园艺学报 ›› 2023, Vol. 50 ›› Issue (3): 461-474.doi: 10.16420/j.issn.0513-353x.2021-1215
• 研究论文 • 下一篇
饶智雄1, 安玉艳1, 曹荣祥2, 唐泉2, 汪良驹1,*()
收稿日期:
2022-08-17
修回日期:
2022-11-04
出版日期:
2023-03-25
发布日期:
2023-04-03
通讯作者:
*(E-mail:wlj@njau.edu.cn)
基金资助:
RAO Zhixiong1, AN Yuyan1, CAO Rongxiang2, TANG Quan2, WANG Liangju1,*()
Received:
2022-08-17
Revised:
2022-11-04
Online:
2023-03-25
Published:
2023-04-03
Contact:
*(E-mail:wlj@njau.edu.cn)
摘要:
以栽培草莓‘红颜’(Fragaria × ananassa Duch.‘Benihoppe’)为材料,探讨5-氨基乙酰丙酸(ALA)与脱落酸(ABA)以及生长素(IAA)之间的关系,以期为ALA在草莓生产上应用提供理论依据。结果显示,外源ABA处理抑制草莓根系伸长生长,而ALA缓解ABA的抑制效应。ABA处理降低草莓根尖内源生长素含量,ALA则促进内源ABA含量提高。ABA和(或)ALA处理对草莓根尖ABA生物合成关键基因NCED1、NECD2,以及ABA氧化代谢基因CYP707A的表达没有显著影响。但ABA处理诱导其受体基因PYL4和PYL8以及ABA信号通路关键蛋白激酶基因SnRK2.1、SnRK2.2、SnRK2.3、SnRK2.4、SnRK2.5和SnRK2.6表达上调,而ALA却没此效应,说明ALA-ABA调控草莓根系伸长生长效应不涉及ABA信号途径。另一方面,ABA和(或)ALA处理对IAA合成基因YUC1表达没有影响;ABA处理下调YUC2和YUC3以及IAA内向运输基因AUX1表达,但是这种效应不能被ALA逆转。值得关注的是,IAA外向运输蛋白编码基因PIN1在ABA处理后表达下调,而ALA可以逆转ABA效应,暗示该基因可能参与ALA-ABA调控草莓根系生长。利用携带绿色荧光蛋白(GFP)基因的转基因拟南芥植株研究发现,ABA抑制AtPIN1-GFP表达,而ALA逆转ABA的抑制效应。生物信息分析表明,栽培草莓PIN1氨基酸序列与其他蔷薇科植物的同源性较高,蛋白质两端存在多个跨膜区域。将带有GFP的FaPIN1转入本氏烟草,其荧光信号分布于细胞质膜。克隆FaPIN1全长,构建到雌二醇诱导表达载体上并转入拟南芥。这种超表达FaPIN1植株根系生长对ABA处理的敏感性下降,ALA缓解效应也下降。以上结果说明,ALA缓解ABA抑制草莓根系生长的关键点在于IAA极性运输蛋白基因PIN1的表达,即ALA通过促进IAA极性运输来缓解ABA抑制草莓根系生长。
中图分类号:
饶智雄, 安玉艳, 曹荣祥, 唐泉, 汪良驹. 外源ALA缓解ABA抑制草莓根系伸长生长的机理研究[J]. 园艺学报, 2023, 50(3): 461-474.
RAO Zhixiong, AN Yuyan, CAO Rongxiang, TANG Quan, WANG Liangju. Studies on Mechanisms of ALA Alleviating ABA Inhibiting Root Growth of Strawberry[J]. Acta Horticulturae Sinica, 2023, 50(3): 461-474.
