园艺学报 ›› 2022, Vol. 49 ›› Issue (3): 473-481.doi: 10.16420/j.issn.0513-353x.2020-0605
• 研究论文 • 下一篇
收稿日期:
2021-09-07
修回日期:
2022-01-24
出版日期:
2022-03-25
发布日期:
2022-03-25
通讯作者:
吕德国
E-mail:lvdeguo@syau.edu.cn
基金资助:
Received:
2021-09-07
Revised:
2022-01-24
Online:
2022-03-25
Published:
2022-03-25
Contact:
LÜ Deguo
E-mail:lvdeguo@syau.edu.cn
摘要:
以苹果砧木平邑甜茶(Malus hupehensis)幼苗为试材,结合15N同位素示踪技术,连续两年研究了砂培条件下低锌、适量和高锌水平(0.5、4和16 μmol · L-1 Zn2+)5种供给方式[持续低锌30 d、低锌变高锌(前15 d低锌,后15 d高锌)、适量稳定供锌(30 d适量供锌)、高锌变低锌(前15 d高锌,后15 d低锌)和持续高锌(30 d高锌)]对幼苗生长以及氮素吸收利用的影响。结果表明:适量稳定供锌处理的幼苗总生物量、根系总长、总表面积最大,根系活力最高;持续低锌处理最低。整个处理期间,适量稳定供锌处理的叶片硝酸还原酶(NR)活性均显著高于其他处理。15N示踪结果表明,处理30 d时,各处理15N吸收量、15N利用率表现为适量稳定供锌处理最高;持续高锌、低锌变高锌处理次之;持续低锌处理最低。以上结果说明:供锌不足与过量以及供锌不稳定均抑制了平邑甜茶幼苗根系生长以及氮素的同化,限制了对氮素的吸收,不利于生长发育;而适量稳定供锌优化了根系形态,同时增强了叶片NR活性,促进了幼苗体内的氮素同化,对氮素的高效吸收利用,幼苗生长发育最有利。
中图分类号:
于波, 秦嗣军, 吕德国. 适量稳定供锌促进平邑甜茶幼苗生长和氮的吸收利用[J]. 园艺学报, 2022, 49(3): 473-481.
YU Bo, QIN Sijun, LÜ Deguo. Continuous Supply of Zinc in Suitable Level Stimulates the Growth and Absorption and Utilization of Nitrogen in Malus hupehensis Seedlings[J]. Acta Horticulturae Sinica, 2022, 49(3): 473-481.
年份 Year | 处理 Treatment | Zn/(μmol · L-1) | 地上部Shoot | 根系Root | |||||
---|---|---|---|---|---|---|---|---|---|
1 ~ 15 d | 16 ~ 30 d | 16 d | 30 d | 16 d | 30 d | ||||
2019 | 持续低锌Keeping in deficient | 0.5 | 0.5 | 1.55 ± 0.09 c | 3.63 ± 0.29 d | 0.66 ± 0.02 b | 1.39 ± 0.10 c | ||
低锌变高锌 From deficient to excess | 0.5 | 16.0 | 1.57 ± 0.05 bc | 4.43 ± 0.31 b | 0.68 ± 0.01 b | 1.55 ± 0.07 bc | |||
适量稳定供锌 Keeping in appropriate | 4.0 | 4.0 | 2.58 ± 0.12 a | 5.53 ± 0.31 a | 0.96 ± 0.03 a | 2.25 ± 0.23 a | |||
高锌变低锌 From excess to deficient | 16.0 | 0.5 | 1.72 ± 0.07 b | 3.78 ± 0.17 cd | 0.62 ± 0.01 b | 1.71 ± 0.13 b | |||
持续高锌Keeping in excess | 16.0 | 16.0 | 1.71 ± 0.05 b | 4.12 ± 0.09 bc | 0.63 ± 0.02 b | 1.61 ± 0.06 bc | |||
2020 | 持续低锌Keeping in deficient | 0.5 | 0.5 | 1.86 ± 0.07 c | 3.99 ± 0.28 d | 0.73 ± 0.09 b | 1.53 ± 0.09 c | ||
低锌变高锌 From deficient to excess | 0.5 | 16.0 | 1.89 ± 0.03 c | 4.87 ± 0.39 b | 0.75 ± 0.05 b | 1.71 ± 0.05 bc | |||
适量稳定供锌 Keeping in appropriate | 4.0 | 4.0 | 3.10 ± 0.08 a | 6.08 ± 0.21 a | 1.06 ± 0.12 a | 2.48 ± 0.12 a | |||
高锌变低锌 From excess to deficient | 16.0 | 0.5 | 2.24 ± 0.06 b | 4.16 ± 0.09 cd | 0.68 ± 0.02 b | 1.88 ± 0.09 b | |||
持续高锌Keeping in excess | 16.0 | 16.0 | 2.21 ± 0.09 b | 4.53 ± 0.22 bc | 0.69 ± 0.06 b | 1.77 ± 0.03 bc |
表1 不同供锌浓度和稳定性下平邑甜茶幼苗单株地上部干质量和根系干质量
Table 1 Single dry weight of shoot and root of Malus hupehensis seedlings under different Zinc concentrations and stabilities g
年份 Year | 处理 Treatment | Zn/(μmol · L-1) | 地上部Shoot | 根系Root | |||||
---|---|---|---|---|---|---|---|---|---|
1 ~ 15 d | 16 ~ 30 d | 16 d | 30 d | 16 d | 30 d | ||||
2019 | 持续低锌Keeping in deficient | 0.5 | 0.5 | 1.55 ± 0.09 c | 3.63 ± 0.29 d | 0.66 ± 0.02 b | 1.39 ± 0.10 c | ||
低锌变高锌 From deficient to excess | 0.5 | 16.0 | 1.57 ± 0.05 bc | 4.43 ± 0.31 b | 0.68 ± 0.01 b | 1.55 ± 0.07 bc | |||
