园艺学报 ›› 2022, Vol. 49 ›› Issue (9): 1977-1990.doi: 10.16420/j.issn.0513-353x.2021-0378
丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民*()
收稿日期:
2022-02-17
修回日期:
2022-05-19
出版日期:
2022-09-25
发布日期:
2022-10-08
通讯作者:
田新民
E-mail:tianxm06@lzu.edu.cn
基金资助:
DING Zhijie, BAO Jinbo, ROUXIAN Guli, ZHU Tiantian, LI Xueli, MIAO Haoyu, TIAN Xinmin*()
Received:
2022-02-17
Revised:
2022-05-19
Online:
2022-09-25
Published:
2022-10-08
Contact:
TIAN Xinmin
E-mail:tianxm06@lzu.edu.cn
摘要:
新疆野苹果(Malus sieversii)被认为是现代栽培苹果的祖先物种。为有效保护苹果遗传资源,揭示新疆野苹果和栽培苹果叶绿体基因组的差异,验证现代栽培苹果是否起源于新疆野苹果。对新疆野苹果和栽培苹果‘元帅’和‘金冠’的叶绿体全基因组进行了测序、组装和注释,获得了其叶绿体基因组物理图谱,并进行了比较基因组分析和系统发育分析。结果表明,新疆野苹果和两个栽培苹果品种的叶绿体基因组均为四段式结构,其基因组总长度在160 068 ~ 160 288 bp之间;共注释出131个基因,其中蛋白编码基因86个,tRNA基因37个,rRNA基因8个;新疆野苹果与栽培苹果的碱基组成也基本相似,AT/GC含量基本相同;新疆野苹果鉴定出43个重复序列和64个简单重复序列位点,栽培品种‘元帅’鉴定出49个重复序列和61个简单重复序列位点,‘金冠’鉴定出43个重复序列和57个简单重复序列位点。系统发育分析结果表明:基于全序列构建的贝叶斯进化树在各个节点具有很高的支持率,苹果属的所有物种形成一个单系群(支持率100%),新疆野苹果和两个栽培苹果品种聚在一起,形成一个小分支(支持率100%),且新疆野苹果位于该小分支的基部,验证了新疆野苹果是栽培苹果的祖先物种的推断。
中图分类号:
丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990.
DING Zhijie, BAO Jinbo, ROUXIAN Guli, ZHU Tiantian, LI Xueli, MIAO Haoyu, TIAN Xinmin. Comparative Chloroplast Genome Study of Mallus servisii‘Red Delicious’and‘Golden Delicious’[J]. Acta Horticulturae Sinica, 2022, 49(9): 1977-1990.
基本特征 Basic characteristic | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|
基因组Genomes/bp | 160 230 | 160 288 | 160 068 |
LSC/bp | 88 368 | 88 472 | 88 273 |
SSC/bp | 19 196 | 19 174 | 19 181 |
IR/bp | 26 333 | 26 321 | 26 370 |
蛋白编码基因Protein-coding genes | 86 | 86 | 86 |
转运RNA基因tRNA gene | 37 | 37 | 37 |
核糖体RNA基因rRNA gene | 8 | 8 | 8 |
GC/% | 36.5 | 36.5 | 36.6 |
表1 新疆野苹果和栽培苹果叶绿体基因组的基本特征
Table 1 Basic characteristics of chloroplast genomes of Malus sieversii and cultivated apples
基本特征 Basic characteristic | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|
基因组Genomes/bp | 160 230 | 160 288 | 160 068 |
LSC/bp | 88 368 | 88 472 | 88 273 |
SSC/bp | 19 196 | 19 174 | 19 181 |
IR/bp | 26 333 | 26 321 | 26 370 |
蛋白编码基因Protein-coding genes | 86 | 86 | 86 |
转运RNA基因tRNA gene | 37 | 37 | 37 |
核糖体RNA基因rRNA gene | 8 | 8 | 8 |
GC/% | 36.5 | 36.5 | 36.6 |
区域 Regin | 碱基 Base | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|---|
大单拷贝区/% LSC | A | 32.2 | 32.3 | 32.2 |
C | 17.6 | 17.6 | 17.6 | |
G | 16.6 | 16.6 | 16.6 | |
T | 33.6 | 33.6 | 33.6 | |
GC | 34.1 | 34.1 | 34.2 | |
小单拷贝区/% SSC | A | 34.8 | 34.8 | 34.7 |
C | 16.0 | 16.0 | 15.9 | |
G | 14.5 | 14.5 | 14.5 | |
T | 34.8 | 34.8 | 34.8 | |
GC | 30.4 | 30.4 | 30.4 | |
反向重复区/% IRa | A | 28.6 | 28.6 | 28.5 |
C | 22.1 | 22.1 | 22.1 | |