引物名称 Primer name | 正向序列(5′-3′) Forward primer | 反向序列(5′-3′) Reverse primer |
---|---|---|
ACTIN | F-TGGGTTTGCTGGAGATGAT | R-GAGTTAGGAGAACTGGGTGC |
YUCCA1 | F-GAAAGGTGAGCGTGGGTTA | R-TATGGCGACGACGATAGAG |
YUCCA2 | F-CTCCGTCTTCATCTCCCTAA | R-CAAACGTACTCAATCTCCTCC |
YUCCA3 | F-CTTGTCGTCGGTTGTGGAA | R-GCCTGTTGAGCCCGTATTT |
AUX1 | F-CTGGTTAGCTTCACGGTCTA | R-GAACTCTTAGCGATGTGGG |
PIN1 | F-GGGAAAGTGGAGGGTAGAAGA | R-TGCCACCTGTAGGATACGAGA |
CYP707A | F-AGACGTGGAGTTTGAGGGTT | R-TAGTTGTGAGGTGGTGGAGG |
NCED1 | F-AGTCCGACGAGGTTGTTGTG | R-CCGAGTCTTTCTACCGAGCAG |
NCED2 | F-TTATCTCGCCATTGCTGAAC | R-GAAGGAAGAAAGAAAGGCTCAC |
PYL4 | F-CAACCCACAAGCCTACAAGCA | R-TCGTGACGGAGCGGTAGTTC |
PYL8 | F- CATACTACTGCCTGTCTGTC | R-GGATGAAACCTGCTACTT |
SnRK2.1 | F-ATTCACAACCCAAATCAACT | R-ACATCTGCTATCTTCCCATC |
SnRK2.2 | F-ATCCTTACTGTACGCTACGC | R-ACTTCCTCCTTCCTTCATTT |
SnRK2.3 | F-ACCACAATAATTTCACCACCAT | R-ACCTACCAAGATTCCGAGCT |
SnRK2.4 | F-TCTTGAATCGGGTTTCTTGT | R-CCTTCATTGGCTCATACCTC |
SnRK2.5 | F-CTACCGACTCAACTCACC | R-GTTCTCCGCTACACTTCT |
SnRK2.6 | F-CTTCCGCAAGACAATACA | R-AGATCAGATGACGGCACT |
SnRK2.8 | F-CCACAGATCACTCCGCCACC | R-TCGTCTTCGCTGAACCTCCC |
SnRK2.9 | F-TGCTCTTCCCGTCCAGTCAC | R-CCGGCCTTGCATATTCTCGT |
表1 草莓根系RT-qPCR分析用引物
Table 1 The primers for RT-qPCR analysis of strawberry roots
引物名称 Primer name | 正向序列(5′-3′) Forward primer | 反向序列(5′-3′) Reverse primer |
---|---|---|
ACTIN | F-TGGGTTTGCTGGAGATGAT | R-GAGTTAGGAGAACTGGGTGC |
YUCCA1 | F-GAAAGGTGAGCGTGGGTTA | R-TATGGCGACGACGATAGAG |
YUCCA2 | F-CTCCGTCTTCATCTCCCTAA | R-CAAACGTACTCAATCTCCTCC |
YUCCA3 | F-CTTGTCGTCGGTTGTGGAA | R-GCCTGTTGAGCCCGTATTT |
AUX1 | F-CTGGTTAGCTTCACGGTCTA | R-GAACTCTTAGCGATGTGGG |
PIN1 | F-GGGAAAGTGGAGGGTAGAAGA | R-TGCCACCTGTAGGATACGAGA |
CYP707A | F-AGACGTGGAGTTTGAGGGTT | R-TAGTTGTGAGGTGGTGGAGG |
NCED1 | F-AGTCCGACGAGGTTGTTGTG | R-CCGAGTCTTTCTACCGAGCAG |
NCED2 | F-TTATCTCGCCATTGCTGAAC | R-GAAGGAAGAAAGAAAGGCTCAC |
PYL4 | F-CAACCCACAAGCCTACAAGCA | R-TCGTGACGGAGCGGTAGTTC |
PYL8 | F- CATACTACTGCCTGTCTGTC | R-GGATGAAACCTGCTACTT |
SnRK2.1 | F-ATTCACAACCCAAATCAACT | R-ACATCTGCTATCTTCCCATC |
SnRK2.2 | F-ATCCTTACTGTACGCTACGC | R-ACTTCCTCCTTCCTTCATTT |
SnRK2.3 | F-ACCACAATAATTTCACCACCAT | R-ACCTACCAAGATTCCGAGCT |
SnRK2.4 | F-TCTTGAATCGGGTTTCTTGT | R-CCTTCATTGGCTCATACCTC |
SnRK2.5 | F-CTACCGACTCAACTCACC | R-GTTCTCCGCTACACTTCT |
SnRK2.6 | F-CTTCCGCAAGACAATACA | R-AGATCAGATGACGGCACT |
SnRK2.8 | F-CCACAGATCACTCCGCCACC | R-TCGTCTTCGCTGAACCTCCC |