适量稳定供锌 Keeping in appropriate | 4.0 | 4.0 | 2.58 ± 0.12 a | 5.53 ± 0.31 a | 0.96 ± 0.03 a | 2.25 ± 0.23 a | |||
高锌变低锌 From excess to deficient | 16.0 | 0.5 | 1.72 ± 0.07 b | 3.78 ± 0.17 cd | 0.62 ± 0.01 b | 1.71 ± 0.13 b | |||
持续高锌Keeping in excess | 16.0 | 16.0 | 1.71 ± 0.05 b | 4.12 ± 0.09 bc | 0.63 ± 0.02 b | 1.61 ± 0.06 bc | |||
2020 | 持续低锌Keeping in deficient | 0.5 | 0.5 | 1.86 ± 0.07 c | 3.99 ± 0.28 d | 0.73 ± 0.09 b | 1.53 ± 0.09 c | ||
低锌变高锌 From deficient to excess | 0.5 | 16.0 | 1.89 ± 0.03 c | 4.87 ± 0.39 b | 0.75 ± 0.05 b | 1.71 ± 0.05 bc | |||
适量稳定供锌 Keeping in appropriate | 4.0 | 4.0 | 3.10 ± 0.08 a | 6.08 ± 0.21 a | 1.06 ± 0.12 a | 2.48 ± 0.12 a | |||
高锌变低锌 From excess to deficient | 16.0 | 0.5 | 2.24 ± 0.06 b | 4.16 ± 0.09 cd | 0.68 ± 0.02 b | 1.88 ± 0.09 b | |||
持续高锌Keeping in excess | 16.0 | 16.0 | 2.21 ± 0.09 b | 4.53 ± 0.22 bc | 0.69 ± 0.06 b | 1.77 ± 0.03 bc |
年份 Year | 处理 Treatment | 长度/cm Length | 总表面积/cm2 Surface area | 活力/(μg · h-1 · g-1) Root activity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
16 d | 30 d | 16 d | 30 d | 16 d | 30 d | |||||
2019 | 持续低锌 Keeping in deficient | 568.3 ± 16.7 b | 651.6 ± 14.9 c | 157.1 ± 9.82 b | 249.1 ± 8.47 d | 32.5 ± 5.1 d | 40.1 ± 7.1 c | |||
低锌变高锌From deficient to excess | 572.7 ± 10.3 b | 693.8 ± 9.88 b | 158.6 ± 6.33 b | 308.2 ± 10.92 b | 44.5 ± 3.2 c | 64.3 ± 6.2 b | ||||
适量稳定供锌 Keeping in appropriate | 634.5 ± 13.2 a | 846.4 ± 25.2 a | 176.3 ± 10.72 a | 404.2 ± 12.99 a | 86.3 ± 7.2 a | 91.9 ± 8.6 a | ||||
高锌变低锌 From excess to deficient | 530.5 ± 9.8 c | 708.1 ± 19.9 b | 125.5 ± 7.50 c | 301.6 ± 7.36 b | 62.2 ± 4.9 b | 46.3 ± 5.9 c | ||||
持续高锌Keeping in excess | 528.6 ± 11.1 c | 663.7 ± 16.7 c | 128.1 ± 5.33 c | 271.7 ± 9.22 c | 58.3 ± 6.8 b | 60.1 ± 6.5 b | ||||
2020 | 持续低锌 Keeping in deficient | 532.5 ± 16.1 b | 619.1 ± 12.1 c | 179.6 ± 16.1 b | 274.1 ± 16.3 d | 35.2 ± 3.1 d | 49.2 ± 5.1 c | |||
低锌变高锌From deficient to excess | 536.9 ± 15.3 b | 659.1 ± 15.1 b | 181.3 ± 11.2 b | 338.8 ± 14.2 b | 49.5 ± 4.9 c | 74.3 ± 4.8 b | ||||
适量稳定供锌 Keeping in appropriate | 594.8 ± 25.2 a | 804.1 ± 13.4 a | 201.6 ± 13.8 a | 444.6 ± 17.2 a | 89.3 ± 5.8 a | 98.9 ± 6.8 a | ||||
高锌变低锌From excess to deficient | 496.8 ± 19.8 c | 672.7 ± 16.2 b | 143.4 ± 13.7 c | 331.8 ± 14.9 b | 68.2 ± 4.9 b | 49.3 ± 3.2 c | ||||
持续高锌Keeping in excess | 495.6 ± 25.1 c | 630.5 ± 19.6 c | 146.5 ± 10.2 c | 298.9 ± 16.8 c | 56.3 ± 6.1 b | 59.1 ± 5.6 b |
表2 不同供锌浓度和稳定性下平邑甜茶幼苗根系长度、根系总表面积及根系活力
Table 2 The root length,root surface area and root activity of Malus hupehensis seedlings under different Zinc concentrations and stabilities
年份 Year | 处理 Treatment | 长度/cm Length | 总表面积/cm2 Surface area | 活力/(μg · h-1 · g-1) Root activity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
16 d | 30 d | 16 d | 30 d | 16 d | 30 d | |||||
