Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (9): 1916-1928.doi: 10.16420/j.issn.0513-353x.2022-0579
• Reviews • Previous Articles Next Articles
HE Bin1, XU Qinchao2, JI Xiaomei3, WANG Xiaoling4, ZHANG Wendong5, CHENG Yunjiang1, ZENG Yunliu1,*()
Received:
2023-03-07
Revised:
2023-05-06
Online:
2023-09-25
Published:
2023-09-26
Contact:
ZENG Yunliu
HE Bin, XU Qinchao, JI Xiaomei, WANG Xiaoling, ZHANG Wendong, CHENG Yunjiang, ZENG Yunliu. Progress of Application on Controlled Atmosphere Preservation Technology in Kiwifruit Storage and Preservation[J]. Acta Horticulturae Sinica, 2023, 50(9): 1916-1928.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0579
种系 Species | 品种 Cultivar | 温度/℃ Temperature | O2/% | CO2/% | 保鲜效果 Fresh-keeping roles | 参考文献 Reference |
---|---|---|---|---|---|---|
美味 Actinidia deliciosa | 翠香 Cuixiang | 0 ± 0.5 | 2.5 | 4.5 | 延缓果实硬度下降,降低腐烂率与失重率 Delays the decline of fruit softness,and reduces the rate of fruit decay and weight loss | 廖梓懿 等, |
徐香 Xuxiang | 0 ± 1 | 2.0 | 5.0 | 抑制MDA含量上升,保持维生素C含量 Inhibit the increase of MDA content and maintain the level of vitamin C | 康慧芳 等, | |
海沃德 Hayward | 0 | 2.0 | 5.0 | 保持果实硬度 Effectively maintains the fruit firmness | Li et al., | |
哑特 Yate | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制与乙烯合成相关酶活性,减少乙烯生成 Inhibit the activity of enzymes associated with ethylene synthesis to reduce ethylene production | 王静, | |
秦美 Qinmei | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 贮藏期比冷藏长2 ~ 3个月,且风味较好 The CA storage period is 2-3 months longer than that in cold room storage,and the flavor is better | 邢红华 等, | |
中华 A. chinensis Planch | 红阳 Hongyang | 0 ~ 2.0 | 3.0 ~ 5.0 | 3.0 ~ 5.0 | 保持果实品质,延长果实贮藏保鲜时间 Maintain fruit quality and extend fruit storage and preservation time | 邱静 等, |
红阳 Hongyang | 1.0 ± 0.5 | 2.0 | 3.0 | 抑制细胞壁降解酶活性,延缓果实硬度下降 Inhibit the activity of cell wall-degrading enzymes to delay the decrease in fruit firmness | 王亚楠 等, | |
华优 Huayou | 0.5 ± 0.3 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制货架期果实可溶性固形物含量上升 Inhibit the increase of SSC in fruits during the shelf life | 姚天娇, | |
金桃 Jintao | 1.0 ± 0.5 | 5.0 | 3.0 | 可提高果实货架品质 Improves shelf quality of fruits | 张四普 等, | |
软枣 A. arguta | 丰绿 Fenglü | 1.0 ~ 4.0 | / | 5.0 | 抑制果实呼吸,较好保持果实硬度 Inhibit fruit respiration,which helps to maintain fruit firmness | 蔡慧, |
长江一号 Changjiang 1 | 0 ± 0.5 | 17.1 ~ 18.6 | 2.2 ~ 3.1 | 抑制果实软化与腐烂,保持果实品质 Inhibits fruit softening and decay to maintain fruit quality | 颜廷才 等, |
Table 1 Recommended CA parameters for kiwifruit
种系 Species | 品种 Cultivar | 温度/℃ Temperature | O2/% | CO2/% | 保鲜效果 Fresh-keeping roles | 参考文献 Reference |
---|---|---|---|---|---|---|
美味 Actinidia deliciosa | 翠香 Cuixiang | 0 ± 0.5 | 2.5 | 4.5 | 延缓果实硬度下降,降低腐烂率与失重率 Delays the decline of fruit softness,and reduces the rate of fruit decay and weight loss | 廖梓懿 等, |
徐香 Xuxiang | 0 ± 1 | 2.0 | 5.0 | 抑制MDA含量上升,保持维生素C含量 Inhibit the increase of MDA content and maintain the level of vitamin C | 康慧芳 等, | |