G | 20.6 | 20.6 | 20.6 | |
T | 28.7 | 28.8 | 28.8 | |
GC | 42.7 | 42.7 | 42.7 | |
总计/% Total | A | 31.4 | 31.4 | 31.3 |
C | 18.6 | 18.6 | 18.6 | |
G | 17.9 | 17.9 | 17.9 | |
T | 32.1 | 32.1 | 32.1 | |
GC | 36.5 | 36.5 | 36.6 |
表2 新疆野苹果和栽培苹果叶绿体基因组碱基组成
Table 2 Base compositions of chloroplast genome of Malus sieversii and cultivated apples
区域 Regin | 碱基 Base | 新疆野苹果 M. sieversii | ‘元帅’ M.× domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ |
---|---|---|---|---|
大单拷贝区/% LSC | A | 32.2 | 32.3 | 32.2 |
C | 17.6 | 17.6 | 17.6 | |
G | 16.6 | 16.6 | 16.6 | |
T | 33.6 | 33.6 | 33.6 | |
GC | 34.1 | 34.1 | 34.2 | |
小单拷贝区/% SSC | A | 34.8 | 34.8 | 34.7 |
C | 16.0 | 16.0 | 15.9 | |
G | 14.5 | 14.5 | 14.5 | |
T | 34.8 | 34.8 | 34.8 | |
GC | 30.4 | 30.4 | 30.4 | |
反向重复区/% IRa | A | 28.6 | 28.6 | 28.5 |
C | 22.1 | 22.1 | 22.1 | |
G | 20.6 | 20.6 | 20.6 | |
T | 28.7 | 28.8 | 28.8 | |
GC | 42.7 | 42.7 | 42.7 | |
总计/% Total | A | 31.4 | 31.4 | 31.3 |
C | 18.6 | 18.6 | 18.6 | |
G | 17.9 | 17.9 | 17.9 | |
T | 32.1 | 32.1 | 32.1 | |
GC | 36.5 | 36.5 | 36.6 |
基因组成 Group of genes | 基因名称Gene name | ||
---|---|---|---|
新疆野苹果M. sieversii | ‘元帅’ M. × domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ | |
核糖体RNA基因Ribosomal RNA genes | rrn16,rrn23,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 |
转运RNA基因 Transefer RNA genes | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GGU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnT-GGU,trnS-UGA,trnG-GCC,trnfM-CAC,trnS-GGA,trnT-UGU,trnT-UAA,trnF-GAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-CAA,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnA-UGC,trnV-GAC,trnL-CAA | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnV-GAC,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnL-CAA,trnL-CAU | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnF-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnN-ACG,trnL-GAU,trnV-GAU,trnL-CAA,trnL-CAU |
核糖体小亚基Small subunit of ribosom | rps16,rps2,rps14,rps4,rps8,rps7,rps19 | rps16,rps19,rps2,rps14,rps4,rps12,rps11,rps8,rps7,rps15 | rps16,rps14,rps4,rps18,rps8,rps12,rps3,rps7,rps15,rps19 |
核糖体大亚基 Large subunit of ribosom | rpl33,rpl20,rpl14,rpl16,rpl22,rpl12,rpl32,rpl23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL22,rpL12,rpL23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL23,rpL22,rpL38,rpL23,rpL2 |
DNA依赖型RNA聚合酶 DNA dependent RNA polymerase | rpoC1,rpoC2,rpoA | rpoC1,rpoC2,rpoB | rpoC1,rpoC2,rpoB |
光合系统Ⅰ Subunit of photosestenⅠ | psa1,psa7,psaB | psaB,psaA,psaL,psaJ,psaC | psaA,psaB,psaL,psaJ,psaC |