2019 | 持续低锌 Keeping in deficient | 568.3 ± 16.7 b | 651.6 ± 14.9 c | 157.1 ± 9.82 b | 249.1 ± 8.47 d | 32.5 ± 5.1 d | 40.1 ± 7.1 c | |||
低锌变高锌From deficient to excess | 572.7 ± 10.3 b | 693.8 ± 9.88 b | 158.6 ± 6.33 b | 308.2 ± 10.92 b | 44.5 ± 3.2 c | 64.3 ± 6.2 b | ||||
适量稳定供锌 Keeping in appropriate | 634.5 ± 13.2 a | 846.4 ± 25.2 a | 176.3 ± 10.72 a | 404.2 ± 12.99 a | 86.3 ± 7.2 a | 91.9 ± 8.6 a | ||||
高锌变低锌 From excess to deficient | 530.5 ± 9.8 c | 708.1 ± 19.9 b | 125.5 ± 7.50 c | 301.6 ± 7.36 b | 62.2 ± 4.9 b | 46.3 ± 5.9 c | ||||
持续高锌Keeping in excess | 528.6 ± 11.1 c | 663.7 ± 16.7 c | 128.1 ± 5.33 c | 271.7 ± 9.22 c | 58.3 ± 6.8 b | 60.1 ± 6.5 b | ||||
2020 | 持续低锌 Keeping in deficient | 532.5 ± 16.1 b | 619.1 ± 12.1 c | 179.6 ± 16.1 b | 274.1 ± 16.3 d | 35.2 ± 3.1 d | 49.2 ± 5.1 c | |||
低锌变高锌From deficient to excess | 536.9 ± 15.3 b | 659.1 ± 15.1 b | 181.3 ± 11.2 b | 338.8 ± 14.2 b | 49.5 ± 4.9 c | 74.3 ± 4.8 b | ||||
适量稳定供锌 Keeping in appropriate | 594.8 ± 25.2 a | 804.1 ± 13.4 a | 201.6 ± 13.8 a | 444.6 ± 17.2 a | 89.3 ± 5.8 a | 98.9 ± 6.8 a | ||||
高锌变低锌From excess to deficient | 496.8 ± 19.8 c | 672.7 ± 16.2 b | 143.4 ± 13.7 c | 331.8 ± 14.9 b | 68.2 ± 4.9 b | 49.3 ± 3.2 c | ||||
持续高锌Keeping in excess | 495.6 ± 25.1 c | 630.5 ± 19.6 c | 146.5 ± 10.2 c | 298.9 ± 16.8 c | 56.3 ± 6.1 b | 59.1 ± 5.6 b |
年份 Year | 处理 Treatment | 采样时间/d Sample time | |||||
---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | ||
2019 | 持续低锌Keeping in deficient | 42.67 ± 2.48 c | 40.82 ± 2.05 c | 42.81 ± 2.33 c | 36.91 ± 1.75 d | 34.93 ± 2.42 d | 30.87 ± 2.15 d |
低锌变高锌 From deficient to excess | 40.60 ± 2.13 c | 39.30 ± 1.71 c | 42.59 ± 2.42 c | 54.96 ± 2.29 b | 55.62 ± 1.52 b | 52.14 ± 0.87 b | |
适量稳定供锌 Keeping in appropriate | 54.56 ± 1.62 a | 62.35 ± 2.22 a | 67.38 ± 2.05 a | 70.18 ± 1.51 a | 66.39 ± 1.38 a | 64.37 ± 1.21 a | |
高锌变低锌 From excess to deficient | 51.94 ± 1.95 b | 57.21 ± 1.97 b | 59.10 ± 2.45 b | 47.14 ± 2.34 c | 39.75 ± 2.44 c | 33.59 ± 1.36 d | |
持续高锌Keeping in excess | 49.34 ± 1.15 b | 55.97 ± 1.72 b | 61.33 ± 1.51 b | 58.05 ± 2.15 b | 53.63 ± 2.01 b | 48.24 ± 3.13 c | |
2020 | 持续低锌Keeping in deficient | 38.79 ± 2.06 c | 37.11 ± 2.35 c | 38.92 ± 3.08 c | 33.55 ± 3.41 d | 31.75 ± 2.29 d | 28.06 ± 2.51 d |
低锌变高锌 From deficient to excess | 36.91 ± 2.54 c | 35.73 ± 1.71 c | 38.72 ± 2.66 c | 49.96 ± 3.92 b | 50.56 ± 1.85 b | 47.40 ± 2.45 b | |
适量稳定供锌 Keeping in appropriate | 49.60 ± 2.45 a | 56.68 ± 1.97 a | 61.25 ± 1.84 a | 63.80 ± 2.58 a | 60.35 ± 2.29 a | 58.52 ± 3.11 a | |
高锌变低锌 From excess to deficient | 47.22 ± 2.67 ab | 52.01 ± 1.72 b | 53.73 ± 2.38 b | 42.85 ± 1.69 c | 36.14 ± 3.95 c | 30.54 ± 3.61 d | |
持续高锌Keeping in excess | 44.85 ± 1.32 b | 50.88 ± 2.07 b | 55.57 ± 2.57 b | 52.77 ± 2.51 b | 48.75 ± 4.05 b | 43.85 ± 2.65 c |
表3 不同供锌浓度和稳定性下平邑甜茶幼苗叶片的硝酸还原酶活性
Table 3 Dynamics of nitrate reductase activity with time in leaves of Malus hupehensis seedlings under different Zinc concentrations and stabilities μg · h-1 ·g-1 FW