海沃德 Hayward | 0 | 2.0 | 5.0 | 保持果实硬度 Effectively maintains the fruit firmness | Li et al., | |
哑特 Yate | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制与乙烯合成相关酶活性,减少乙烯生成 Inhibit the activity of enzymes associated with ethylene synthesis to reduce ethylene production | 王静, | |
秦美 Qinmei | 0 ± 0.5 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 贮藏期比冷藏长2 ~ 3个月,且风味较好 The CA storage period is 2-3 months longer than that in cold room storage,and the flavor is better | 邢红华 等, | |
中华 A. chinensis Planch | 红阳 Hongyang | 0 ~ 2.0 | 3.0 ~ 5.0 | 3.0 ~ 5.0 | 保持果实品质,延长果实贮藏保鲜时间 Maintain fruit quality and extend fruit storage and preservation time | 邱静 等, |
红阳 Hongyang | 1.0 ± 0.5 | 2.0 | 3.0 | 抑制细胞壁降解酶活性,延缓果实硬度下降 Inhibit the activity of cell wall-degrading enzymes to delay the decrease in fruit firmness | 王亚楠 等, | |
华优 Huayou | 0.5 ± 0.3 | 2.5 ~ 3.0 | 4.0 ~ 4.5 | 抑制货架期果实可溶性固形物含量上升 Inhibit the increase of SSC in fruits during the shelf life | 姚天娇, | |
金桃 Jintao | 1.0 ± 0.5 | 5.0 | 3.0 | 可提高果实货架品质 Improves shelf quality of fruits | 张四普 等, | |
软枣 A. arguta | 丰绿 Fenglü | 1.0 ~ 4.0 | / | 5.0 | 抑制果实呼吸,较好保持果实硬度 Inhibit fruit respiration,which helps to maintain fruit firmness | 蔡慧, |
长江一号 Changjiang 1 | 0 ± 0.5 | 17.1 ~ 18.6 | 2.2 ~ 3.1 | 抑制果实软化与腐烂,保持果实品质 Inhibits fruit softening and decay to maintain fruit quality | 颜廷才 等, |
控制类别 Control categories | 处理 Processing | 使用与效果 Usage and effect | 作物种类 Crop species | 参考文献 Reference |
---|---|---|---|---|
清除 Removal | 通风换气 Ventilation | 可以直接清除环境中的乙烯,但需注意处理时间 Can directly remove ethylene from the environment,need to pay attention to the processing time | 苹果 Apple | 胡磊洋 等, |
臭氧 Ozone | 可直接氧化乙烯,延缓果实后熟 Direct oxidation of ethylene to delay fruit ripening | 猕猴桃 Kiwifruit | Minas et al., | |
高锰酸钾 Potassium permanganate | 抑制果实软化,减少果实失重和腐烂 Inhibit fruit softening,reduce fruit weight loss and decay | 蓝莓 Blueberry | Wang et al., | |
紫外辐射 Ultraviolet radiation | 产生氧原子与低浓度臭氧来清除乙烯 UV radiation can produce oxygen atoms with low concentrations of ozone to remove ethylene | 苹果 Apple | Jozwiak et al., | |
光催化氧化 Photocatalytic oxidation | 使用二氧化钛作为催化剂实现对乙烯的氧化去除 The oxidative removal of ethylene is achieved using materials such as titanium dioxide as a catalyst | 番茄 Tomato | Kaewklin et al., | |
含铂二氧化硅 Pt-Loaded Silica | 可有效分解乙烯 Can effectively decompose ethylene | 香蕉、鳄梨 Banana,Avocado | Na et al., | |
活性碳—TiO2复合材料 Biocarbon-TiO2 nanocomposites | 通过吸附和光催化可加强对乙烯的去除 Adsorption and photocatalysis can enhance the removal of ethylene | / | Regadera-Macías et al., | |
真空紫外光解 Vacuum ultraviolet photolysis | 减少贮藏环境中乙烯含量,保持果实品质 Reduce ethylene content in storage environment and maintain fruit quality | 苹果、猕猴桃 Apple,Kiwifruit | Pathak et al., | |
高温催化氧化 High temperature catalytic oxidation | 使用铂、铜等作为催化剂进行催化燃烧,可以有效去除乙烯 The catalytic combustion of ethylene using platinum and copper as catalysts can be effective in removing ethylene | / | Wojciechowski, | |
钯-ZSM-5 Palladium-ZSM-5 | 可将乙烯氧化成二氧化碳 Can oxidize ethylene to carbon dioxide | 猕猴桃 Kiwifruit | Mok et al., | |
活性炭负载氯化钯、硫酸铜Activated carbon supported PdCl2-CuSO4 | 延缓黄化,有效保持西兰花品质 Delay yellowing and effectively maintain broccoli quality | 西兰花 Broccoli | Cao et al., | |
减少产生 Reduced generation | 降温 Lower temperature | 抑制与乙烯合成相关基因的表达,减少乙烯产生 Inhibit the expression of gene related to ethylene synthesis and reduce ethylene production | 猕猴桃 Kiwifruit | Afshar-Mohammadian et al., |
降温 Lower temperature | 抑制果实呼吸速率,减少乙烯产生 Inhibit fruit respiration rate and reduce ethylene production | 杏 Apricot | Fan et al., | |
1H-环丙基苯 1H-cyclopropabenzene | 抑制乙烯产生,有效保持果实品质 Inhibit ethylene production and effectively maintain fruit quality | 李 Plum | Kyaw et al., | |
(S)-氨基乙氧基乙烯基甘氨酸(AVG) Aminoethoxyvinylglycine | 抑制乙烯合成限速酶—ACC合酶的活性,减少乙烯的生物合成 Inhibits the activity of ACC synthase to reduce ethylene biosynthesis | 玫瑰 Rose | Ha et al., | |
褪黑激素 Melatonin | 通过下调乙烯生物合成基因抑制乙烯产生 Inhibit ethylene production by down-regulating ethylene biosynthetic genes | 苹果 Apple | Onik et al., | |
削弱影响 Weakening impact | 1-甲基环丙烯(1-MCP) 1-Methylcyclopropene | 通过与乙烯受体永久性结合,抑制乙烯对果实的影响 1-MCP can dull fruit perception of ethylene signals by permanently binding to ethylene receptors | 香蕉 Banana | Chang & Brecht, |
1-甲基环丙烯 1-Methylcyclopropene | 保持果实品质,延缓呼吸和乙烯释放 Maintain fruit quality by delaying respiration and ethylene release | 桃 Peach | Zhang et al., | |
1-甲基环丙烯 1-Methylcyclopropene | 削弱了乙烯的影响,并有效抑制了乙烯的产生 Weakened the influence of ethylene and effectively inhibited the production of ethylene | 蓝莓 Blueberry | Xu et al., | |
1-MCP联合高锰酸钾 1-MCP combined with potassium permanganate | 显著抑制乙烯产生,减少了采后病害的发生 Significantly inhibit ethylene production,reducing the occurrence of postharvest disease | 梨 Pear | Wang et al., | |
重氮环戊二烯(DACP) Diazocyclopentadiene | 在光照下能永久与乙烯受体结合,使乙烯受体失效 Under light,DACP can permanently binds to the ethylene receptor,thus disabling most ethylene receptors | 苹果 Apple | Sisler & Blankenship, |
Table 2 Ethylene concentration control and its effect in CA storage
控制类别 Control categories | 处理 Processing | 使用与效果 Usage and effect | 作物种类 Crop species | 参考文献 Reference |
---|---|---|---|---|
清除 Removal | 通风换气 Ventilation | 可以直接清除环境中的乙烯,但需注意处理时间 Can directly remove ethylene from the environment,need to pay attention to the processing time | 苹果 Apple | 胡磊洋 等, |
臭氧 Ozone | 可直接氧化乙烯,延缓果实后熟 Direct oxidation of ethylene to delay fruit ripening | 猕猴桃 Kiwifruit | Minas et al., | |
高锰酸钾 Potassium permanganate | 抑制果实软化,减少果实失重和腐烂 Inhibit fruit softening,reduce fruit weight loss and decay | 蓝莓 Blueberry | Wang et al., | |
紫外辐射 Ultraviolet radiation | 产生氧原子与低浓度臭氧来清除乙烯 UV radiation can produce oxygen atoms with low concentrations of ozone to remove ethylene | 苹果 Apple | Jozwiak et al., | |
光催化氧化 Photocatalytic oxidation | 使用二氧化钛作为催化剂实现对乙烯的氧化去除 The oxidative removal of ethylene is achieved using materials such as titanium dioxide as a catalyst | 番茄 Tomato | Kaewklin et al., | |
含铂二氧化硅 Pt-Loaded Silica | 可有效分解乙烯 Can effectively decompose ethylene | 香蕉、鳄梨 Banana,Avocado | Na et al., | |
活性碳—TiO2复合材料 Biocarbon-TiO2 nanocomposites | 通过吸附和光催化可加强对乙烯的去除 Adsorption and photocatalysis can enhance the removal of ethylene | / | Regadera-Macías et al., | |
真空紫外光解 Vacuum ultraviolet photolysis | 减少贮藏环境中乙烯含量,保持果实品质 Reduce ethylene content in storage environment and maintain fruit quality | 苹果、猕猴桃 Apple,Kiwifruit | Pathak et al., | |
高温催化氧化 High temperature catalytic oxidation | 使用铂、铜等作为催化剂进行催化燃烧,可以有效去除乙烯 The catalytic combustion of ethylene using platinum and copper as catalysts can be effective in removing ethylene | / | Wojciechowski, | |
钯-ZSM-5 Palladium-ZSM-5 | 可将乙烯氧化成二氧化碳 Can oxidize ethylene to carbon dioxide | 猕猴桃 Kiwifruit | Mok et al., | |
活性炭负载氯化钯、硫酸铜Activated carbon supported PdCl2-CuSO4 | 延缓黄化,有效保持西兰花品质 Delay yellowing and effectively maintain broccoli quality | 西兰花 Broccoli | Cao et al., | |
减少产生 Reduced generation | 降温 Lower temperature | 抑制与乙烯合成相关基因的表达,减少乙烯产生 Inhibit the expression of gene related to ethylene synthesis and reduce ethylene production | 猕猴桃 Kiwifruit | Afshar-Mohammadian et al., |
降温 Lower temperature | 抑制果实呼吸速率,减少乙烯产生 Inhibit fruit respiration rate and reduce ethylene production | 杏 Apricot | Fan et al., | |
1H-环丙基苯 1H-cyclopropabenzene | 抑制乙烯产生,有效保持果实品质 Inhibit ethylene production and effectively maintain fruit quality | 李 Plum | Kyaw et al., | |
(S)-氨基乙氧基乙烯基甘氨酸(AVG) Aminoethoxyvinylglycine | 抑制乙烯合成限速酶—ACC合酶的活性,减少乙烯的生物合成 Inhibits the activity of ACC synthase to reduce ethylene biosynthesis | 玫瑰 Rose | Ha et al., | |
褪黑激素 Melatonin | 通过下调乙烯生物合成基因抑制乙烯产生 Inhibit ethylene production by down-regulating ethylene biosynthetic genes | 苹果 Apple | Onik et al., | |
削弱影响 Weakening impact | 1-甲基环丙烯(1-MCP) 1-Methylcyclopropene | 通过与乙烯受体永久性结合,抑制乙烯对果实的影响 1-MCP can dull fruit perception of ethylene signals by permanently binding to ethylene receptors | 香蕉 Banana | Chang & Brecht, |
1-甲基环丙烯 1-Methylcyclopropene | 保持果实品质,延缓呼吸和乙烯释放 Maintain fruit quality by delaying respiration and ethylene release | 桃 Peach | Zhang et al., | |
1-甲基环丙烯 1-Methylcyclopropene | 削弱了乙烯的影响,并有效抑制了乙烯的产生 Weakened the influence of ethylene and effectively inhibited the production of ethylene | 蓝莓 Blueberry | Xu et al., | |
1-MCP联合高锰酸钾 1-MCP combined with potassium permanganate | 显著抑制乙烯产生,减少了采后病害的发生 Significantly inhibit ethylene production,reducing the occurrence of postharvest disease | 梨 Pear | Wang et al., | |
重氮环戊二烯(DACP) Diazocyclopentadiene | 在光照下能永久与乙烯受体结合,使乙烯受体失效 Under light,DACP can permanently binds to the ethylene receptor,thus disabling most ethylene receptors | 苹果 Apple | Sisler & Blankenship, |
[1] |
doi: 10.1007/s00003-018-1205-6 |
[2] |
doi: 10.1016/j.hpj.2020.12.006 URL |
[3] |
|
[4] |
doi: 10.1016/S0925-5214(02)00040-6 URL |
[5] |
|
[6] |
doi: 10.1186/s12870-017-1213-1 URL |
[7] |
doi: 10.2503/hortj.OKD-028 URL |
[8] |
|
白俊青, 李锐, 罗安伟, 寇莉萍, 方沂蒙. 2018. 猕猴桃贮藏保鲜技术研究进展. 食品研究与开发, 39 (17):219-224.
|
|
[9] |
doi: 10.1016/S0925-5214(98)00092-1 URL |
[10] |
|
[11] |
doi: 10.1016/j.foodres.2020.109900 URL |
[12] |
pmid: 14280001 |
[13] |
|
蔡慧. 2012. 不同处理对软枣猕猴桃采后生理生化变化的影响[硕士论文]. 长春: 吉林农业大学.
|
|
[14] |
doi: 10.1016/j.postharvbio.2014.07.017 URL |
[15] |
doi: 10.1016/j.scienta.2022.111636 URL |
[16] |
doi: 10.1016/j.lwt.2015.08.075 URL |
[17] |
|
[18] |
|
[19] |
doi: 10.16420/j.issn.0513-353x.2020-0261 URL |
杜艳民, 王文辉, 贾晓辉, 王志华, 佟伟, 张鑫楠. 2021. 前期低氧处理对梨虎皮病的防控及乙烯释放的影响. 园艺学报, 48 (1):15-25.
doi: 10.16420/j.issn.0513-353x.2020-0261 URL |
|
[20] |
|
段眉会, 朱建斌. 2013. 猕猴桃贮藏保鲜实用技术(三)——塑料大帐人工气调贮藏. 果树实用技术与信息,(9):40-43.
|
|
[21] |
doi: 10.1016/j.scienta.2017.12.015 URL |
[22] |
doi: 10.16420/j.issn.0513-353x.2019-0886 URL |
高萌, 屈魏, 冉昪, 饶景萍. 2020. ‘徐香’与‘海沃德’猕猴桃冷藏期间组织结构与生理变化差异. 园艺学报, 47 (7):1289-1300.
doi: 10.16420/j.issn.0513-353x.2019-0886 URL |
|
[23] |
|
高书亚, 王贞丽, 吴帅帅, 闫平, 赵玉霞. 2013. 气调包装对鲜切猕猴桃和木瓜贮藏品质的影响. 包装工程, 34 (11):39-42.
|
|
[24] |
doi: 10.1080/01140671.2022.2044357 URL |
[25] |
doi: 10.1016/0304-4238(89)90141-6 URL |
[26] |
|
[27] |
|
胡磊洋, 南晓红, 洪妮. 2018. 苹果冷藏库通风换气影响因素研究. 建筑热能通风空调, 37 (1):79-81,63.
|
|
[28] |
|
黄琦. 2019. 高O2气调包装对美味猕猴桃‘布鲁诺’果实采后品质劣变的调控作用的影响[硕士论文]. 杭州: 浙江工商大学.
|
|
[29] |
|
黄永红, 王江勇, 徐玉芳, 杨娟侠. 2006. FACA柔性气调库中CO2浓度对猕猴桃果实品质及耐藏性的影响. 落叶果树,(5):37-39.
|
|
[30] |
doi: 10.1016/j.postharvbio.2015.11.002 URL |
[31] |
|
[32] |
|
[33] |
|
[34] |
doi: S0141-8130(17)34754-2 pmid: 29410369 |
[35] |
|
康慧芳, 乔勇进, 刘晨霞, 张怡, 陈冰洁. 2020. 气调贮藏对‘徐香’猕猴桃采后保鲜效果影响. 食品工业科技, 41 (2):279-282,287.
|
|
[36] |
doi: 10.1016/j.postharvbio.2021.111625 URL |
[37] |
doi: 10.21273/HORTTECH.15.2.0253 URL |
[38] |
|
[39] |
|
雷玉山, 刘运松, 杨晓宇. 2005. 猕猴桃大帐气调贮藏保鲜技术研究. 陕西农业科学,(3):46-48.
|
|
[40] |
doi: 10.1016/j.scienta.2017.05.013 URL |
[41] |
doi: 10.1111/jfpp.12303 URL |
[42] |
doi: 10.16420/j.issn.0513-353x.2016-0718 URL |
李桦, 梁春强, 吕茳, 胡苗, 李佳颖, 饶景萍. 2017. 草酸对冷藏‘华优’猕猴桃果实木质化及相关酶活性的影响. 园艺学报, 44 (6):1085-1093.
doi: 10.16420/j.issn.0513-353x.2016-0718 URL |
|
[43] |
|
李黎, 潘慧, 邓蕾, 赵婷婷, 陈美艳, 钟彩虹. 2019. 猕猴桃果实腐烂病最佳防治药剂的室内筛选. 中国南方果树, 48 (4):83-86.
|
|
[44] |
|
李民. 1996. 猕猴桃低乙烯气调库及其使用. 河南科技,(10):6-7.
|
|
[45] |
|
廖梓懿. 2021. ‘翠香’猕猴桃大帐动态气调保鲜技术研究[硕士论文]. 杨凌: 西北农林科技大学.
|
|
[46] |
|
廖梓懿, 周会玲, 姚宗祥, 王新茹, 马慧. 2021. 动态气调对‘翠香’猕猴桃贮藏效果的影响. 保鲜与加工, 21 (12):31-37.
|
|
[47] |
|
刘新美, 孙璐. 2020. 我国气调贮藏技术在果蔬上的应用现状及展望. 中国果菜, 40 (9):10-13.
|
|
[48] |
|
罗白玲, 马丽娜, 韩璐, 王婷婷, 刘敦华. 2021. 基于细胞壁特性改变的猕猴桃果实软化机制研究. 食品科技, 46 (11):42-48.
|
|
[49] |
|
罗政, 袁兆飞, 陈飞平, 王玲, 戚英伟, 叶明强, 陈于陇. 2021. 不同气调包装袋对红心猕猴桃后熟品质的影响. 食品安全质量检测学报, 12 (11):4506-4512.
|
|
[50] |
|
[51] |
doi: 10.1016/0304-4238(82)90003-6 URL |
[52] |
doi: 10.1186/s12870-017-1213-1 URL |
[53] |
doi: 10.3389/fpls.2019.00888 URL |
[54] |
doi: 10.1016/j.cattod.2019.02.059 |
[55] |
doi: S0308-8146(18)30142-0 pmid: 29502844 |
[56] |
|
[57] |
doi: 10.21273/HORTSCI14771-19 URL |
[58] |
doi: 10.1016/j.foodchem.2020.127753 URL |
[59] |
doi: 10.1016/j.scienta.2019.03.034 URL |
[60] |
|
潘林娜, 陈长忠. 1995. 温度、湿度和不同处理对猕猴桃贮藏性能的影响. 中国果菜,(3):12-14.
|
|
[61] |
doi: 10.1016/j.biosystemseng.2017.04.008 URL |
[62] |
doi: 10.3390/agronomy10060822 URL |
[63] |
|
邱静, 邹礼根, 陈飞东, 姜慧燕, 李锋, 王琴. 2019. 数字化控制气调保鲜对红阳猕猴桃品质的影响. 浙江农业科学, 60 (11):2080-2083.
|
|
[64] |
|
[65] |
|
沈云亭. 2004. 猕猴桃低乙烯气调贮藏与保鲜. 河南农业,(2):34-35.
|
|
[66] |
doi: 10.1007/BF00144593 URL |
[67] |
|
孙强. 2019. ‘海沃德’猕猴桃货架期相关问题研究[硕士论文]. 西安: 陕西师范大学.
|
|
[68] |
|
[69] |
doi: 10.1002/jsfa.v101.6 URL |
[70] |
|
王贵禧, 于梁. 1993. 秦美猕猴桃在5% O2和不同CO2浓度下气调贮藏的研究. 园艺学报, 20 (4):401-402.
|
|
[71] |
|
王贵禧, 宗亦臣, 梁丽松, 成晓霞. 1998. 猕猴桃大帐气调贮藏保鲜的理论与技术. 林业科学,(2):33-38. (in Chinese)
|
|
[72] |
|
王国立, 吴素芳, 谭永元, 黄亚欣, 李秋萍, 王晓醒, 刘艺, 董晓庆. 2022. 二氧化氯对“贵长”猕猴桃采后贮藏品质的影响. 贵州农业科学, 50 (1):69-76.
|
|
[73] |
|
王静. 2015. 气调贮藏对美味猕猴桃品质及乙烯合成的影响[硕士论文]. 西安: 陕西师范大学.
|
|
[74] |
|
王兰菊, 杨德兴, 胡莎, 邢红花, 宋尚伟. 1998. 猕猴桃低乙烯气调库的性能和贮藏效果. 农业工程学报,(1):223-226.
|
|
[75] |
doi: S0308-8146(17)31805-8 pmid: 29291851 |
[76] |
|
王香兰, 朱贤东, 郑志华, 薛洁, 李欢, 祝庆刚, 饶景萍. 2021. 温度和PE袋包装对皖金猕猴桃果实采后品质变化的影响. 果树学报, 38 (4):580-591.
|
|
[77] |
|
王亚楠. 2014. 气调贮藏对红阳猕猴桃和桑葚采后保鲜效果及其生理机制的研究[硕士论文]. 南京: 南京农业大学.
|
|
[78] |
|
王亚楠, 胡花丽, 张璇, 古荣鑫, 李鹏霞. 2013. 气调贮藏对‘红阳’猕猴桃果胶含量及相关酶活的影响. 食品与发酵工业, 39 (8):207-211.
|
|
[79] |
doi: 10.1016/j.foodchem.2019.125017 URL |
[80] |
doi: 10.1080/10408398.2017.1375892 pmid: 28891686 |
[81] |
|
[82] |
|
肖妍. 2020. 调控‘徐香’猕猴桃货架期的研究[硕士论文]. 西安: 陕西师范大学.
|
|
[83] |
|
邢红华, 王兰菊, 胡莎, 王艳琴, 杨德兴. 1998. 低乙烯气调贮藏对“秦美”猕猴桃的品质和货架期的影响. 河南科学,(4):105-109.
|
|
[84] |
|
[85] |
|
[86] |
|
杨德兴, 杜玉宽,
|
|
[87] |
doi: 10.1111/jfds.1972.37.issue-2 URL |
颜廷才, 刘振通, 李江阔, 孙晓荣, 张鹏. 2016. 箱式气调结合1-MCP对软枣猕猴桃冷藏期品质及风味物质的影响. 食品科学, 37 (20):253-260
doi: 10.7506/spkx1002-6630-201620043 |
|
[88] |
|
姚天娇. 2015. 中华猕猴桃品种‘华优’和‘红阳’的气调贮藏及‘华优’果肉黄化问题的研究[硕士论文]. 西安: 陕西师范大学.
|
|
[89] |
doi: 10.1016/j.postharvbio.2008.09.016 URL |
[90] |
|
余亚英, 袁唯. 2007. 食品货架期概述及其预测. 中国食品添加剂,(5):77-79,76.
|
|
[91] |
|
曾云流. 2021. 猕猴桃贮藏保鲜技术规范. 果农之友,(1):38-39.
|
|
[92] |
|
张四普, 王欣锐, 崔巍, 张柯, 胡青霞, 鲁云风, 苗建银, 刘成, 牛佳佳. 2022. 气调贮藏对金桃猕猴桃货架品质的影响. 河南农业科学, 51 (12):162-171.
|
|
[93] |
|
[94] |
doi: 10.1016/j.postharvbio.2021.111737 URL |
[95] |
doi: 10.1016/j.hpj.2021.07.003 URL |
[1] | QI Yongjie , GAO Zhenghui , MA Na , GAO Xia , KE Fanjun , and XU Yiliu, . A New High-quality Drought-resistant Kiwifruit Cultivar‘Jinshan 1’ [J]. Acta Horticulturae Sinica, 2023, 50(S1): 29-30. |
[2] | DING Jie, LIU Chunyan, HUANG Peng, LI Hongying, CHEN Liwei, PU Xiaoyan, LIU Yaowen, QIN Wen. Recent Advances in Postharvest Technologies to Extend the Shelf Life of Blueberries [J]. Acta Horticulturae Sinica, 2023, 50(9): 1944-1958. |
[3] | JIA Bing, WANG Kecan, YE Zhenfeng, WANG Moucai, LIU Li, ZHU Liwu. A New Kiwifruit Cultivar‘Wanhuang’ [J]. Acta Horticulturae Sinica, 2023, 50(8): 1803-1804. |
[4] | DENG Chengfeng, LI Suping, ZHANG Ruixuan, HAN Leng, LI Yong. Control Effect of Lysobacter enzymogenes LE16 on Rot Disease in Post-harvest Citrus Fruit Caused by Penicillium digitatum and P. italicum [J]. Acta Horticulturae Sinica, 2023, 50(7): 1574-1586. |
[5] | ZHOU Cheng, FANG Yi, ZHOU Jinyang, HUANG Qihao, PAN Yongjian, SHI Qianqian, NI Huixian, YANG Zhenfeng, SONG Chunbo. The Relationship Between Membrane Lipid Metabolism and Chilling Injury of Postharvest Peach Fruit Induced by Low Temperature [J]. Acta Horticulturae Sinica, 2023, 50(6): 1305-1317. |
[6] | LIU Nanxiang, ZHANG Huiqin, XIE Ming, XU Xianghua, FAN Fangjuan. A New Kiwifruit Cultivar‘Jinli’ [J]. Acta Horticulturae Sinica, 2023, 50(6): 1377-1378. |
[7] | ZOU Yunqian, LUO Qujuan, ZHANG Jin, XU Rangwei, CHENG Yunjiang. Coating Containing Shellac,Rosin Significantly Improves Commercial Value of Satsuma Mandarins and Lane Late Navel Orange During Shelf Life [J]. Acta Horticulturae Sinica, 2023, 50(4): 853-863. |
[8] | MAO Kexin, AN Miao, WANG Hairong, WANG Shijin, LÜ Wei, GUO Yingtian, LI Jian, LI Guotian. Identification and Low Temperature Expression Analysis of MYB Transcription Factor Family in Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(3): 534-548. |
[9] | HE Yafang, BAO Huifang, WANG Ning, ZHAN Faqiang, ZHANG Xuejun, SHI Yingwu, YANG Rong, HOU Xinqiang, and LONG Xuanqi, . Screening of Antagonistic Bacteria Against Fusarium spp. Causing Melon Fruit Rot and the Antagonistic Properties [J]. Acta Horticulturae Sinica, 2023, 50(10): 2257-2270. |
[10] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[11] | DU Yuling, YANG Fan, ZHAO Juan, LIU Shuqi, LONG Chaoan. Antifungal Mechanisms of Sodium New Houttuyfonate Against Penicillium digitatum [J]. Acta Horticulturae Sinica, 2023, 50(1): 145-152. |
[12] | SONG Fang, CHEN Qi, YUAN Yanliang, CHEN Sha, YIN Haijun, and JIANG Yingchun, . A New Yellow-fleshed Kiwifruit Cultivar‘Xianwo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 47-48. |
[13] | QI Yongjie, GAO Zhenghui, MA Na, WANG Qingming, KE Fanjun, CHEN Qian, and XU Yiliu, . A New Yellow Flesh and Resistant to Canker Disease Kiwifruit Cultivar ‘Wannong Jinguo’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 49-50. |
[14] | ZHANG Huiqin, LOU Guorong, LU Linghong, GU Xianbin, SONG Genhua, and XIE Ming. A New Yellow-fleshed Kiwifruit Cultivar‘Jinyi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 51-52. |
[15] | XUE Weiwen, ZHOU Xianfang, ZHANG Zhaoqi, FANG Fang. Advances in Lignin Accumulation and Its Regulation on the Quality of Postharvest Fruit and Vegetables [J]. Acta Horticulturae Sinica, 2022, 49(9): 2023-2036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd