Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (10): 2358-2370.doi: 10.16420/j.issn.0513-353x.2023-0655
• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles Next Articles
CHEN Xin1, WU Xiaolong1, LIU Shengrui2, HU Xianchun1,*(), LIU Chunyan1,2,*(
)
Received:
2024-04-28
Revised:
2024-07-16
Online:
2024-10-25
Published:
2024-10-21
Contact:
HU Xianchun, LIU Chunyan
CHEN Xin, WU Xiaolong, LIU Shengrui, HU Xianchun, LIU Chunyan. Effects of AMF on Photosynthetic Characteristics and Gene Expressions of Tea Plants Under Drought Stress[J]. Acta Horticulturae Sinica, 2024, 51(10): 2358-2370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2023-0655
基因 Gene | 名称 Name | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|---|
β-actin | 肌动蛋白Actin | GGCGGATCAAGTGTTGGAAGGGAG | ACGCTTGGGATTGTATTCGGCATTA |
CsCHLM | Mg-原卟啉Ⅸ甲基转移酶Magnesium protoporphyrin Ⅸ methyltransferase | CTCTATTGCCTCATTCCTC | ATTTAGTGTTTGGGTTGGT |
CsCHLE | Mg-原卟啉Ⅸ单甲基酯环化酶Magnesium protoporphyrin Ⅸ monomethyl ester cyclase | CAATGACTGGAAGGCTAA | ATTCTTTGGTGTTGAGGC |
CsHEMA1 | 谷氨酸-tRNA还原酶 Glutamyl-tRNA reductase | ATTCGTTGCGAGATTGTT | GCTGCTCCTTTCCTTTGT |
CsHEMC | 胆色素原脱氨酶 Porphobilinogen deaminase | TGACCGCCATTCTTTCTA | GCTAATCTTGTTTCCTCGT |
CsHEMD | 尿卟啉原Ⅲ合成酶 Uroporphyrinogen Ⅲ synthase | TGTCTGGGCTGTCTTCGA | CAAATCAGGCAACCGTGT |
CsHEME | 尿卟啉原Ⅲ脱羧酶 Uroporphyrinogen Ⅲ decarboxylase | ACATTCGCTTCTGTTCCC | TTTCTACTTCCAGCCCTC |
CsHEMG | 原卟啉原氧化酶Menaquinone dependent protoporphyrinogen oxidase | TCTGTGGAAGAAACGGAACT | CCGCAACGAAAGGGTCAA |
CsPPOX | 原卟啉Ⅳ原氧化酶 Protoporphyrinogen Ⅳ oxidase | GAAGCAGTTGACCGTGAC | AAAGCCCTCTGAACCCAC |
CsRbcL | 核酮糖-1,5-二磷酸羧化/加氧酶大亚基Ribulose- 1,5-bisphosphate carboxylase/ oxygenase large subunit | TGGCTGGAGATGGGACGA | CCTCTGGTAATCAGAACAGGGTT |
CsTK | 转酮醇酶 Transketolase | TGCCCAATGTTTTGATGCTACG | ATCCACCCTTTTCCACTCCCTC |
CsFBPase | 果糖-1,6-二磷酸酶 Furetose-1,6-bisphosphate phosphatase | GCAGATTGCTTCGTTGGTTC | TGCTATTATCCCTGTCCTCCC |
CsPRK | 核酮糖-5-磷酸激酶 Ribulose 5-phosphate kinase | AGTATTGGAGCCCGAAAGCC | CAAACAGGTAAACTGGGGTGAA |
Table 1 Quantitative RT-PCR primer sequence
基因 Gene | 名称 Name | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|---|
β-actin | 肌动蛋白Actin | GGCGGATCAAGTGTTGGAAGGGAG | ACGCTTGGGATTGTATTCGGCATTA |
CsCHLM | Mg-原卟啉Ⅸ甲基转移酶Magnesium protoporphyrin Ⅸ methyltransferase | CTCTATTGCCTCATTCCTC | ATTTAGTGTTTGGGTTGGT |
CsCHLE | Mg-原卟啉Ⅸ单甲基酯环化酶Magnesium protoporphyrin Ⅸ monomethyl ester cyclase | CAATGACTGGAAGGCTAA | ATTCTTTGGTGTTGAGGC |
CsHEMA1 | 谷氨酸-tRNA还原酶 Glutamyl-tRNA reductase | ATTCGTTGCGAGATTGTT | GCTGCTCCTTTCCTTTGT |