年份 Year | 处理 Treatment | 采样时间/d Sample time | |||||
---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | ||
2019 | 持续低锌Keeping in deficient | 42.67 ± 2.48 c | 40.82 ± 2.05 c | 42.81 ± 2.33 c | 36.91 ± 1.75 d | 34.93 ± 2.42 d | 30.87 ± 2.15 d |
低锌变高锌 From deficient to excess | 40.60 ± 2.13 c | 39.30 ± 1.71 c | 42.59 ± 2.42 c | 54.96 ± 2.29 b | 55.62 ± 1.52 b | 52.14 ± 0.87 b | |
适量稳定供锌 Keeping in appropriate | 54.56 ± 1.62 a | 62.35 ± 2.22 a | 67.38 ± 2.05 a | 70.18 ± 1.51 a | 66.39 ± 1.38 a | 64.37 ± 1.21 a | |
高锌变低锌 From excess to deficient | 51.94 ± 1.95 b | 57.21 ± 1.97 b | 59.10 ± 2.45 b | 47.14 ± 2.34 c | 39.75 ± 2.44 c | 33.59 ± 1.36 d | |
持续高锌Keeping in excess | 49.34 ± 1.15 b | 55.97 ± 1.72 b | 61.33 ± 1.51 b | 58.05 ± 2.15 b | 53.63 ± 2.01 b | 48.24 ± 3.13 c | |
2020 | 持续低锌Keeping in deficient | 38.79 ± 2.06 c | 37.11 ± 2.35 c | 38.92 ± 3.08 c | 33.55 ± 3.41 d | 31.75 ± 2.29 d | 28.06 ± 2.51 d |
低锌变高锌 From deficient to excess | 36.91 ± 2.54 c | 35.73 ± 1.71 c | 38.72 ± 2.66 c | 49.96 ± 3.92 b | 50.56 ± 1.85 b | 47.40 ± 2.45 b | |
适量稳定供锌 Keeping in appropriate | 49.60 ± 2.45 a | 56.68 ± 1.97 a | 61.25 ± 1.84 a | 63.80 ± 2.58 a | 60.35 ± 2.29 a | 58.52 ± 3.11 a | |
高锌变低锌 From excess to deficient | 47.22 ± 2.67 ab | 52.01 ± 1.72 b | 53.73 ± 2.38 b | 42.85 ± 1.69 c | 36.14 ± 3.95 c | 30.54 ± 3.61 d | |
持续高锌Keeping in excess | 44.85 ± 1.32 b | 50.88 ± 2.07 b | 55.57 ± 2.57 b | 52.77 ± 2.51 b | 48.75 ± 4.05 b | 43.85 ± 2.65 c |
年份 Year | 处理 Treatment | 15N吸收量/mg 15N Absorption | 15N利用率/% 15N Utilization rate | ||
---|---|---|---|---|---|
16 d | 30 d | 16 d | 30 d | ||
2019 | 持续低锌Keeping in deficient | 0.96 ± 0.04 c | 2.18 ± 0.13 d | 5.63 ± 0.24 c | 6.41 ± 0.18 d |
低锌变高锌From deficient to excess | 0.99 ± 0.03 c | 2.79 ± 0.12 b | 5.84 ± 0.28 c | 8.22 ± 0.58 b | |
适量稳定供锌Keeping in appropriate | 1.64 ± 0.11 a | 3.58 ± 0.18 a | 9.67 ± 0.71 a | 10.53 ± 0.53 a | |
高锌变低锌From excess to deficient | 1.23 ± 0.04 b | 2.47 ± 0.11 c | 7.25 ± 0.43 b | 7.26 ± 0.54 c | |
持续高锌Keeping in excess | 1.29 ± 0.09 b | 2.83 ± 0.11 b | 7.58 ± 0.54 b | 8.31 ± 0.32 b | |
2020 | 持续低锌Keeping in deficient | 0.91 ± 0.03 c | 2.12 ± 0.04 d | 5.35 ± 0.14 c | 6.22 ± 0.09 d |
低锌变高锌From deficient to excess | 0.94 ± 0.02 c | 2.71 ± 0.18 b | 5.55 ± 0.18 c | 7.97 ± 0.18 b | |
适量稳定供锌Keeping in appropriate | 1.56 ± 0.08 a | 3.47 ± 0.09 a | 9.19 ± 0.37 a | 10.21 ± 0.35 a | |
高锌变低锌From excess to deficient | 1.17 ± 0.06 b | 2.35 ± 0.04 c | 6.89 ± 0.23 b | 7.04 ± 0.41 c | |
持续高锌Keeping in excess | 1.23 ± 0.03 b | 2.75 ± 0.06 b | 7.20 ± 0.45 b | 8.06 ± 0.23 b |
表4 不同供锌浓度和稳定性下平邑甜茶幼苗15N吸收量和15N利用率
Table 4 The 15N absorption and 15N utilization rate of Malus hupehensis seedlings under different Zinc concentrations and stabilities
年份 Year | 处理 Treatment | 15N吸收量/mg 15N Absorption | 15N利用率/% 15N Utilization rate | ||
---|---|---|---|---|---|
16 d | 30 d | 16 d | 30 d | ||