SnRK2.9 | F-TGCTCTTCCCGTCCAGTCAC | R-CCGGCCTTGCATATTCTCGT |
引物名称 Primer name | 正向序列(5′-3′) Forward primer | 反向序列(5′-3′) Reverse primer |
---|---|---|
PIN1-ORF | ATGATCACATTATCAGACTTTTAC | TCATAGCCCCAGCAAAATG |
PIN1 for GFP | GAGAACACGGGGGACTCTAGAATGATCACATTATCAG ACTTTTAC | CGCCCTTGCTCACCATGGATCCTAGCCCCAGCAAA ATGTAG |
PIN1 for pER8 | CTAGTCGACTCTAGCCTCGAGATGATCACATTATCAGA CTTTTAC | GGGAGGCCTGGATCGACTAGTTCATAGCCCCAGCA AAATG |
表2 草莓FaPIN1亚细胞定位和FaPIN1超表达试验用引物
Table 2 The primers for subcellular localization and overexpression analysis of FaPIN1
引物名称 Primer name | 正向序列(5′-3′) Forward primer | 反向序列(5′-3′) Reverse primer |
---|---|---|
PIN1-ORF | ATGATCACATTATCAGACTTTTAC | TCATAGCCCCAGCAAAATG |
PIN1 for GFP | GAGAACACGGGGGACTCTAGAATGATCACATTATCAG ACTTTTAC | CGCCCTTGCTCACCATGGATCCTAGCCCCAGCAAA ATGTAG |
PIN1 for pER8 | CTAGTCGACTCTAGCCTCGAGATGATCACATTATCAGA CTTTTAC | GGGAGGCCTGGATCGACTAGTTCATAGCCCCAGCA AAATG |
图1 ABA抑制草莓根系生长的浓度效应(A)和ALA对ABA(2.5 μmol • L-1)抑制草莓根系生长的缓解效应(B) 图中数据为30条以上根系的平均值。相同小写字母代表差异不显著。下同。
Fig. 1 The concentration effects of ABA inhibiting strawberry root growth(A)and the alleviation of exogenous ALA on the root growth of strawberry inhibited by ABA(B) The data in each figure are the means of more than 30 roots. The same small letters represent no significant difference. The same below.
图3 外源ABA和ALA处理对草莓根尖脱落酸信号相关基因表达水平的影响
Fig. 3 Effects of ABA and ALA treatments on the gene expressions related to ABA signal in the root-tips of strawberry
图4 外源ABA和ALA处理对草莓根尖生长素合成运输相关基因表达水平的影响
Fig. 4 Effects of ABA and ALA treatments on the gene expressions related to IAA biosynthesis and transport in the root-tips of strawberry
图5 ALA和(或)ABA处理对转基因拟南芥根尖IAA荧光信号强度的影响 A ~ C:携带绿色荧光蛋白的PIN1、PIN2和DR5转基因植株根尖荧光照片(上)和与明场合并后的照片(下);D:相对荧光强度。
Fig. 5 Effects of ALA and(or)ABA on auxin fluorescence signal intensity in the root tips of Arabidopsis A-C are PIN1,PIN2 and DR5 transgenic plants carried with green fluorescence protein gene(GFP).The upper half is the fluorescence image,while the down half is the merged image with bright field. D is the relative fluorescence intensity of GFP related with IAA in three transgenic plants after treatments.
图6 草莓FaPIN1跨膜区预测(A)和亚细胞定位(B) A中蓝色的长方形表示位于FaPIN1蛋白两端的跨膜结构域。
Fig. 6 Prediction of the transmembrane regions(A)and subcellular location(B)of FaPIN1 The blue rectangle indicates transmembrane domains located at either ends of the FaPIN1 protein in A.