CsHEMC | 胆色素原脱氨酶 Porphobilinogen deaminase | TGACCGCCATTCTTTCTA | GCTAATCTTGTTTCCTCGT |
CsHEMD | 尿卟啉原Ⅲ合成酶 Uroporphyrinogen Ⅲ synthase | TGTCTGGGCTGTCTTCGA | CAAATCAGGCAACCGTGT |
CsHEME | 尿卟啉原Ⅲ脱羧酶 Uroporphyrinogen Ⅲ decarboxylase | ACATTCGCTTCTGTTCCC | TTTCTACTTCCAGCCCTC |
CsHEMG | 原卟啉原氧化酶Menaquinone dependent protoporphyrinogen oxidase | TCTGTGGAAGAAACGGAACT | CCGCAACGAAAGGGTCAA |
CsPPOX | 原卟啉Ⅳ原氧化酶 Protoporphyrinogen Ⅳ oxidase | GAAGCAGTTGACCGTGAC | AAAGCCCTCTGAACCCAC |
CsRbcL | 核酮糖-1,5-二磷酸羧化/加氧酶大亚基Ribulose- 1,5-bisphosphate carboxylase/ oxygenase large subunit | TGGCTGGAGATGGGACGA | CCTCTGGTAATCAGAACAGGGTT |
CsTK | 转酮醇酶 Transketolase | TGCCCAATGTTTTGATGCTACG | ATCCACCCTTTTCCACTCCCTC |
CsFBPase | 果糖-1,6-二磷酸酶 Furetose-1,6-bisphosphate phosphatase | GCAGATTGCTTCGTTGGTTC | TGCTATTATCCCTGTCCTCCC |
CsPRK | 核酮糖-5-磷酸激酶 Ribulose 5-phosphate kinase | AGTATTGGAGCCCGAAAGCC | CAAACAGGTAAACTGGGGTGAA |
Fig. 2 Effects of AMF on mycorrhizal colonization and soil hyphae length of tea seedlings under well-watered and drought stress The data in the graph are mean ± SD(n = 6). Different lowercase letters indicate significant differences (P < 0.05)between different treatments.
处理 Treatment | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 叶绿素总含量 Total chlorophyll | 叶绿素a/b Ratio of chlorophyll a/b |
---|---|---|---|---|
正常供水(对照)Well-watered(Control) | 1.61 ± 0.07 c | 0.65 ± 0.02 a | 2.26 ± 0.10 c | 2.48 ± 0.10 c |
正常供水 + AMF Well-watered + AMF | 1.85 ± 0.08 ab | 0.68 ± 0.10 a | 2.53 ± 0.17 a | 2.72 ± 0.12 b |
干旱胁迫 Drought stress | 1.78 ± 0.03 b | 0.46 ± 0.04 c | 2.24 ± 0.04 c | 3.87 ± 0.29 a |
干旱胁迫 + AMF Drought stress + AMF | 1.90 ± 0.07 a | 0.55 ± 0.01 b | 2.45 ± 0.08 b | 3.45 ± 0.33 a |
Table 2 Effects of AMF on chlorophyll content of tea seedlings under well-watered and drought stress mg · g-1
处理 Treatment | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 叶绿素总含量 Total chlorophyll | 叶绿素a/b Ratio of chlorophyll a/b |
---|---|---|---|---|
正常供水(对照)Well-watered(Control) | 1.61 ± 0.07 c | 0.65 ± 0.02 a | 2.26 ± 0.10 c | 2.48 ± 0.10 c |
正常供水 + AMF Well-watered + AMF | 1.85 ± 0.08 ab | 0.68 ± 0.10 a | 2.53 ± 0.17 a | 2.72 ± 0.12 b |
干旱胁迫 Drought stress | 1.78 ± 0.03 b | 0.46 ± 0.04 c | 2.24 ± 0.04 c | 3.87 ± 0.29 a |
干旱胁迫 + AMF Drought stress + AMF | 1.90 ± 0.07 a | 0.55 ± 0.01 b | 2.45 ± 0.08 b | 3.45 ± 0.33 a |
Fig. 4 Effects of AMF on photosynthetic parameters of tea seedlings under well-watered and drought stress The data in the graph are mean ± SD(n = 6). Different lowercase letters indicate significant differences(P < 0.05)among different treatments.
处理 Treatment | 气孔密度/(个 · m-2) Stomatal density | 气孔横径/mm Stomatal vertical diameter | 气孔纵径/mm Stomatal horizontal diameter | 气孔开度/mm2 Stomatal aperture |
---|---|---|---|---|
正常供水(对照)Well-watered | 2.33 ± 0.21 a | 0.175 ± 0.017 a | 0.233 ± 0.015 a | 0.032 ± 0.004 a |
正常供水 + AMF Well watered + AMF | 1.43 ± 0.12 c | 0.184 ± 0.013 a | 0.227 ± 0.014 ab | 0.033 ± 0.004 a |
干旱胁迫Drought stress | 2.54 ± 0.19 a | 0.147 ± 0.008 b | 0.215 ± 0.010 b | 0.025 ± 0.002 b |
干旱胁迫 + AMF Drought stress + AMF | 1.83 ± 0.19 b | 0.172 ± 0.012 a | 0.231 ± 0.009 a | 0.031 ± 0.003 a |
Table 3 Effects of AMF on stomatal aperture of tea seedlings under well-watered and drought stress
处理 Treatment | 气孔密度/(个 · m-2) Stomatal density | 气孔横径/mm Stomatal vertical diameter | 气孔纵径/mm Stomatal horizontal diameter | 气孔开度/mm2 Stomatal aperture |
---|---|---|---|---|
正常供水(对照)Well-watered | 2.33 ± 0.21 a | 0.175 ± 0.017 a | 0.233 ± 0.015 a | 0.032 ± 0.004 a |
正常供水 + AMF Well watered + AMF | 1.43 ± 0.12 c | 0.184 ± 0.013 a | 0.227 ± 0.014 ab | 0.033 ± 0.004 a |
干旱胁迫Drought stress | 2.54 ± 0.19 a | 0.147 ± 0.008 b | 0.215 ± 0.010 b | 0.025 ± 0.002 b |
干旱胁迫 + AMF Drought stress + AMF | 1.83 ± 0.19 b | 0.172 ± 0.012 a | 0.231 ± 0.009 a | 0.031 ± 0.003 a |
Fig. 6 Effects of AMF on gene expressions of key enzymes of photosynthetic carbon assimilation in tea seedlings under well-watered and drought stress The data in the graph are mean ± SD(n = 6). Different lowercase letters indicate significant differences(P < 0.05) among different treatments.
Fig. 7 Effects of AMF on gene expressions of chlorophyll synthesis-related enzymes in tea seedlings under well-watered and drought stress The data in the graph are mean ± SD(n = 6). Different lowercase letters indicate significant differences (P < 0.05)among different treatments.
[1] |
doi: 10.1038/s41598-021-94092-w pmid: 34290277 |
[2] |
|
补春兰, 晏梅静, 董廷发, 刘刚, 黄盖群, 胥晓. 2022. 接种丛枝菌根真菌(AMF)对不同性别合栽模式下桑树生物量、光合及侵染率的影响. 植物生理学报, 58 (11):2181-2190.
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
储薇, 郭信来, 张晨, 周柳婷, 吴则焰, 林文雄. 2022. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望. 中国生态农业学报, 30 (11):1709-1721.
|
|
[7] |
|
[8] |
doi: 10.16420/j.issn.0513-353x.2021-0604 |
董桑婕, 葛诗蓓, 李岚, 贺丽群, 范飞军, 齐振宇, 喻景权, 周艳虹. 2022. 不同光质补光对辣椒幼苗生长、丛枝菌根共生和磷吸收的影响. 园艺学报, 49 (8):1699-1712.
doi: 10.16420/j.issn.0513-353x.2021-0604 |
|
[9] |
|
方必君, 卓定龙, 刘晓洲, 邓演文, 曾凤. 2023. 干旱胁迫及复水对野牡丹光合和叶绿素荧光参数的影响. 热带农业科学, 43 (2):44-49.
|
|
[10] |
|
葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 2020. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展. 园艺学报, 47 (9):1752-1776.
|
|
[11] |
|
[12] |
|
[13] |
|
简敏菲, 汪斯琛, 余厚平, 李玲玉, 简美锋, 余冠军. 2016. Cd2+、Cu2+胁迫对黑藻(Hydrilla verticillata)的生长及光合荧光特性的影响. 生态学报, 36 (6):1719-1727.
|
|
[14] |
|
姜英, 刘雄盛, 李娟, 杨继生, 蒋燚, 王仁杰. 2019. 干旱胁迫下丛枝菌根真菌对柚木光合及荧光参数的影响. 森林与环境学报, 39 (6):608-615.