2019 | 持续低锌Keeping in deficient | 0.96 ± 0.04 c | 2.18 ± 0.13 d | 5.63 ± 0.24 c | 6.41 ± 0.18 d |
低锌变高锌From deficient to excess | 0.99 ± 0.03 c | 2.79 ± 0.12 b | 5.84 ± 0.28 c | 8.22 ± 0.58 b | |
适量稳定供锌Keeping in appropriate | 1.64 ± 0.11 a | 3.58 ± 0.18 a | 9.67 ± 0.71 a | 10.53 ± 0.53 a | |
高锌变低锌From excess to deficient | 1.23 ± 0.04 b | 2.47 ± 0.11 c | 7.25 ± 0.43 b | 7.26 ± 0.54 c | |
持续高锌Keeping in excess | 1.29 ± 0.09 b | 2.83 ± 0.11 b | 7.58 ± 0.54 b | 8.31 ± 0.32 b | |
2020 | 持续低锌Keeping in deficient | 0.91 ± 0.03 c | 2.12 ± 0.04 d | 5.35 ± 0.14 c | 6.22 ± 0.09 d |
低锌变高锌From deficient to excess | 0.94 ± 0.02 c | 2.71 ± 0.18 b | 5.55 ± 0.18 c | 7.97 ± 0.18 b | |
适量稳定供锌Keeping in appropriate | 1.56 ± 0.08 a | 3.47 ± 0.09 a | 9.19 ± 0.37 a | 10.21 ± 0.35 a | |
高锌变低锌From excess to deficient | 1.17 ± 0.06 b | 2.35 ± 0.04 c | 6.89 ± 0.23 b | 7.04 ± 0.41 c | |
持续高锌Keeping in excess | 1.23 ± 0.03 b | 2.75 ± 0.06 b | 7.20 ± 0.45 b | 8.06 ± 0.23 b |
年份 Year | 处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | |||
---|---|---|---|---|---|---|---|
16 d | 30 d | 16 d | 30 d | 16 d | 30 d | ||
2019 | 持续低锌Keeping in deficient | 45.74 ± 1.51 a | 31.68 ± 1.26 a | 23.65 ± 1.32 b | 23.76 ± 0.78 b | 30.61 ± 1.68 c | 44.56 ± 0.44 d |
低锌变高锌 From deficient to excess | 44.21 ± 1.68 a | 24.19 ± 0.59 b | 24.78 ± 1.08 ab | 27.28 ± 0.93 a | 31.01 ± 1.53 c | 48.53 ± 0.85 c | |
适量稳定供锌 Keeping in appropriate | 27.63 ± 1.33 c | 21.45 ± 1.57 c | 19.71 ± 1.25 c | 16.71 ± 1.31 c | 52.66 ± 2.23 a | 61.84 ± 3.58 a | |
高锌变低锌 From excess to deficient | 30.12 ± 0.89 b | 30.17 ± 1.33 a | 23.97 ± 0.82 b | 22.56 ± 0.77 b | 45.91 ± 1.61 b | 47.27 ± 1.17 c | |
持续高锌Keeping in excess | 29.31 ± 0.77 bc | 24.39 ± 0.28 b | 26.15 ± 0.83 a | 22.74 ± 1.14 b | 44.54 ± 1.12 b | 52.87 ± 1.12 b | |
2020 | 持续低锌Keeping in deficient | 41.58 ± 1.35 a | 31.86 ± 1.23 a | 22.52 ± 1.35 b | 24.78 ± 0.87 b | 35.90 ± 1.45 c | 43.36 ± 0.81 d |
低锌变高锌 From deficient to excess | 40.37 ± 1.75 a | 25.26 ± 1.25 b | 24.67 ± 1.12 ab | 27.95 ± 0.74 a | 34.96 ± 1.15 c | 46.79 ± 1.67 bc | |
适量稳定供锌 Keeping in appropriate | 27.15 ± 1.35 c | 22.49 ± 1.37 b | 19.75 ± 1.01 c | 17.14 ± 0.73 c | 53.10 ± 1.69 a | 60.37 ± 2.04 a | |
高锌变低锌 From excess to deficient | 32.49 ± 0.95 b | 31.48 ± 1.24 a | 23.5 ± 0.75 ab | 25.31 ± 0.95 b | 44.00 ± 1.23 b | 43.21 ± 0.96 cd | |
持续高锌Keeping in excess | 30.13 ± 0.68 bc | 26.39 ± 0.67 b | 27.96 ± 0.69 a | 22.85 ± 0.71 b | 41.91 ± 1.57 b | 50.76 ± 0.85 b |
表5 不同供锌浓度和稳定性下平邑甜茶幼苗15N分配率
Table 5 The 15N distribution of Malus hupehensis seedlings under different Zinc concentrations and stabilities %
年份 Year | 处理 Treatment | 根 Root | 茎 Stem | 叶 Leaf | |||
---|---|---|---|---|---|---|---|
16 d | 30 d | 16 d | 30 d | 16 d | 30 d | ||
2019 | 持续低锌Keeping in deficient | 45.74 ± 1.51 a | 31.68 ± 1.26 a | 23.65 ± 1.32 b | 23.76 ± 0.78 b | 30.61 ± 1.68 c | 44.56 ± 0.44 d |
低锌变高锌 From deficient to excess | 44.21 ± 1.68 a | 24.19 ± 0.59 b | 24.78 ± 1.08 ab | 27.28 ± 0.93 a | 31.01 ± 1.53 c | 48.53 ± 0.85 c | |