[1] |
Akram N A, Ashraf M. 2013. Regulation in plant stress tolerance by a potential plant growth regulator,5-aminolevulinic acid. J Plant Growth Regul, 32 (3):663-679.
doi: 10.1007/s00344-013-9325-9 URL |
[2] |
Ali B, Wang B, Ali S, Gill R A, Ali S, Rafiq M T, Xu L, Zhou W J. 2013. 5-Aminolevulinic acid ameliorates the growth,photosynthetic gas exchange capacity,and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul, 32 (3):604-614.
doi: 10.1007/s00344-013-9328-6 URL |
[3] |
Ali B, Xu X, Gill R A, Yang S, Ali S, Tahir M, Zhou W J. 2014. Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crop Prod, 52:617-626.
doi: 10.1016/j.indcrop.2013.11.033 URL |
[4] |
An Y Y, Cheng D X, Rao Z X, Sun Y P, Tang Q, Wang L J. 2019. 5-Aminolevulinic acid(ALA)promotes primary root elongation through modulation of auxin transport in Arabidopsis. Acta Physiol Plant, 41 (6):1-11.
doi: 10.1007/s11738-018-2785-6 |
[5] | An Y Y, Liu L B, Chen L H, Sun Y P, Cao R, Wang L J. 2016a. ALA inhibits ABA-induced stomatal closure via reducing H2O2 and Ca2+ levels in guard cells. Front Plant Sci, 7:1-16. |
[6] |
An Y Y, Qi L, Wang L J. 2016b. ALA pretreatment improves waterlogging tolerance of fig plants. PLoS ONE, 11 (1):e0147202.
doi: 10.1371/journal.pone.0147202 URL |
[7] |
An Y Y, Xiong L J, Hu S, Wang L J. 2020. PP2A and microtubules function in 5-aminolevulinic acid-mediated H2O2 signaling in Arabidopsis guard cells. Physiol Plant, 168 (3):709-724.
doi: 10.1111/ppl.v168.3 URL |
[8] |
Antoni R, Rodriguez L, Gonzalez-Guzman M, Pizzio G A, Rodriguez P L. 2011. News on ABA transport,protein degradation,and ABFs/WRKYs in ABA signaling. Curr Opin Plant Biol, 14:547-553.
doi: 10.1016/j.pbi.2011.06.004 URL |
[9] |
Baluška F, Mancuso S, Volkmann D, Barlow P W. 2010. Root apex transition zone:a signaling-response nexus in the root. Trends Plant Sci, 15 (7):402-408.
doi: 10.1016/j.tplants.2010.04.007 URL |
[10] |
Belda-Palazón B, Adamo M, Valerio C, Ferreira L J, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez P L, Baena-González. 2020. A dual function of SnRK 2 kinases in the regulation of SnRK1 and plant growth. Nat Plants, 6 (11):1345-1353.
doi: 10.1038/s41477-020-00778-w pmid: 33077877 |
[11] |
Bellini C, Pacurar D I, Perrone I. 2014. Adventitious roots and lateral roots:similarities and differences. Annu Rev Plant Biol, 65:639-666.
doi: 10.1146/arplant.2014.65.issue-1 URL |
[12] |
Bindu R C, Vivekanandan M. 1998. Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. Plant Growth Regul, 26 (1):15-18.
doi: 10.1023/A:1006098005335 URL |
[13] |
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. 2007. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433 (7021):39-44.
doi: 10.1038/nature03184 |
[14] |
Buer C S, Muday G K. 2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell, 16 (5):1191-1205.
doi: 10.1105/tpc.020313 URL |
[15] |
Cai C Y, He S S, An Y Y, Wang L J. 2020. Exogenous 5-aminolevulinic acid improves strawberry tolerance to osmotic stress and its possible mechanisms. Physiol Plant, 168 (4):948-962.
doi: 10.1111/ppl.13038 pmid: 31621913 |
[16] | Chandler P M, Robertson M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Biol, 45 (1):113-141. |
[17] | Chen Linghui, Liu Longbo, An Yuyan, Zhang Zhiping, Wang Liangju. 2014. Preliminary studies on the possible mechanism underlying 5-aminolevulinic acid-induced stomatal opening in apple leaves. Acta Horticulturae Sinica, 41 (10):1965-1974. (in Chinese) |
陈令会, 刘龙博, 安玉艳, 张治平, 汪良驹. 2014. 外源5-氨基乙酰丙酸促进苹果叶片气孔开放机理的初探. 园艺学报, 41 (10):1965-1974. | |
[18] |
Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. 2003. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 21 (2):177-178.
doi: 10.1007/BF02774246 URL |
[19] |
Duan L, Dietrich D, Ng C H, Chan P M, Bhalerao R, Bennett M J, Dinneny J R. 2013. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell, 25 (1):324-341.
doi: 10.1105/tpc.112.107227 URL |
[20] |
Elansary H O, El-Ansary D O, Al-Mana F A. 2019. 5-Aminolevulinic acid and soil fertility enhance the resistance of rosemary to Alternaria dauci and Rhizoctonia solani and modulate plant biochemistry. Plants, 8 (12):585-610.
doi: 10.3390/plants8120585 URL |
[21] |
Friml J. 2010. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 89 (2-3):231-235.
doi: 10.1016/j.ejcb.2009.11.003 pmid: 19944476 |
[22] |
Fu J J, Chu X T, Sun Y F, Miao Y J, Xu Y F, Hu T M. 2015. Nitric oxide mediates 5-aminolevulinic acid-induced antioxidant defense in leaves of Elymus nutans Griseb. exposed to chilling stress. PLoS ONE, 10 (7):e0130367.
doi: 10.1371/journal.pone.0130367 URL |
[23] |
Fujii H, Verslues P E, Zhu J K. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination,root growth,and gene expression in Arabidopsis. Plant Cell, 19 (2):485-494.
doi: 10.1105/tpc.106.048538 URL |
[24] |
Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. 1997. New physiological effects of 5-aminolevulinic acid in plants:the increase of photosynthesis,chlorophyll content,and plant growth. Biosci Biotech Biochem, 61 (12):2025-2028.
doi: 10.1271/bbb.61.2025 URL |
[25] |
Jaakola L, Pirttilä A M, Halonen M, Hohtola A. 2001. Isolation of high quality RNA from bilberry(Vaccinum myrtillus L.)fruit. Mol Biotechnol, 19 (2):201-203.
doi: 10.1385/MB:19:2:201 pmid: 11725489 |
[26] |
Kamiyama Y, Katagiri S, Umezawa T. 2021. Growth promotion or osmotic stress response:How SNF1-related protein kinase 2(SnRK2)kinases are activated and manage intracellular signaling in plants. Plants, 10 (7):1443-1461.
doi: 10.3390/plants10071443 URL |
[27] |
Leung J, Giraudat J. 1998. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 49 (1):199-222.
doi: 10.1146/arplant.1998.49.issue-1 URL |
[28] |
Liu Longbo, An Yuyan, Xiong Lijun, Wang Liangju. 2016. Flavonols induced by 5-aminolevulinic acid are involved in regulation of stomatal opening in apple leaves. Acta Horticulturae Sinica, 43 (5):817-828. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0873 URL |
刘龙博, 安玉艳, 熊丽君, 汪良驹. 2016. 5-ALA诱导的黄酮醇积累参与调节苹果叶片气孔开度. 园艺学报, 43 (5):817-828.
doi: 10.16420/j.issn.0513-353x.2015-0873 URL |
|
[29] | Lin Shaoyan, Zhang Fang, Xu Yingjie. 2016. The establishment of UPLC method for measuring polyamines content in plants. Journal of Nanjing Agricultural University, 39 (3):358-365. (in Chinese) |
林绍艳, 张芳, 徐颖洁. 2016. 植物中多胺含量超高效液相色谱法的建立. 南京农业大学学报, 39 (3):358-365. | |
[30] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[31] |
Mai C D, Phung N T, To H T, Gonin M, Hoang G T, Nguyen K L, Do V N, Courtois B, Gantet P. 2014. Genes controlling root development in rice. Rice, 7 (1):1-11.
doi: 10.1186/1939-8433-7-1 |
[32] |
Nishimura T, Matano N, Morishima T, Kakinuma C, Hayashi K, Komano T, Kubo M, Hasebe M, Kasahara H, Kamiya Y, Koshiba T. 2012. Identification of IAA transport inhibitors including compounds affecting cellular PIN trafficking by two chemical screening approaches using maize coleoptile systems. Plant Cell Physiol, 53 (10):1671-1682.
doi: 10.1093/pcp/pcs112 pmid: 22875609 |
[33] |
Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406 (6797):731-734.
doi: 10.1038/35021067 |
[34] |
Pilet P E, Chanson A. 1981. Effect of abscisic acid on maize root growth. A critical examination. Plant Sci Lett, 21 (2):99-106.
doi: 10.1016/0304-4211(81)90175-9 URL |
[35] |
Promchuea S, Zhu Y, Chen Z, Jing Z, Gong Z. 2017. ARF 2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis. J Integr Plant Biol, 59 (1):30-43.
doi: 10.1111/jipb.12506 |
[36] |
Raheem A, Shaposhnikov A, Belimov A A, Dodd L C, Ali B. 2018. Auxin production by rhizobacteria was associated with improved yield of wheat(Triticum aestivum L.)under drought stress. Arch Agron Soil Sci, 64 (4):574-587.
doi: 10.1080/03650340.2017.1362105 URL |
[37] |
Reddy K E, Lee W, Jeong J Y, Lee Y Y, Le H J, Kim M S, Kim D W, Yu D, Cho A, Oh Y K, Lee S D. 2018. Effects of deoxynivalenol-and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets. Asian-Australas J Anim Sci, 31 (1):138-148.
doi: 10.5713/ajas.17.0454 URL |
[38] | Shen M, Zhang Z P, Wang L J. 2012. Effect of 5-aminolevulinic acid(ALA)on leaf diurnal photosynthetic characteristics and antioxidant activity in pear(Pyrus pyrifolia Nakai)//Mohammad M N. Applied photosynthesis. Intech:239-256. |
[39] |
Shi H, Zhu J K. 2002. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol, 50 (3):543-550.
doi: 10.1023/A:1019859319617 URL |
[40] |
Slovak R, Ogura T, Satbhai S B, Ristova D, Busch W. 2015. Genetic control of root growth:from genes to networks. Ann Bot, 117 (1):9-24.
doi: 10.1093/aob/mcv160 URL |
[41] |
Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z. 2011. Auxin response factor2(ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet, 7 (7):e1002172.
doi: 10.1371/journal.pgen.1002172 URL |
[42] |
Wang L J, Jiang W B, Huang B J. 2004. Promotion of 5-aminolevulinic acid on photosynthesis of melon(Cucumis melo)seedlings under low light and chilling stress conditions. Physiol Plant, 121 (2):258-264.
doi: 10.1111/ppl.2004.121.issue-2 URL |
[43] |
Wang L J, Jiang W B, Liu H, Liu W Q, Kang L, Hou X L. 2005. Promotion by 5-aminolevulinic acid of germination of pakchoi(Brassica campestris ssp. chinensis var. communis Tsen et Lee)seeds under salt stress. J Integr Plant Biol, 47 (9):1084-1091.
doi: 10.1111/jipb.2005.47.issue-9 URL |
[44] | Wang Liangju, Jiang Weibing, Zhang Zhen, Yao Quanhong, Matsui H, Ohara H. 2003. Biosynthesis and physiological activities of 5-aminolevulinic acid(ALA)and its potential application in agriculture. Plant Physiol Commu, 39 (3):185-192. (in Chinese) |
汪良驹, 姜卫兵, 章镇, 姚泉洪, 松井弘之, 小原均. 2003. 5-氨基乙酰丙酸的生物合成和生理活性及其在农业中的潜在应用. 植物生理学报, 39 (3):185-192. | |
[45] | Wang Liangju, Liu Weiqin, Sun Guorong, Wang Jianbo, Jiang Weibing, Liu Hui, Li Zhiqiang, Zhuang Meng. 2005. Effects of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of radish seedlings. Acta Bot Boreal-Occident Sin, 25 (3):488-496. (in Chinese) |
汪良驹, 刘卫琴, 孙国荣, 王建波, 姜卫兵, 刘晖, 李志强, 庄猛. 2005. ALA对萝卜不同叶位叶片光合作用与叶绿素荧光特性的影响. 西北植物学报, 25 (3):488-496. | |
[46] | Wang Liangju, Shi Wei, Liu Hui, Liu Weiqin, Jiang Weibing, Hou Xilin. 2004. Effects of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi. J Nanjing Agric Univ, 27 (2):34-38. (in Chinese) |
汪良驹, 石伟, 刘晖, 刘卫琴, 姜卫兵, 侯喜林. 2004. 外源5-氨基乙酰丙酸处理对小白菜叶片的光合作用效应. 南京农业大学学报, 27 (2):34-38. | |
[47] |
Wang P C, Zhao Y, Li Z, Hsu C C, Liu X, Fu L, Hou Y J, Du Y Y, Xie S J, Zhang C G, Gao J H, Cao M J, Huang X S, Zhu Y F, Tang K, Wang X, Tao W A, Xiong Y, Zhu J K. 2017. Reciprocal regulation of the tor kinase and ABA receptor balances plant growth and stress response. Mol Cell, 69 (1):100-112.
doi: 10.1016/j.molcel.2017.12.002 URL |
[48] |
Wei Z, Li J. 2016. Brassinosteroids regulate root growth,development,and symbiosis. Mol Plant, 9 (1):86-100.
doi: 10.1016/j.molp.2015.12.003 URL |
[49] |
Wei Z Y, Zhang Z P, Lee M R, Sun Y P, Wang L J. 2012. Effect of 5-aminolevulinic acid on leaf senescence and nitrogen metabolism of pakchoi under different nitrate levels. J Plant Nutr, 35 (1):49-63.
doi: 10.1080/01904167.2012.631666 URL |
[50] | Wu W W, He S S, An Y Y, Cao R X, Sun Y P, Tang Q, Wang L J. 2019a. Hydrogen peroxide as a mediator of 5-aminolevulinic acid-induced Na+ retention in roots for improving salt tolerance of strawberries. Physiol Plant, 167 (1):5-20. |
[51] |
Wu Wenwen, An Yuyan, Wang Liangju. 2017. Study on time effects of exogenous 5-aminolevulinic acid treatment on alleviating salinity injury in ‘Benihoppe’strawberry. Acta Horticulturae Sinica, 44 (6):1038-1048. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2017-0010 |
吴雯雯, 安玉艳, 汪良驹. 2017. 5-氨基乙酰丙酸缓解‘红颜’草莓盐胁迫伤害的时间效应研究. 园艺学报, 44 (6):1038-1048.
doi: 10.16420/j.issn.0513-353x.2017-0010 |
|
[52] |
Wu Y, Liao W B, Dawuda M M, Hu L L, Yu J H. 2019b. 5-Aminolevulinic acid(ALA)biosynthetic and metabolic pathways and its role in higher plants:a review. Plant Growth Regul, 87:357-374.
doi: 10.1007/s10725-018-0463-8 |
[53] | Xu L, Islam F, Zhang W F, Ghani M A, Ali B. 2018. 5-Aminolevulinic acid alleviates herbicide-induced physiological and ultrastructural changes in Brassica napus. J Integrat Agric, 17 (3):579-592. |
[54] | Yang Guixiang, Peng Xianfeng, Zeng Zhenling, Cheng Zhangliu. 2005. Construction of expression vectors for detection of β estradiol. Sci Agric Sin,(5):1046-1051. (in Chinese) |
杨桂香, 彭险峰, 曾振灵, 陈杖榴. 2005. 雌二醇依赖性的细胞表达载体的研究. 中国农业科学,(5):1046-1051. | |
[55] |
Yang H, Zhang J T, Zhang H W, Xu Y, An Y Y, Wang L J. 2021. Effect of 5-aminolevulinic acid(5-ALA)on leaf chlorophyll fast fluorescence characteristics and mineral element content of Buxus megistophylla grown along urban roadsides. Hortic, 7 (5):95-108.
doi: 10.3390/horticulturae7050095 URL |
[56] | Yuan Bingjian, Zhang Senlei, Cao Mengmeng, Wang Zhijuan, Li Xia. 2014. ABA modulates root growth through regulating auxin in Arabidopsis thaliana. Chin J Eco-Agric, 22 (11):1341-1347. (in Chinese) |
袁冰剑, 张森磊, 曹萌萌, 王志娟, 李霞. 2014. 脱落酸通过影响生长素合成及分布抑制拟南芥主根伸长. 中国生态农业学报, 22 (11):1341-1347. | |
[57] |
Zhang H W, Tao H H, Yang H, Zhang L Z, Feng G Z, An Y Y, Wang L J. 2022. MdSCL 8 as a negative regulator participates in ALA-induced FLS1 to promote flavonol accumulation in apples. Int J Mol Sci, 23:2033-2048.
doi: 10.3390/ijms23042033 URL |
[58] |
Zhang J, Davies W J. 1987. Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. J Exp Bot, 38:2015-2023.
doi: 10.1093/jxb/38.12.2015 URL |
[59] |
Zhao Y Y, Yan F, Hu L P, Zhou X T, Zou Z R, Cui L R. 2015. Effects of exogenous 5-aminolevulinic acid on photosynthesis,stomatal conductance,transpiration rate,and PIP gene expression of tomato seedlings subject to salinity stress. Genet Mol Res, 14 (2):6401-6412.
doi: 10.4238/2015.June.11.16 pmid: 26125845 |
[60] | Zheng J, Liu L B, Tao H H, An Y Y, Wang L J. 2021. Transcriptomic profiling of apple calli with a focus on the key genes for ALA-induced anthocyanin accumulation. Front Plant Sci, 12:435. |
[61] |
Zuo J, Niu Q W, Møller S G, Chua N H. 2001. Chemical-regulated,site-specific DNA excision in transgenic plants. Nat Biotechnol, 19 (2):157-161.
pmid: 11175731 |
[1] | 王晓晨, 聂子页, 刘先菊, 段伟, 范培格, 梁振昌. 脱落酸对‘京香玉’葡萄果实单萜物质合成的影响[J]. 园艺学报, 2023, 50(2): 237-249. |
[2] | 宋艳红, 陈亚铎, 张晓玉, 宋盼, 刘丽锋, 李刚, 赵霞, 周厚成. 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
[3] | 于婷婷, 李欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[4] | 郑清波, 鲍泽洋, 蓝青青, 周钰雯, 周雨菲, 郑彩霞, 李旭. 童性与生长素对不定根发生的影响研究进展[J]. 园艺学报, 2023, 50(2): 441-450. |
[5] | 何成勇, 赵晓丽, 许腾飞, 高德航, 李世访, 王红清. 草莓病毒1山东分离物全基因组分析[J]. 园艺学报, 2023, 50(1): 153-160. |
[6] | 杨 雷, 李 莉, 董 辉, 冯 佳, 张建军, 范婧芳, 杨秋叶, 杨 莉, . 草莓新品种‘石莓11号’[J]. 园艺学报, 2022, 49(S2): 79-80. |
[7] | 赵 霞, 李 刚, 刘丽锋, 宋艳红, 周厚成. 草莓新品种‘华硕1号’[J]. 园艺学报, 2022, 49(S2): 81-82. |
[8] | 董 静, 常琳琳, 王桂霞, 钟传飞, 隗永青, 孙 健, 孙 瑞, 张宏力, 高用顺, 许利平, 陶 磅, 罗志伟, 张运涛, . 四季草莓新品种‘静红’[J]. 园艺学报, 2022, 49(S1): 61-62. |
[9] | 胡若琳, 王佳丽, 杨慧勤, 袁超, 牛义, 汤青林, 魏大勇, 田时炳, 杨洋, 王志敏. 茄子生长素响应因子SmARF5对分枝发育的影响[J]. 园艺学报, 2022, 49(9): 1895-1906. |
[10] | 蔡建法, 莫雪莲, 管思聪, 陈栩, 薛程. 草莓FvYABBY5.1表达特性和功能分析[J]. 园艺学报, 2022, 49(7): 1458-1472. |
[11] | 韩鲁杰, 冯一清, 杨秀华, 张宁, 毕焕改, 艾希珍. 有机肥化肥配施对大棚黄瓜根区土壤与根系特征的影响[J]. 园艺学报, 2022, 49(5): 1047-1059. |
[12] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[13] | 许曈, 邵灵梅, 王小斌, 张润龙, 张凯靖, 夏宜平, 张佳平, 李丹青. 多年生单子叶植物的越冬休眠研究进展[J]. 园艺学报, 2022, 49(12): 2703-2721. |
[14] | 周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2131-2142. |
[15] | 于建强, 顾凯迪, 王传增, 胡大刚. 苹果磷酸果糖激酶基因MdPFPβ调控果实可溶性糖积累的功能[J]. 园艺学报, 2022, 49(10): 2223-2235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司