光合系统Ⅱ Subunit of photosestenⅡ | psbA,psbK,psbL,psbM,psbD,psbZ,psbJ,psbB,psbT,psbE,psbN | psbA,psbK,psbL,psbD,psbC,psbZ,psbJ,psbF,psbE,psbT,psbN,psbH,psbM | PsbB,psbK,psbL,psbM,psbD,psbC,psbZ,psbJ,psbL,psbF,psbE,psbT,psbH,psbN |
细胞色素亚基Subunit of Cytochrome | petN,petA,petB,petD | petN,petA,petL,petG,petD,petB | petN,petA,petL,petG,petB,petD |
ATP合成酶亚基Subunit of ATP synthase | atpE,atpA,atpH,atp1 | atpA,atpF,atpL,atpE,atpB | atpA,atpF,atpH,atpL,atpB,atpE |
ATP依赖型蛋白酶ATP dependent protease | clpP | clpP | clpP |
Rubisco大亚基Large subunit of Rubisco | rbcL | rbcL | rbcL |
NADH亚基 Subunit of NADH | ndhB,ndhF,ndhI,ndhJ,ndhC,ndhG,ndhE,ndhD,ndhH,ndhA,ndhK | ndhJ,ndhK,ndhC,ndhA,ndhG,ndhE,ndhD,ndhB,ndhF,ndhH,ndhI | ndhJ,ndhK,ndhC,ndhB,ndhF,ndhD,ndhA,ndhE,ndhG,ndhH,ndhI |
成熟酶 Maturase | matK | matK | matK |
外膜蛋白基因Envelop membrane protein | cemA | cemA | cemA |
乙酰-CoA-羧基酶亚基 Subunit of Acetyl-CoA- Carboxyase | accD | accD | accD |
C型细胞色素合成基因 C-type cytochrome synthesis gene | ccsA | ccsA | ccsA |
保守的开放阅读框Conserved open reading frames | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf2,ycf1 |
表3 新疆野苹果和栽培苹果叶绿体基因组的基因组成
Table 3 Gene list of Malus sieversii and cultivated apples chloroplast genome
基因组成 Group of genes | 基因名称Gene name | ||
---|---|---|---|
新疆野苹果M. sieversii | ‘元帅’ M. × domastica‘Red Delicious’ | ‘金冠’ M. × domastica‘Golden Delicious’ | |
核糖体RNA基因Ribosomal RNA genes | rrn16,rrn23,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 | rrn23,rrn16,rrn4.5,rrn5 |
转运RNA基因 Transefer RNA genes | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GGU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnT-GGU,trnS-UGA,trnG-GCC,trnfM-CAC,trnS-GGA,trnT-UGU,trnT-UAA,trnF-GAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-CAA,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnA-UGC,trnV-GAC,trnL-CAA | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnV-GAC,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnL-CAA,trnL-CAU | trnH-GUG,trnK-UUU,trnQ-UUG,trnS-GCU,trnG-UCC,trnR-UCU,trnC-GCA,trnD-GUC,trnY-GUA,trnE-UUC,trnT-GGU,trnS-UGA,trnfM-CAU,trnS-GGA,trnT-UGC,trnF-UGC,trnL-UAA,trnV-UAC,trnM-CAU,trnW-CCA,trnP-UGG,trnL-CAU,trnL-GAU,trnA-UGC,trnR-ACG,trnN-GUU,trnL-UAG,trnR-ACG,trnN-ACG,trnL-GAU,trnV-GAU,trnL-CAA,trnL-CAU |
核糖体小亚基Small subunit of ribosom | rps16,rps2,rps14,rps4,rps8,rps7,rps19 | rps16,rps19,rps2,rps14,rps4,rps12,rps11,rps8,rps7,rps15 | rps16,rps14,rps4,rps18,rps8,rps12,rps3,rps7,rps15,rps19 |
核糖体大亚基 Large subunit of ribosom | rpl33,rpl20,rpl14,rpl16,rpl22,rpl12,rpl32,rpl23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL22,rpL12,rpL23 | rpL33,rpL20,rpL36,rpL14,rpL16,rpL23,rpL22,rpL38,rpL23,rpL2 |
DNA依赖型RNA聚合酶 DNA dependent RNA polymerase | rpoC1,rpoC2,rpoA | rpoC1,rpoC2,rpoB | rpoC1,rpoC2,rpoB |
光合系统Ⅰ Subunit of photosestenⅠ | psa1,psa7,psaB | psaB,psaA,psaL,psaJ,psaC | psaA,psaB,psaL,psaJ,psaC |
光合系统Ⅱ Subunit of photosestenⅡ | psbA,psbK,psbL,psbM,psbD,psbZ,psbJ,psbB,psbT,psbE,psbN | psbA,psbK,psbL,psbD,psbC,psbZ,psbJ,psbF,psbE,psbT,psbN,psbH,psbM | PsbB,psbK,psbL,psbM,psbD,psbC,psbZ,psbJ,psbL,psbF,psbE,psbT,psbH,psbN |
细胞色素亚基Subunit of Cytochrome | petN,petA,petB,petD | petN,petA,petL,petG,petD,petB | petN,petA,petL,petG,petB,petD |
ATP合成酶亚基Subunit of ATP synthase | atpE,atpA,atpH,atp1 | atpA,atpF,atpL,atpE,atpB | atpA,atpF,atpH,atpL,atpB,atpE |
ATP依赖型蛋白酶ATP dependent protease | clpP | clpP | clpP |
Rubisco大亚基Large subunit of Rubisco | rbcL | rbcL | rbcL |
NADH亚基 Subunit of NADH | ndhB,ndhF,ndhI,ndhJ,ndhC,ndhG,ndhE,ndhD,ndhH,ndhA,ndhK | ndhJ,ndhK,ndhC,ndhA,ndhG,ndhE,ndhD,ndhB,ndhF,ndhH,ndhI | ndhJ,ndhK,ndhC,ndhB,ndhF,ndhD,ndhA,ndhE,ndhG,ndhH,ndhI |
成熟酶 Maturase | matK | matK | matK |
外膜蛋白基因Envelop membrane protein | cemA | cemA | cemA |
乙酰-CoA-羧基酶亚基 Subunit of Acetyl-CoA- Carboxyase | accD | accD | accD |
C型细胞色素合成基因 C-type cytochrome synthesis gene | ccsA | ccsA | ccsA |
保守的开放阅读框Conserved open reading frames | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf1,ycf4,ycf2 | ycf3,ycf2,ycf1 |
类型和区域 Type and region | 名称 Name | 新疆野苹果 M. sieversii | ‘元帅’ M. × domestica‘Red Delicious’ | ‘金冠’ M. × domestica‘Golden Delicious’ |
---|---|---|---|---|
类型 Type | 单核苷酸重复 Single nucleotide repeats | 51 | 50 | 48 |
二核苷酸重复 Dinucleotide repeats | 3 | 3 | 2 | |
多核苷酸重复 Poly nucleotide repeats | 10 | 8 | 7 | |
区域Region | 大单拷贝区 LSC | 46 | 48 | 46 |
小单拷贝区 SSC | 9 | 9 | 7 | |
反向重复区 IR | 9 | 4 | 4 | |
合计Total | 64 | 61 | 57 |
表4 新疆野苹果和栽培苹果叶绿体基因组简单重复序列(SSR)统计
Table4 Summary of the simple sequence repeat(SSR)in Malus sieversii and cultivated apples
类型和区域 Type and region | 名称 Name | 新疆野苹果 M. sieversii | ‘元帅’ M. × domestica‘Red Delicious’ | ‘金冠’ M. × domestica‘Golden Delicious’ |
---|---|---|---|---|
类型 Type | 单核苷酸重复 Single nucleotide repeats | 51 | 50 | 48 |
二核苷酸重复 Dinucleotide repeats | 3 | 3 | 2 | |
多核苷酸重复 Poly nucleotide repeats | 10 | 8 | 7 | |
区域Region | 大单拷贝区 LSC | 46 | 48 | 46 |
小单拷贝区 SSC | 9 | 9 | 7 | |
反向重复区 IR | 9 | 4 | 4 | |
合计Total | 64 | 61 | 57 |
图4 苹果属新疆野苹果和栽培苹果及3个野生近缘种的叶绿体基因组的可视化比对 基因组中不同区域以不同颜色代表,蓝色表示编码区,红色表示非编码区。
Fig. 4 Visualized comparison of chloroplast genomes of Malus sieversii,cultivated apples and three wild relative species of Malus Different regions of the genome are represented in different colors,blue represent the coding region and red represent the non-coding region.