适量稳定供锌 Keeping in appropriate | 27.63 ± 1.33 c | 21.45 ± 1.57 c | 19.71 ± 1.25 c | 16.71 ± 1.31 c | 52.66 ± 2.23 a | 61.84 ± 3.58 a | |
高锌变低锌 From excess to deficient | 30.12 ± 0.89 b | 30.17 ± 1.33 a | 23.97 ± 0.82 b | 22.56 ± 0.77 b | 45.91 ± 1.61 b | 47.27 ± 1.17 c | |
持续高锌Keeping in excess | 29.31 ± 0.77 bc | 24.39 ± 0.28 b | 26.15 ± 0.83 a | 22.74 ± 1.14 b | 44.54 ± 1.12 b | 52.87 ± 1.12 b | |
2020 | 持续低锌Keeping in deficient | 41.58 ± 1.35 a | 31.86 ± 1.23 a | 22.52 ± 1.35 b | 24.78 ± 0.87 b | 35.90 ± 1.45 c | 43.36 ± 0.81 d |
低锌变高锌 From deficient to excess | 40.37 ± 1.75 a | 25.26 ± 1.25 b | 24.67 ± 1.12 ab | 27.95 ± 0.74 a | 34.96 ± 1.15 c | 46.79 ± 1.67 bc | |
适量稳定供锌 Keeping in appropriate | 27.15 ± 1.35 c | 22.49 ± 1.37 b | 19.75 ± 1.01 c | 17.14 ± 0.73 c | 53.10 ± 1.69 a | 60.37 ± 2.04 a | |
高锌变低锌 From excess to deficient | 32.49 ± 0.95 b | 31.48 ± 1.24 a | 23.5 ± 0.75 ab | 25.31 ± 0.95 b | 44.00 ± 1.23 b | 43.21 ± 0.96 cd | |
持续高锌Keeping in excess | 30.13 ± 0.68 bc | 26.39 ± 0.67 b | 27.96 ± 0.69 a | 22.85 ± 0.71 b | 41.91 ± 1.57 b | 50.76 ± 0.85 b |
[1] | Alloway B J. 2008. Zinc in soil and crop nutrition. France:Belgium and Paris:International Zinc Association:66-67. |
[2] |
Cumbus I P. 1985. Development of wheat roots under zinc deficiency. Plant and Soil, 83(2):313-316.
doi: 10.1007/BF02184301 URL |
[3] | Ding Ning, Peng Ling, An Xin, Chen Qian, Jiang Han, Jiang Yuan-mao. 2016. Absorption,distribution and utilization of dwarf apple trees to 15N applied in different growth stages. Journal of Plant Nutrition and Fertilizer Science, 22(2):572-578. (in Chinese) |
丁宁, 彭玲, 安欣, 陈倩, 姜翰, 姜远茂 2016. 不同时期施氮矮化苹果对15N的吸收、分配及利用. 植物营养与肥料学报, 22(2):572-578 | |
[4] |
Fan Xiao-Dan, Liu Fei, Wang Yan-an, Fu Chun-xia, Yan Yu-jing, Sha Guang-li, Shu Huai-rui. 2015. Evaluation of zinc deficiency tolerance in different kinds of apple rootstocks. Chinese Journal of Applied Ecology, 26(10):3045-3052. (in Chinese)
pmid: 26995912 |
范晓丹, 刘飞, 王衍安, 付春霞, 闫玉静, 沙广利, 束怀瑞. 2015. 不同苹果砧木对缺锌胁迫的耐性评价. 应用生态学报, 26(10):3045-3052.
pmid: 26995912 |
|
[5] | Gao Liu-qing, Tian Chang-yan, Hu Ming-fang. 2000. Research on effect of zinc(Zn),manganese(Mn)on nitrogen(N)and phosphorus(P) absorption of cotton and its mechanism. Acta Agronomica Sinica, 26(6):861-868. (in Chinese) |
高柳青, 田长彦, 胡明芳. 2000. 锌、锰对棉花吸收氮、磷养分的影响及机理研究. 作物学报, 26(6):861-868. | |
[6] | Ge Shun-feng, Zhu Zhan-ling, Wei Shao-chong, Jiang Yuan-mao. 2017. Technical approach and research prospect of saving and improving efficiency of chemical fertilizers for apple in China. Acta Horticulture Sinica, 44(9):1681-1692. (in Chinese) |
葛顺峰, 朱占玲, 魏绍冲, 姜远茂. 2017. 中国苹果化肥减量增效技术途径与展望. 园艺学报, 44(9):1681-1692. | |
[7] |
Genc Y, Huang C Y, Langridge P. 2007. A study of the role of root morphological traits in growth of barley in zinc-deficient soil. Journal of Experimental Botany, 58(11):2775-2784.
pmid: 17609531 |
[8] |
Graham R D, Ascher J S, Hynes S C. 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil, 146(1/2):241-250.
doi: 10.1007/BF00012018 URL |
[9] |
Han Y L, Song H X, Liao Q, Yu Y, Jian S F, Lepo J E. 2016. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 170:1684-1698.
doi: 10.1104/pp.15.01377 URL |
[10] |
Han Z H, Wang Q, Shen T. 1994. Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in the genus Malus. Journal of Plant Nutrition, 17(7):1257-1264.
doi: 10.1080/01904169409364803 URL |
[11] |
Huo Chang-fu, Sun Hai-long, Fan Zhi-qiang, Wang Zheng-quan. 2007. Physiological processes and major regulating factors of nitrogen up take by plant roots. Chinese Journal of Applied Ecology, 18(6):1356-1364. (in Chinese)
pmid: 17763743 |
霍常富, 孙海龙, 范志强, 王政权. 2007. 根系氮吸收过程及其主要调节因子. 应用生态学报, 18(6):1356-1364.
pmid: 17763743 |
|
[12] |
Kazan K. 2013. Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9):1655-1665.
doi: 10.1093/aob/mct229 URL |
[13] |
Kovács B, Puskás-Preszner A, Huzsvai L, Lévai L, Bódi E. 2015. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiology and Biochemistry, 96:38-44.
doi: 10.1016/j.plaphy.2015.07.013 pmid: 26226599 |
[14] | Li He-sheng. 2000. Experimental principle and technique for plant physiology and biochemistry. Beijing: Higher Education Press. (in Chinese) |
李合生. 2000. 植物生理生化实验原理和技术. 北京: 高等教育出版社. | |
[15] | Peng Ling, Tian Ge, Yu Bo, Ge Shun-feng, Jiang Yuan-mao. 2018. Effects of nitrogen supply levels and stability on growth and 15N absorption and utilization of M9T337 dwarf rootstocks seedlings. Journal of Plant Nutrition and Fertilizer, 24(2):461-470. (in Chinese) |
彭玲, 田歌, 于波, 葛顺峰, 姜远茂. 2018. 供氮水平和稳定性对苹果矮化砧M9T337幼苗生长及15N吸收、利用的影响. 植物营养与肥料学报, 24(2):461-470. | |
[16] | Richard O, Pineau C, Loubet S, Chalies C, Vile D, Marquès L, Berthomieu P. 2011. Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed a low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. Plant Cell & Environment, 34:1065-1078. |
[17] |
Saini S, Sharma I, Kaur N, Pati P K. 2013. Auxin:a master regulator in plant root development. Plant Cell Reports, 32(6):741-757.
doi: 10.1007/s00299-013-1430-5 URL |
[18] | Shi Mu-tian. 2004. Effects of zinc levels on endogenous hormone and nitrogen metabolism in leaves and yields of balsam pear. Chinese Journal of Eco-Agriculture, 12(1):64-67. (in Chinese) |
施木田. 2004. 锌对苦瓜叶片内源激素与氮代谢及产量的影响研究. 中国生态农业学报, 12(1):64-67. | |
[19] |
Wang Fen, Tian Ge, Liu Jing-jing, Ge Shun-feng, Jiang Yuan-mao. 2018. Fate of fertilizer nitrogen and soil nitrogen pool budget of Fuji apple from germination stage to new shoot growing stage. Chinese Journal of Applied Ecology, 29(3):931-937. (in Chinese)
doi: 10.13287/j.1001-9332.201803.029 pmid: 29722237 |
王芬, 田歌, 刘晶晶, 葛顺峰, 姜远茂. 2018. 富士苹果萌芽至新梢旺长期肥料氮去向和土壤氮库盈亏. 应用生态学报, 29(3):931-937.
pmid: 29722237 |
|
[20] | Wang Hong, Jin Ji-yun. 2006. Possible effects of iron,magnesium and zinc on the metabolism of reactive oxygen species in plants. Plant Nutrition and Fertilizer Science, 12(5):738-744. (in Chinese) |
汪洪, 金继运. 2006. 铁、镁、锌营养胁迫对植物体内活性氧代谢影响机制. 植物营养与肥料学报, 12(5):738-744. | |
[21] | Wang Jia, Nie Zhao-jun, Fu Hai-chao, Guo Jia-jia, Lu Yu-ming, Qin Xiao-ming, Liu Hong-en, Zhao Peng. 2018. Effects of exogenous Zn2+ on root growth and some key enzymes in nitrogen metabolism in winter wheat seedlings. Journal of Henan Agricultural University, 52(3):307-312. (in Chinese) |
王佳, 聂兆君, 扶海超, 郭佳佳, 路育茗, 秦晓明, 刘红恩, 赵鹏. 2018. 外源Zn2+对冬小麦幼苗根系生长及部分氮代谢关键酶的影响. 河南农业大学学报, 52(3):307-312. | |
[22] | Wang Qiao-yan, Zhao Peng, Liu Hong-en, Fu Hai-chao. 2015. Effects of zinc fertilizer application on yield,nitrogen accumulation and grain protein content of different wheats. Journal of Henan Agricultural University, 49(1):22-26. (in Chinese) |
王巧艳, 赵鹏, 刘红恩, 扶海超. 2015. 施锌对不同筋力型小麦产量、氮素积累量和子粒蛋白质含量的影响. 河南农业大学学报, 49(1):22-26. | |
[23] | Wang Xiao-yun, Cheng Bing-song, Zhang Guo-zhen. 1993. Effects of different zinc levels on ginger nitrogen metabolism. Journal of Shandong Agricultural University, (2):207-210. (in Chinese) |
王晓云, 程炳嵩, 张国珍. 1993 不同锌水平对姜苗氮代谢的影响. 山东农业大学学报, (2):207-210. | |
[24] | Wang Yan-an. 2007. Studies on the transportation and distribution of zinc in apple trees and the effect of zinc deficiency on its physiological characteristics[Ph. D. Dissertation]. Tai’ an: Shandong Agricultural University. (in Chinese) |
王衍安. 2007. 苹果树锌运转分配及缺锌对其生理特性影响的研究[博士论文]. 泰安: 山东农业大学. | |
[25] |
Woodward A W, Bartel B. 2005. Auxin:regulation,action,and interaction[J]. Annals of Botany, 95(5):707-735.
pmid: 15749753 |
[26] | Yan Zhi-gang, Zhang Yuan-zhen, Zhang Yu-hong, Wang Yan-an, Zhang Fu-suo, Shu Huai-rui. 2010. Effects of zinc fertilization on the dynamics accumulation and distribution of dry matter and zinc in apple trees. Plant Nutrition and Fertilizer Science, 16(6):1402-1409. (in Chinese) |
闫志刚, 张元珍, 张玉红, 王衍安, 张福锁, 束怀瑞. 2010. 不同供锌水平对苹果幼树干物质和锌积累及分配的影响. 植物营养与肥料学报, 16(6):1402-1409. | |
[27] | Ye Li-hua, Shi Mu-tian, Zhuo Xu-sheng, Cai Zhi-jun, Lin Zhi-liang, Gu Zhang-gen, Pan Dong-ming. 2007. Effect of zinc level on physiological characters of balsam pear at different growth stages. Chinese Journal of Tropical Crops, 28(1):19-23. (in Chinese) |
叶立华, 施木田, 卓旭升, 蔡之军, 林治良, 顾掌根, 潘东明. 2007. 锌水平对不同生育期苦瓜若干生理特性的影响. 热带作物学报, 28(1):19-23. | |
[28] | Zhang Fu-suo. 1992. Effect of zinc nutrition status on root cell membrane permeability in wheat roots. Acta Phytophysiologica Sinica, 18(1):24-28. (in Chinese) |
张福锁. 1992. 锌营养状况对小麦根细胞膜透性的影响. 植物生理学报, 18(1):24-28. | |
[29] | Zhao Lin, Jiang Yuan-mao, Peng Fu-tian, Li Pan-pan, Wang Lei, Li Hong-bo. 2009. Characteristics of absorption,utilization and distribution of spring soil 15N-urea application for Gala/Malus hupehensis. Plant Nutrition and Fertilizer Science, 15(6):1439-1443. (in Chinese) |
赵林, 姜远茂, 彭福田, 李盼盼, 王磊, 李洪波. 2009. 嘎拉苹果对春施15N-尿素的吸收、利用与分配特性. 植物营养与肥料学报, 15(6):1439-1443. |
[1] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[2] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[3] | 韩晓蕾, 张彩霞, 刘 锴, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘苹优2号’[J]. 园艺学报, 2022, 49(S1): 1-2. |
[4] | 王 强, 丛佩华, 刘肖烽. 晚熟苹果新品种‘华优甜娃’[J]. 园艺学报, 2022, 49(S1): 3-4. |
[5] | 王 强, 丛佩华, 刘肖烽. 中熟苹果新品种‘华优宝蜜’[J]. 园艺学报, 2022, 49(S1): 5-6. |
[6] | 杨 玲, 丛佩华, 王 强, 李武兴, 康立群. 中熟鲜食苹果新品种‘华丰’[J]. 园艺学报, 2022, 49(S1): 7-8. |
[7] | 郭丽娜, 王璐, 郝心愿, 祁蒙, 李晓嫚, 王新超, 曾建明. 茶树根系吸收硒的生理特性研究[J]. 园艺学报, 2022, 49(9): 1967-1976. |
[8] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[9] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[10] | 董桑婕, 葛诗蓓, 李岚, 贺丽群, 范飞军, 齐振宇, 喻景权, 周艳虹. 不同光质补光对辣椒幼苗生长、丛枝菌根共生和磷吸收的影响[J]. 园艺学报, 2022, 49(8): 1699-1712. |
[11] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[12] | 夏炎, 黄松, 武雪莉, 刘一琪, 王苗苗, 宋春晖, 白团辉, 宋尚伟, 庞宏光, 焦健, 郑先波. 基于宏病毒组测序技术的苹果病毒病鉴定与分析[J]. 园艺学报, 2022, 49(7): 1415-1428. |
[13] | 刘照霞, 张鑫, 王璐, 马玉婷, 陈倩, 朱占玲, 葛顺峰, 姜远茂. 肥料穴施位点对苹果细根生长、15N吸收利用及产量品质的影响[J]. 园艺学报, 2022, 49(7): 1545-1556. |
[14] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[15] | 冯琛, 黄学旺, 李兴亮, 周佳, 李天红. 不同苹果矮化砧穗组合的抗旱性比较研究[J]. 园艺学报, 2022, 49(5): 945-957. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司