | +43 |
TC-rich repeats | GTTTTCTTAC | 参与防御和胁迫响应元件MYB binding site involved in drought-inducibility | +1 269 |
CGTCA-motif | CGTCA | 参与茉莉酸响应元件cis-acting regulatory element involved in the MeJA-responsiveness | -1 099 |
图1 MdPFPβ基因信息(A)及其在各组织(B,根作为对照)和ABA处理下的表达(C,0 h水处理作为对照) 下同。The same below.
Fig. 1 Genetic information of MdPFPβ(A)and its expression in various tissues(B,root as control)and under ABA treatment(C,0 h water treatment as control) * α = 0.05;** α = 0.01。
图2 苹果愈伤组织MdPFPβ过量表达株系(MdPFPβ-7/9/13)在ABA处理下的表型、基因表达水平、鲜质量和糖含量
Fig. 2 Phenotype,relative expression level of MdPFPβ gene,fresh weight and sugar content of wild type(WT)and MdPFPβ overexpressing apple calli(MdPFPβ-7/9/13)under ABA treatment
图 3 番茄MdPFPβ转基因株系(MdPFPβ-22/32/43)叶片的表型、基因表达水平和光合荧光参数
Fig. 3 Phenotypes,relative expression level of MdPFPβ and photosynthetic fluorescence parameters of wild-type(WT) and MdPFPβ transgenic tomato leaves(MdPFPβ-22/32/43)
图4 番茄MdPFPβ转基因株系(MdPFPβ-22/32/43)叶片的光合速率、气孔导度和胞间二氧化碳浓度
Fig. 4 Photosynthetic rate,stomata conductance and intercellular CO2 concentration of wild-type(WT)and MdPFPβ transgenic tomato leaves(MdPFPβ-22/32/43)
图5 番茄MdPFPβ转基因株系(MdPFPβ-22/32/43)叶片的淀粉、蔗糖、果糖和葡萄糖含量
Fig. 5 Starch content,sucrose content,fructose content and glucose content of wild-type(WT)and MdPFPβ transgenic tomato leaves(MdPFPβ-22/32/43)
图6 番茄MdPFPβ转基因株系(MdPFPβ-22/32/43)果实的表型及果糖、葡萄糖、蔗糖含量
Fig. 6 Phenotype,fructose content,glucose content and sucrose content of wild-type(WT)and MdPFPβ transgenic tomato fruits(MdPFPβ-22/32/43)
图7 番茄MdPFPβ转基因株系(MdPFPβ-22/32/43)果实的PFP、SPS、NI、SS-I、和S-AI活性
Fig. 7 PFP,SPS,NI,SS-I and S-AI activities of wild-type(WT)and MdPFPβ transgenic tomato fruits(MdPFPβ-22/32/43)
[1] | Angelika M, Uwe S, Sophia B. 2007. Characterization of the ATP-dependent phosphofructokinase gene family from Arabidopsis thaliana. FEBS Letters, 13:581. |
[2] | Blum A, Mayer J, Gozlan G. 1983. Association between plant production and some physiolocal components of drought resistance in wheat. Plant Cell and Environment, 6:219-225. |
[3] |
Carlisle S M, Blakeley S D, Hemmingsem S M, Trevanion S J, Hiyoshi T, Kruger N J, Dennis D T. 1990. Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the alpha- and beta- subunits and with the ATP-dependent phosphofructokinase. Journal of Biological Chemistry, 265:18366-18371.
pmid: 2170409 |
[4] | Chen T H H, Gusta L V. 1983. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiology, 173 (1):71-75. |
[5] |
Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. 2020. Abscisic acid dynamics,signaling,and functions in plants. Journal of Integrative Plant Biology, 62:25-54.
doi: 10.1111/jipb.12899 URL |
[6] |
Culter S R, Rodriguez P L, Finkelstein R R, Abrams S R. 2010. Abscisic acid:emergence of a core signaling network. Annual Review of Plant Biology, 61:651-679.
doi: 10.1146/annurev-arplant-042809-112122 URL |
[7] |
Gosti F, Beaudoin N, Serizet C, Webb A A, Vartanian N, Giraudat J. 1999. ABI 1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 11:1897-1910.
pmid: 10521520 |
[8] |
Hajlaoui H, Ayeb N E, Garrec J P, Denden M. 2010. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize(Zea mays L.)varieties. Industrial Crops and Products, 31:122-130.
doi: 10.1016/j.indcrop.2009.09.007 URL |
[9] | Hauser F, Waadt R, Schroeder J I. 2011. Evolution of abscisic acid synthesis and signaling mechanisms. NIH Public Access Author Manuscript, 21 (9):346-355. |
[10] |
Hir R L, Spinner L, Klemens P A W, Chakraborti D, Marco F D, Vilaine F O, Wolff N, Lemoine R, Porcheron B, Gery C, Teoule E, Chabout S, Mouille G, Neuhaus H E, Dinant S, Bellini C. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET 12 affects vascular development and freezing tolerance in Arabidopsis. Molecular Plant, 8:1687-1690.
doi: 10.1016/j.molp.2015.08.007 URL |
[11] |
Holdsworth M J, Bentsink L, Soppe W J J. 2008. Molecular networks regulating Arabidopsis seed maturation,after-ripening,dormancy and germination. New Phytologist, 179:33-54.
doi: 10.1111/j.1469-8137.2008.02437.x pmid: 18422904 |
[12] |
Hu D G, Sun C H, Ma Q J, You C X, Cheng L, Yu-Jin Hao Y J. 2016. MdMYB 1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 170 (3):1315-1330.
doi: 10.1104/pp.15.01333 URL |
[13] | Hu Shu, An Yuyan, Wang Liangju. 2020. Ethylene is involved in the regulation of stomatal movement by ALA-ABA/dark in apple leaves. Acta Horticulturae Sinica, 47 (3):409-420. (in Chinese) |
胡淑, 安玉艳, 汪良驹. 2020. 乙烯参与ALA-ABA/黑暗调控的苹果叶片气孔运动. 园艺学报, 47 (3):409-420. | |
[14] |
Huang Y, Sun M, Ye Q, Wu X, Wu W, Chen Y. 2017. Abscisic acid modulates seed germination via ABINSENSITIVE5-mediated PHOSPHATE1. Plant Physiology, 175 (4):1661-1668.
doi: 10.1104/pp.17.00164 pmid: 29089393 |
[15] |
Jan S, Abbas N, Ashraf M, Ahmad P. 2019. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma, 256:313-329.
doi: 10.1007/s00709-018-1310-5 pmid: 30311054 |
[16] |
Jaffar M A, Song A, Faheem M, Chen S, Jiang J, Liu C, Fan Q, Chen F. 2016. Involvement of CmWRKY 10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. International Journal of Molecular Sciences, 17 (5):693.
doi: 10.3390/ijms17050693 URL |
[17] | Kapri R, Dahan E, Zehavi U, Goren R, Sadka A. 2000. Cloning and characterization of PPi-phosphofructokinase from citrus fruit. Acta Horticulture (ISHS), 535:113-118. |
[18] |
Lian X, Zhao X, Zhao Q, Wang G, Li Y, Hao Y. 2021. MdDREB2A in apple is involved in the regulation of multiple abiotic stress responses. Horticultural Plant Journal, 7 (3):197-208.
doi: 10.1016/j.hpj.2021.03.006 URL |
[19] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[20] |
Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P. 2008. Gibberellins,jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist, 179 (4):1004-1016.
doi: 10.1111/j.1469-8137.2008.02511.x pmid: 18537890 |
[21] | Lu Jing, Ma Qijun, Kang Hui, Li Wenhao, Liu Yajing, Hao Yujin. 2019. Heterologous expression of apple sugar transporter protein gene MdSWEET1 in tomato to improve its salt tolerance. Acta Horticulturae Sinica, 46 (3):433-443. (in Chinese) |
路静, 马齐军, 康慧, 李文浩, 刘亚静, 郝玉金. 2019. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性. 园艺学报, 46 (3):433-443. | |
[22] | Ma Junjie, Song Lina, Li Le, Ma Xiaochun, Jin Lei, Xu Weirong. 2021. VaCBL6 from Vitis amurensis involved in abiotic stress response and ABA-mediated pathway. Acta Horticulturae Sinica, 48 (6):1079-1093. (in Chinese) |
马俊杰, 宋丽娜, 李乐, 马晓春, 靳磊, 徐伟荣. 2021. 山葡萄VaCBL6参与非生物胁迫和ABA途径的响应. 园艺学报, 48 (6):1079-1093. | |
[23] | Mertens E, Laroundelle Y, Hers H G. 1990. Induction of pyrophosphate:Fructose 6-phosphate 1-phosphotransferase by anoxia in rice seedlings. Plant Physiology, 9:584-587. |
[24] |
Mohapatra S S, Poole R J, Dhiodsa R S. 1988. Abscisic acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiology, 87 (2):468-473.
doi: 10.1104/pp.87.2.468 pmid: 16666166 |
[25] |
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56:165-185.
pmid: 15862093 |
[26] |
Ohto M A, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. 2001. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 127:252-261.
pmid: 11553753 |
[27] | Pattanagul W, Thitisaksakul M. 2008. Effect of salinity stress on growth and carbohydrate metabolism in three rice(Oryza sativa L.)cultivars differing in salinity tolerance. Journal of Experimental Biology, 46:10. |
[28] | Plaxton W C. 1996. The organization and regulation of plant glycolysis. Annual Review of Plant Biology and Plant Molecular Biology, 48:185-214. |
[29] |
Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants:conserved and novel mechanisms. Annual Review of Plant Biology, 57 (1):675-709.
doi: 10.1146/annurev.arplant.57.032905.105441 URL |
[30] |
Rosa M, Hilal M, González J A, Prado F E. 2004. Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa(Chenopodium quinoa)seedlings. Journal of Plant Physiology, 161:683-689.
doi: 10.1078/0176-1617-01257 URL |
[31] |
Rushton D L, Tripathi P, Rabara R C, Lin J, Ringler P, Boken A K, Langum T J, Smidt L, Boomsma D D, Emme N J, Chen X, Finer J J, Shen Q J, Rushton P J. 2012. WRKY transcription factors:key components in abscisic acid signalling. Plant Biotechnology Journal, 10:2-11.
doi: 10.1111/j.1467-7652.2011.00634.x pmid: 21696534 |
[32] |
Schmitz J, Heinrichs L, Scossa F, Fernie A R, Oelze M L, Dietz K J. 2014. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany, 65 (6):1619-1636.
doi: 10.1093/jxb/eru027 URL |
[33] | Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 2 (6):282-291. |
[34] | She Ping, Ma Jie, Yu Zhi-jia, Li Yu-lian, Sa Jin-dong. 2017. Effects of ABA,PP333 and GA on the growth of seedlings of American red leaf cherry. Jiangsu Agricultural Science, 45 (15):128-130. (in Chinese) |
佘萍, 马杰, 余治家, 李玉莲, 撒金东. 2017. ABA、PP333和 GA 对美国红叶樱花苗木生长的影响. 江苏农业科学, 45 (15):128-130. | |
[35] | Singh M, Kumar J, Singh S, Singh V P, Prasad S M. 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants:a review. Reviews Environmental Science and Biology, 14:407-426. |
[36] | Shu K, Liu X D, Xie Q, He Z H. 2016. Two faces of one seed:hormonal regulation of dormancy and germination. Molecular Plant,(9):34-45. |
[37] | Stitt M. 1998. Pyrophosphate as an energy donor in the cytosol of plant cells:An enigmatic alternative to ATP. Botanica Acta, 111:167-175. |
[38] |
Suzuki J, Mutton M A, Ferro M I T, Lemos M V F, Pizauro F M, Mutton M J R, DiMauro S M Z. 2003. Putative pyrophosphate phosphofructose 1-kinase genes identified in sugar cane may be getting energy from pyrophosphate. Genetics and Molecular Research, 2:376-382.
pmid: 15011141 |
[39] |
Theodorou M E, Cornel F A, Duff S M, Plaxton W C. 1992. Phosphate starvation-inducible synthesis of the alpha-subunit of the pyrophosphate- dependent phosphofructokinase in black mustard suspension cells. Journal of Biological Chemistry, 267:21901-21905.
pmid: 1328248 |
[40] |
Todd J F, Blakeley S D, Dennis D T. 1995. Structure of the genes encoding the a and b-subunits of castor pyrophosphate-dependent phosphofructokinase. Gene, 152:181-186.
pmid: 7835697 |
[41] |
Verslues P E, Zhu J K. 2007. New developments in abscisic acid perception and metabolism. Current Opinion Plant Biology, 10 (5):447-452.
doi: 10.1016/j.pbi.2007.08.004 URL |
[42] | Wang Yong-zhang, Zhang Da-peng. 2000. Regulating effects of ethylene on carbohydrate metabolism in apple fruit during the ripening period. Acta Horticulturae Sinica, 27:391-395. (in Chinese) |
王永章, 张大鹏. 2000. 乙烯对成熟期新红星苹果果实碳水化合物代谢的调控. 园艺学报, 27:391-395. | |
[43] | Wang Hai-bo, Chen Xue-sen, Xin Pei-gang, Zhang Xiao-yan, Ci Zhi-juan, Shi Jun, Zhang Hong. 2007. Study on sugar and acid constituents in several early apple cultivars and evaluation of their flavor quality. Journal of Fruit Science, 24 (4):513-516. (in Chinese) |
王海波, 陈学森, 辛培刚, 张晓燕, 慈志娟, 石俊, 张红. 2007. 几个早熟果品种果实糖酸组分及风味品质的评价. 果树学报, 24 (4):513-516. | |
[44] |
Wei Y Q, Yuan J J, Xiao C C, Li G X, Yan J Y, Zheng S J, Ding Z J. 2022. RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40. Journal of Integrative Plant Biology, 64 (5):979-994.
doi: 10.1111/jipb.13247 URL |
[45] | Wu Xiao-liang. 2017. Cloning and stress response analysis of an ABA pathway gene AhLOS5 in Arachis hypogaea L[Ph. D. Dissertation]. Tai'an: Shandong Agricultural University. (in Chinese) |
武晓亮. 2017. 花生ABA途径抗逆基因AhLOS5克隆与抗逆性研究[博士论文]. 泰安: 山东农业大学. | |
[46] |
Xi H, He Y, Chen H. 2021. Functional characterization of SmbHLH 13 in anthocyanin biosynthesis and flowering in eggplant. Horticultural Plant Journal, 7 (1):73-80.
doi: 10.1016/j.hpj.2020.08.006 URL |
[47] | Yang Guo-guo, Miao Cai-yun, Yang Xi-tian. 2016. Status of research on the effect of abiotic stress on ABA. Henan Agriculture,(31):63. (in Chinese) |
杨果果, 苗彩云, 杨喜田. 2016. 非生物逆境胁迫对 ABA 影响的研究现状. 河南农业,(31):63. | |
[48] | Yang Tianchen, Chen Xiaotong, Lü Ke, Zhang Di. 2021. Expression pattern and regulation mechanism of ApSK3 dehydrin(Agapanthus praecox)response to abiotic stress and hormone signals. Acta Horticulturae Sinica, 48 (8):1565-1578. (in Chinese) |
杨天宸, 陈晓童, 吕可, 张荻. 2021. 百子莲脱水素基因ApSK3对逆境与激素信号的应答模式与调控机制. 园艺学报, 48 (8):1565-1578. | |
[49] | Yang Weihai, Zeng Lizhen, Xiao Qiusheng, Shi Shengyou. 2021. Changes of fruit abscission and carbohydrate,ABA and related genes expression in the pericarp and fruit abscission zone of longan under starvation stress. Acta Horticulturae Sinica, 48 (8):1457-1469. (in Chinese) |
杨为海, 曾利珍, 肖秋生, 石胜友. 2021. 饥饿胁迫下龙眼落果与果皮和离区糖、ABA及相关基因表达的变化. 园艺学报, 48 (8):1457-1469. | |
[50] |
Yu J Q, Gu K D, Sun C H, Zhang Q Y, Wang J H, Ma F F, You C X, Hu D G, Hao Y J. 2021. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal, 19:285-299.
doi: 10.1111/pbi.13461 URL |
[51] |
Yu J Q, Gu K D, Zhang L L, Sun C H, Zhang Q Y, Wang J H, Wang C K, Wang W Y, Du M C, Hu D G. 2022. MdbHLH 3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. Journal of Integrative Plant Biology, 64 (4):884-900.
doi: 10.1111/jipb.13236 URL |
[52] |
Zang G, Zou H, Zhang Y, Xiang Z, Huang J, Luo L, Wang C, Lei K, Li X, Song D, Din A U, Wang G. 2016. The De-Etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and ABA biosynthesis in rice. Plant Physiology, 171 (2):1259-1276.
doi: 10.1104/pp.16.00059 URL |
[53] |
Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q. 2015. The RING finger ubiquitin E 3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell, 27 (1):214-227.
doi: 10.1105/tpc.114.134163 URL |
[54] |
Zhao M, Cai B, Jin J, Zhang N, Jing T, Wang J, Pan Y, Zhou Z, Zhao Y, Feng Y, Yu F, Zhang M, Li Y, Liu Z, Song C. 2020. Cold Stress-induced Glucosyltransferase CsUGT78A 15 is involved in the formation of eugenol glucoside in Camellia sinensis. Horticultural Plant Journal, 6 (6):439-449.
doi: 10.1016/j.hpj.2020.11.005 URL |
[55] |
Zhou A, Ma H, Feng S, Gong S, Wang J G. 2018a. A novel sugar transporter from Dianthus spiculifolius,DsSWEET12,affects sugar metabolism and confers osmotic and oxidative stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 19 (2):497.
doi: 10.3390/ijms19020497 URL |
[56] |
Zhou A, Ma H, Feng S, Gong S, Wang J G. 2018b. DsSWEET17,a tonoplast-localized sugar transporter from Dianthus spiculifolius,affects sugar metabolism and confers multiple stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 19 (6):1564.
doi: 10.3390/ijms19061564 URL |
[57] |
Zhou M, Guo S, Tian S, Zhang J, Ren Y, Gong G, Li C, Zhang H, Xu Y. 2020. Overexpression of the watermelon ethylene response factor ClERF 069 in transgenic tomato resulted in delayed fruit ripening. Horticultural Plant Journal, 6 (4):247-256.
doi: 10.1016/j.hpj.2020.05.004 URL |
[58] | Zhou W, Qin X, Lyu D, Qin S. 2021. Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis. Horticultural Plant Journal, 7 (4):307-317. |
[1] | 王晓晨, 聂子页, 刘先菊, 段 伟, 范培格, 梁振昌, . 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[2] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[3] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[4] | 韩晓蕾, 张彩霞, 刘 锴, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘苹优2号’[J]. 园艺学报, 2022, 49(S1): 1-2. |
[5] | 王 强, 丛佩华, 刘肖烽. 晚熟苹果新品种‘华优甜娃’[J]. 园艺学报, 2022, 49(S1): 3-4. |
[6] | 王 强, 丛佩华, 刘肖烽. 中熟苹果新品种‘华优宝蜜’[J]. 园艺学报, 2022, 49(S1): 5-6. |
[7] | 杨 玲, 丛佩华, 王 强, 李武兴, 康立群. 中熟鲜食苹果新品种‘华丰’[J]. 园艺学报, 2022, 49(S1): 7-8. |
[8] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[9] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[10] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[11] | 夏炎, 黄松, 武雪莉, 刘一琪, 王苗苗, 宋春晖, 白团辉, 宋尚伟, 庞宏光, 焦健, 郑先波. 基于宏病毒组测序技术的苹果病毒病鉴定与分析[J]. 园艺学报, 2022, 49(7): 1415-1428. |
[12] | 刘照霞, 张鑫, 王璐, 马玉婷, 陈倩, 朱占玲, 葛顺峰, 姜远茂. 肥料穴施位点对苹果细根生长、15N吸收利用及产量品质的影响[J]. 园艺学报, 2022, 49(7): 1545-1556. |
[13] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[14] | 冯琛, 黄学旺, 李兴亮, 周佳, 李天红. 不同苹果矮化砧穗组合的抗旱性比较研究[J]. 园艺学报, 2022, 49(5): 945-957. |
[15] | 张晓云, 唐玉薇, 王凯, 张东, 杨伟伟. 苹果冠层枝梢类型对光能截获效率和光合生产力影响的模拟分析[J]. 园艺学报, 2022, 49(4): 709-722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司