图5 新疆野苹果和栽培苹果及3个野生近缘种的边界序列差异
Fig. 5 The comparison of sequence divergence of boundary region among Malus sieversii,cultivated apples and three wild relative species of Malus
[1] | Behura W. 2013. Codon usage bias:causative factors,quantification methods and genome‐wide patterns:with emphasis on insect genomes Biological Reviews, 88 (1):49-61. |
[2] | Bianco L, Cestaro A, Sargent D J, Banchi E, Derdak S, Salvi S, Jansen J. 2014. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple(Malus domestica Borkh.). Public Library of Science ONE, 9 (10):e110377. |
[3] |
Cahoon A B, Sharpe R M, Mysayphonh C, Thompson E J, Ward A D, Lin A H. 2010. The complete chloroplast genome of tall fescue(Lolium arundinaceum;Poaceae)and comparison of whole plastomes from the family Poaceae. American Journal of Botany, 97 (1):49-58.
doi: 10.3732/ajb.0900008 pmid: 21622366 |
[4] | Chagne D, Krieger C, Rassam. 2012. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology, 12:12. |
[5] |
Daccord N, Celton JM, Linsmith G, Becker C. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49 (7):1099-1106.
doi: 10.1038/ng.3886 URL |
[6] |
Depamphilis C W, Palmer J D. 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature, 348 (6299):337-339.
doi: 10.1038/348337a0 URL |
[7] |
Duan N B, Bai Y, Sun H H, Wang N, Ma Y M, Li M J, Wang X. 2017. Genome resequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 8 (1):17-20.
doi: 10.1038/s41467-017-00019-3 URL |
[8] |
Fan W B, Ying W, Jiao Y, Shahzad K, Li Z H. 2018. Comparative chloroplast genomics of dipsacales species:insights into sequence variation,adaptive evolution,and phylogenetic relationships. Frontiers in Plant Science, 9:689-702.
doi: 10.3389/fpls.2018.00689 URL |
[9] | Flora of China Editorial Committee,CAS. 1974. Flora of China. Vol. 36. Beijing:Science Press:372-402. (in Chinese) |
中科院中国植物志编辑委员会. 1974. 中国植物志. 36卷. 北京:科学出版社:372-402. | |
[10] |
Gao Q, Yue G D, Li W Q, Wang J Y, Xu J H. 2012. Recent progress using high-throughput sequencing technologies in plant molecular breeding. Journal of Integrative Plant Biology, 54:215-227.
doi: 10.1111/j.1744-7909.2012.01115.x |
[11] | Gao Yuan, Wang Dajiang, Wang Kun, Cong Peihua, Li Lianwen, Piao Jicheng. 2020. Analysis of genetic diversity of apple germplasms of Malus using SLAF-seq technology. Acta Horticulturae Sinica, 47 (10):1869-1882. (in Chinese) |
高源, 王大江, 王昆, 丛佩华, 李连文, 朴继成. 2020. 苹果属植物种质多样性的SLAF-seq分析. 园艺学报, 47 (10):1869-1882. | |
[12] |
Goulding S E, Olmstead R G. 1996. Ebb and flow of the chloroplast inverted repeat. Molecular and General Genetics, 252 (2):195-206.
doi: 10.1007/BF02173220 URL |
[13] |
Huang D I, Cronk Q C B. 2015. Plann:A command-line application for annotating plastome sequences. Appl Plant Sci, 3 (8):1500026.
doi: 10.3732/apps.1500026 URL |
[14] |
Katoh K, Standley M. 2013. MAFFT Multiple sequence alignment software version7:improvements in performance and usability. Molecular Biology and Evolution, 30 (4):772-780.
doi: 10.1093/molbev/mst010 URL |
[15] | Khan MA, Olsen KM, Sovero V, Kushad M M, Schuyler K. 2014. Fruit quality traits have played criticalRoles in domestication of the apple. Plant Genome, 7 (3):doi-10. |
[16] | Kumar S, Chagne D, Bink MC, Volz R K, Carlisle C. 2012. Genomic selection for fruit quality traits in apple(Malus domestica Borkh.). Public Library of Science ONE, 7:e36674. |
[17] |
Kumar S, Garrick D J, Bink M C, Whitworth C, Volz R K. 2013. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 14:393.
doi: 10.1186/1471-2164-14-393 pmid: 23758946 |
[18] |
Kumar S, Raulier P, Chagne D, Whitworth C. 2014. Molecularlevel and trait-level differentiation between the cultivated apple(Malus domestica Borkh.)and its main progenitor Malus sieversii. Plant Genetic Resources, 12:330-340.
doi: 10.1017/S1479262114000136 URL |
[19] |
Kumar S, Rowan D, Hunt M, Chagne D, Whitworth C. 2015. Genome-wide scans reveal genetic architecture of apple flavor volatiles. Molecular Breeding, 35:118.
doi: 10.1007/s11032-015-0312-7 URL |
[20] |
Kurtz S, Choudhuri J V, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter:the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 29 (22):4633-4642.
pmid: 11713313 |
[21] |
Lee S B, Kaittanis C, Jansen R K, Hostetler J B, Tallon L J, Town C D, Daniellet H. 2006. The complete chloroplast genome sequence of Gossypium hirsutum:organization and phylogenetic relationships to other angiosperms. BMC Genomics, 7 (1):61-70.
doi: 10.1186/1471-2164-7-61 URL |
[22] |
Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T. 2015. Genomic basis of the differences between cider and dessert apple varieties. Evolutionary Applications, 8:650-661.
doi: 10.1111/eva.12270 pmid: 26240603 |
[23] | Li Qian, Guo Qiqiang, Gao Chao, Li Huie. 2020. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province. Acta Horticulturae Sinica, 47 (4):779-787. (in Chinese) |
李倩, 郭其强, 高超, 李慧娥. 2020. 贵州威宁红花油茶的叶绿体基因组特征分析. 园艺学报, 47 (4):779-787. | |
[24] | Li Yongtan, Zhang Jun, Huang Yali, Fan Jianmin, Zhang Yiwen, Zuo Lihui. 2020. Analysis of chloroplast genome of Pyrus betulaefolia. Acta Horticulturae Sinica, 47 (6):1021-1032. (in Chinese) |
李泳潭, 张军, 黄亚丽, 范建敏, 张益文, 左力辉. 2020. 杜梨叶绿体基因组分析. 园艺学报, 47 (6):1021-1032. | |
[25] | Li Yu-nong. 1999. Research on the evolution of apple origin. Acta Horticulturae Sinica, 26 (4):213-220. (in Chinese) |
李育农. 1999. 苹果起源演化的考察研究. 园艺学报, 26 (4):213-220. | |
[26] |
Lohse M, Drechsel O, Kahlau S, Bock R. 2013. Organellar Genome DRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research, 41 (1):575-581.
doi: 10.1093/nar/gks1075 URL |
[27] |
Lu M, Zhang H S, An H M. 2021. Chloroplast DNA-based genetic variation of Rosa roxburghii in Southwest China:phylogeography and conservation implications. Horticultural Plant Journal, 7 (4):286-294.
doi: 10.1016/j.hpj.2021.01.002 URL |
[28] |
Ma B Q, Liao L, Peng Q, Fang T, Zhou H, Korban S S, Han Y P. 2017. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. Journal of Integrative Plant Biology, 59 (3):190-204.
doi: 10.1111/jipb.12522 |
[29] | Ma B Q, Liao L, Zheng H Y, Chen J. 2015. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. Plant Genome, 8:1-14. |
[30] |
Martin G, Cardi C. 2013. The complete chloroplast genome of banana(Musa acuminata,Zingiberales):insight into plastid monocotyledon evolution. PLoS ONE, 8 (6):e67350.
doi: 10.1371/journal.pone.0067350 URL |
[31] |
Mccoy S R, Kuehl J V, Boore J L, Raubeson L A. 2008. The complete plastid genome sequence of Welwitschia mirabilis:an unusually compact plastome with accelerated divergence rates. BMC Evolutionary Biology, 8 (1):130-135.
doi: 10.1186/1471-2148-8-130 URL |
[32] |
Nock C J, Waters D L, Edwards M A, Bowen S G, Rice N, Cordeiro G M, Henry R J. 2010. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol, 9 (3):328-333.
doi: 10.1111/j.1467-7652.2010.00558.x URL |
[33] | Qian Jun. 2014. Study on chloroplast and mitochondrial genomes of Salvia miltiorrhiza[Ph. D. Dissertation]. Beijing:Peking Union Medical College. (in Chinese) |
钱俊. 2014. 丹参的叶绿体和线粒体基因组研究[博士论文]. 北京: 北京协和医学院. | |
[34] |
Raubeson L A, Peery R, Chumley T W, Dziubek C, Fourcade H M, Boore J L, Jansen R K. 2007. Comparative chloroplast genomics:analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics, 8 (1):174-178.
doi: 10.1186/1471-2164-8-174 URL |
[35] |
Ronquist F, Huelsenbeck J P. 2003. MrBayes3:Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12):1572-1574.
doi: 10.1093/bioinformatics/btg180 pmid: 12912839 |
[36] | Sun X P, Jiao C, Schwaninger H, Thomas C, Ma Y M, Duan N B, Khan A, Fei Z J. 2020. Phased diploid genmoe assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics,1-10. |
[37] |
Velasco R, Zharikikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A. 2010. The genome of the domesticated apple(Malus × domestica Borkh). Nature Genetics, 42 (10):833-839.
doi: 10.1038/ng.654 URL |
[38] | Wang R J, Cheng C L, Chang C C, Wu C L, Su T M, Chaw S M. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology, 36 (8):1471-2148. |
[39] | Yan Guo-rong, Xu Zheng, Chu Wen-zhao. 2004. Study and protect on Malus sieversii. Beijing:Chinese Society for Horticultural Science:12-16. (in Chinese) |
阎国荣, 许正, 楚文照. 2004. 新疆野苹果(Malus sieversii)及其保护研究. 北京:中国园艺学会:12-16. | |
[40] | Yang Guo-feng, Su Kong-long, ZhaoYi-ran, Song Zhi-bin, Sun Juan. 2015. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 24 (12):171-179. (in Chinese) |
杨国锋, 苏昆龙, 赵怡然, 宋智斌, 孙娟. 2015. 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 24 (12):171-179. | |
[41] |
Zerbino D R, Birney E. 2008. Velvet:algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 18 (1):821-829.
doi: 10.1101/gr.074492.107 URL |
[42] | Zhang Li, Wang Yan, Chen Qing, Luo Ya,Zhang Yong,Tang Hao-ru,Wang Xiao-rong. 2015. Phylogenetic utility of Chinese Rubus(Rosaceae)based on ndhF sequence. Acta Horticulturae Sinica, 42 (1):19-30. (in Chinese) |
张丽, 王燕, 陈清, 罗娅, 张勇, 汤浩茹, 王小蓉. 2015. 基于ndhF序列的中国悬钩子属植物系统发育研究. 园艺学报, 42 (1):19-30. | |
[43] | Zheng Yi, Zhang Hui, Wang Qinmei, Gao Yue,Zhang Zhihong,Sun Yuxin. 2020. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Horticulturae Sinica, 47 (12):2439-2450. (in Chinese) |
郑祎, 张卉, 王钦美, 高悦, 张志宏, 孙玉新. 2020. 大花君子兰叶绿体基因组及其特征. 园艺学报, 47 (12):2439-2450. |
[1] | 蒋思思, 袁军, 周文君, 钮根花, 周俊琴. 薄壳山核桃(Carya illinoinensis)叶绿体基因组及其特征分析[J]. 园艺学报, 2022, 49(8): 1772-1784. |
[2] | 汤晨茜, 仇志欣, 檀超, 钱羽铭, 陈昕. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系[J]. 园艺学报, 2022, 49(3): 641-654. |
[3] | 冯丽肖, 胡荣, 卜姗, 张德咏, 罗香文, 李凡, 丁铭, 张卓, 张松柏, 刘勇. 云南省番茄莴苣褪绿病毒分子检测及遗传进化分析[J]. 园艺学报, 2022, 49(1): 141-147. |
[4] | 宋芸, 贾孟君, 曹亚萍, 李政, 贺嘉欣, 王勇飞, 张鑫瑞, 乔永刚. 连翘叶绿体基因组特征分析[J]. 园艺学报, 2022, 49(1): 187-199. |
[5] | 陈丽, 薛良交, 李淑娴. 跳枝碧桃花色性状的全基因组关联分析[J]. 园艺学报, 2021, 48(3): 553-565. |
[6] | 梅闯, 张小燕, 闫鹏, 艾沙江·买买提, 冯贝贝, 马凯, 韩立群, 董连新, 王继勋. 苹果TIFY家族基因鉴定及其在虫害胁迫下的表达分析[J]. 园艺学报, 2021, 48(2): 233-242. |
[7] | 李泳潭,张 军*,黄亚丽,范建敏,张益文,左力辉. 杜梨叶绿体基因组分析[J]. 园艺学报, 2020, 47(6): 1021-1032. |
[8] | 李 倩1,郭其强2,高 超2,李慧娥1,*. 贵州威宁红花油茶的叶绿体基因组特征分析[J]. 园艺学报, 2020, 47(4): 779-787. |
[9] | 郑 祎, 张 卉, 王钦美, 高 悦, 张志宏, 孙玉新. 大花君子兰叶绿体基因组及其特征[J]. 园艺学报, 2020, 47(12): 2439-2450. |
[10] | 杨亚蒙1,焦 健2,樊秀彩1,张 颖1,姜建福1,李 民1,刘崇怀1,*. 桑叶葡萄叶绿体基因组及其特征分析[J]. 园艺学报, 2019, 46(4): 635-648. |
[11] | 王 健1,冀树娴1,王 莹2,耿 超1,李向东1,田延平1,*. 小西葫芦黄花叶病毒山东南瓜和丝瓜分离物全基因组序列分析[J]. 园艺学报, 2019, 46(4): 784-796. |
[12] | 陈雅寒1,2,孙平平1,马 强1,*,赵明敏1,武占敏3,李正男1,*. 东北冷寒产区苹果褪绿叶斑病毒检测及其分子多样性分析[J]. 园艺学报, 2019, 46(12): 2397-2405. |
[13] | 李伟明1,陈晶晶1,段雅婕1,庞振才1,孙德权1,胡玉林1,胡会刚1,谢江辉1,陈文娜2,*. 香蕉野生种质资源的分类、分布和分子系统发育研究进展[J]. 园艺学报, 2018, 45(9): 1675-1687. |
[14] | 李正男,张双纳,张尊平,范旭东,任 芳,胡国君,董雅凤*. 苹果茎沟病毒吉林沙果分离物全基因组序列分析[J]. 园艺学报, 2018, 45(4): 641-649. |
[15] | 李 敏,周天宇,张 松,杨方云,周 彦,周常勇,李中安*,曹孟籍*. 柑橘鳞皮病毒3个分离物全基因组序列分析[J]. 园艺学报, 2018, 45(10): 2030-2036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司