|
|
[15] |
|
李泽, 谭晓风, 卢锟, 张琳, 龙洪旭, 吕佳斌, 林青. 2017. 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响. 生态学报, 37 (5):1515-1524.
|
|
[16] |
doi: 10.16420/j.issn.0513-353x.2022-1036 |
梁圣敏, 张菲, 吴强盛. 2023. 丛枝菌根真菌通过调节枳根系多胺提高抗旱性. 园艺学报, 50 (12):2680-2688.
doi: 10.16420/j.issn.0513-353x.2022-1036 |
|
[17] |
|
[18] |
|
刘辉, 陈梦, 黄引娣, 任嘉红, 范东芳, 赵娟. 2017. 安徽茶区茶树丛枝菌根真菌多样性. 应用生态学报,(9):2897-2906.
doi: 10.13287/j.1001-9332.201709.037 |
|
[19] |
doi: 10.19692/j.issn.1006-1126.20230206 |
柳国海, 欧汉彪, 韦秋思, 卢志锋, 韦铄星, 陈冬颖, 李朝国, 李松海. 2023. 干旱胁迫对香合欢幼苗生长和光合特性的影响. 广西林业科学, 52 (2):181-185.
doi: 10.19692/j.issn.1006-1126.20230206 |
|
[20] |
|
刘胚明, 刘春. 2019. 不同栽培模式对夏季茶叶品质影响的研究. 中国热带农业, 87 (2):31-36.
|
|
[21] |
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[22] |
|
龙燕, 马敏娟, 王英允, 宋怀波. 2021. 利用叶绿素荧光动力学参数识别苗期番茄干旱胁迫状态. 农业工程学报, 37 (11):172-179.
|
|
[23] |
|
马蕊, 林勇, 马婷婷. 2022. 丛枝菌根真菌对六堡茶茶叶品质及其相关基因表达的影响. 江苏农业科学,(17):157-163.
|
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
宋丰萍, 蒙祖庆. 2018. 干旱胁迫下作物光合参数研究进展. 高原农业, 2 (2):138-144,212.
|
|
[33] |
|
孙君, 朱留刚, 林志坤, 张文锦. 2015. 茶树光合作用研究进展. 福建农业学报, 30 (12):1231-1237.
|
|
[34] |
|
孙琪璐. 2019. 复水方式对干旱胁迫下茶树的影响及CsSnRK2基因家族的克隆与表达[硕士论文]. 安徽: 安徽农业大学.
|
|
[35] |
|
[36] |
|
[37] |
|
王平荣, 张帆涛, 高家旭, 孙小秋, 邓晓建. 2009. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 29 (3):629-636.
|
|
[38] |
|
[39] |
|
[40] |
|
王学奎. 2006. 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社.
|
|
[41] |
|
王玉娟, 高秀兵, 吴强盛, 纪道保, 蔡樊, 刘春艳. 2020. 不同水分条件下AM真菌对福鼎大白茶生长和茶叶品质的影响. 茶叶科学, 40 (5):588-596.
|
|
[42] |
doi: 10.13866/j.azr.2018.05.14 |
夏振华, 陈亚宁, 朱成刚, 周莹莹, 陈晓林. 2018. 干旱胁迫环境下的胡杨叶片气孔变化. 干旱区研究, 35 (5):1111-1117.
doi: 10.13866/j.azr.2018.05.14 |
|
[43] |
|
[44] |
doi: 10.16420/j.issn.0513-353x.2020-0946 |
杨妮, 万绮雯, 李逸民, 韩妙华, 滕瑞敏, 刘洁霞, 庄静. 2022. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响. 园艺学报, 49 (2):378-394.
doi: 10.16420/j.issn.0513-353x.2020-0946 |
|
[45] |
|
[1] | ZHANG Songyan, DIE Pengxiang, SONG Mengting, LI Zhijian, ZHOU Jian. Effect of Overexpression of Robinia pseudoacacia RpACBP3 Gene on Photosynthetic Physiological Characteristics of Nicotiana tabacum [J]. Acta Horticulturae Sinica, 2024, 51(9): 2155-2167. |
[2] | WU Xiangqi, SUN Li, YU Zheping, YU Qinpei, LIANG Senmiao, ZHENG Xiliang, QI Xingjiang, ZHANG Shuwen. Functional Study of MrSPL4 Gene in Response to Drought and Low Temperature Stress in Chinese Bayberry [J]. Acta Horticulturae Sinica, 2024, 51(5): 927-938. |
[3] | LIU Jinhong, WANG Zheng, YU Hao, XIN Yirui, QI Guoning, LIU Shenkui, REN Huimin. Identification of SLAC Gene Family in Phyllostachys edulis and Characterization of PheSLAC1 [J]. Acta Horticulturae Sinica, 2024, 51(3): 545-559. |
[4] | XIA Hongyi, LIU Qiao, PENG Jiaqing, WU Wei, GONG Linzhong. Effects of f-Shaped Tree Shape on Photosynthetic Characteristics and Fruit Quality in‘Shine Muscat’Grapevines with Rain-Shelter Cultivation [J]. Acta Horticulturae Sinica, 2024, 51(3): 560-570. |
[5] | YUAN Qingyun, HAN Yu, HE Wei, SU Hui, BAN Qiuyan, WU Chunlai, ZHOU Qiongqiong, XU Wenjing, WANG Liyuan, ZHANG Fen. Cloning and ABA Transport Function Analysis of CsNPF6.1/6.3 in Tea Plants [J]. Acta Horticulturae Sinica, 2024, 51(12): 2817-2828. |
[6] | YANG Jiangshan, CHEN Yajuan, DAI Zibo, LI Dou, SHAO Zhang, JIN Xin, WANG Yuhang, WANG Chunheng. Effects of Potassium Fulvic Acid on Photosynthetic Characteristics and Fruit Quality of‘Cabernet Gernischt’Grape [J]. Acta Horticulturae Sinica, 2024, 51(12): 2843-2856. |
[7] | LU Jianzeng, ZHOU Liyan, HUANG Xinyi, WU Fengzhi, GAO Danmei. Effects of Carbon Pool Strength on Plant Growth and Potassium Uptake of Tomato Intercropped with Potato-Onion [J]. Acta Horticulturae Sinica, 2024, 51(11): 2620-2632. |
[8] | TIAN Jie, ZHOU Qianyi, TIE Yuanyu, SUN Haihong, and HUANG Sijie. Metabolomic Analysis of Garlic Seedling Under Drought Stress [J]. Acta Horticulturae Sinica, 2024, 51(1): 133-144. |
[9] | PENG Hua, WANG Zhihui, YUE Cuinan, YANG Puxiang , LI Wenjin , TONG Zhongfei, and GUO Jin. A New Tea Cultivar‘Gancha 5’ [J]. Acta Horticulturae Sinica, 2023, 50(S1): 199-200. |
[10] | WANG Leigang, JIAO Xiaoyu, LIU Dandan, RUAN Xu, WU Qiong, and WANG Wenjie. A New Yellowish Tea Plant Cultivar‘Huohuang 1’ [J]. Acta Horticulturae Sinica, 2023, 50(S1): 203-204. |
[11] | ZHANG Chen, LI Mengjie, YANG Xiaoxue, WANG Meiyun, XIAO Dong, WANG Jianjun, HOU Xilin, HU Jun, LIU Tongkun. The Creation and Study on Characteristics of New Material of Autotetraploid Purple Tsai-tai [J]. Acta Horticulturae Sinica, 2023, 50(7): 1419-1428. |
[12] | LI Yuting, REN Lihui, WANG Yuan, ZHOU Aiying, YANG Wei, HUANG Jian. Photosynthetic Characteristics of Ziziphus jujuba‘Dongzao’Under Protected Cultivation [J]. Acta Horticulturae Sinica, 2023, 50(3): 647-656. |
[13] | CHENG Qinghua, ZHANG Zhipeng, WU Yanping, WAN Yuhe, CHEN Yingjuan. Studies on the Antifungal Effect of Matrine on Colletotrichum Species on Tea Plant [J]. Acta Horticulturae Sinica, 2023, 50(2): 432-440. |
[14] | LIU Hui, HUANG Ting, TAO Jianping, ZHANG Jiaqi, ZHANG Rongrong, SONG Liuxia, ZHAO Tongmin, YOU Xiong, XIONG Aisheng. Analysis of Circadian Clock Genes SlLNK1,SlEID1,and SlELF3 Response to Photoperiod in Tomato [J]. Acta Horticulturae Sinica, 2023, 50(10): 2079-2090. |
[15] | YUE Cuinan, WANG Zhihui, YANG Puxiang, LI Wenjin, PENG Hua, CHEN Luojun, and ZHOU Hanzhong. A New Tea Cultivar‘Ningzhouzao 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 281-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd