Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (3): 560-570.doi: 10.16420/j.issn.0513-353x.2023-0043
• Cultivation·Physiology & Biochemistry • Previous Articles Next Articles
XIA Hongyi1, LIU Qiao1, PENG Jiaqing1,**(), WU Wei1, GONG Linzhong2
Received:
2023-10-19
Revised:
2023-12-08
Online:
2024-03-25
Published:
2024-03-22
Contact:
PENG Jiaqing
XIA Hongyi, LIU Qiao, PENG Jiaqing, WU Wei, GONG Linzhong. Effects of f-Shaped Tree Shape on Photosynthetic Characteristics and Fruit Quality in‘Shine Muscat’Grapevines with Rain-Shelter Cultivation[J]. Acta Horticulturae Sinica, 2024, 51(3): 560-570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2023-0043
Fig. 1 The diagram of f-shaped tree shape simple single arch shed cultivation 1:Trunk;2:The first main vine;3:The second main vine;4:The third main vine;V:V-type curtain;H:Horizontal type curtain.
树形 Tree shape | 主干高/m Trunk height | 主蔓数 Number of main vine | 主蔓长度/m Length of main vine | 叶幕类型 Curtain type | 行数 Number of planting rows | 株行距/m Plant row spacing | 密度/(株 · hm-2) Cultivation density | ||
---|---|---|---|---|---|---|---|---|---|
第一主蔓 The first main vine | 第二主蔓 The second main vine | 第三主蔓 The third main vine | |||||||
f | 0.9 | 3 | 1.0 | 1.0 | 1.3 + 1.2 | V型 + 水平型 V-type + horizontal type | 2 | 2.0 × 4.0 | 1 230 |
Y(对照1 Control 1) | 0.9 | 2 | 1.0 | 1.0 | V型V-type | 3 | 2.0 × 2.4 | 1 845 | |
T(对照2 Control 2) | 1.8 | 2 | 1.5 | 1.5 | 水平型Horizontal type | 2 | 2.0 × 3.0 | 1 230 |
Table 1 Structural parameters and transplanting methods of three tree shapes
树形 Tree shape | 主干高/m Trunk height | 主蔓数 Number of main vine | 主蔓长度/m Length of main vine | 叶幕类型 Curtain type | 行数 Number of planting rows | 株行距/m Plant row spacing | 密度/(株 · hm-2) Cultivation density | ||
---|---|---|---|---|---|---|---|---|---|
第一主蔓 The first main vine | 第二主蔓 The second main vine | 第三主蔓 The third main vine | |||||||
f | 0.9 | 3 | 1.0 | 1.0 | 1.3 + 1.2 | V型 + 水平型 V-type + horizontal type | 2 | 2.0 × 4.0 | 1 230 |
Y(对照1 Control 1) | 0.9 | 2 | 1.0 | 1.0 | V型V-type | 3 | 2.0 × 2.4 | 1 845 | |
T(对照2 Control 2) | 1.8 | 2 | 1.5 | 1.5 | 水平型Horizontal type | 2 | 2.0 × 3.0 | 1 230 |
Fig. 2 Schematic diagram of the ideal light interception area of grape tree shape,including f-,Y- and T-shapes A,B,D,E:V- type curtain;C,F,G:Horizontal type curtain.
树形 Tree shape | 平均叶倾角/° Mean leaf inclination angle | 天空散射辐射透过率/% Transmission coefficient for diffuse penetration | 叶片分布系数 Leaf distribution | |||||
---|---|---|---|---|---|---|---|---|
0° ~ 90° | 90° ~ 180° | 180° ~ 270° | 270° ~ 360° | $\bar{x}$ | 极差 Range | |||
f | 10.26 a | 0.16 a | 0.87 b | 0.86 b | 0.89 a | 0.87 b | 0.87 b | 0.03 |
Y | 10.33 a | 0.16 a | 0.91 ab | 0.87 ab | 0.90 a | 0.92 ab | 0.90 ab | 0.05 |
T | 10.19 a | 0.06 b | 0.96 a | 0.90 a | 0.92 a | 0.94 a | 0.93 a | 0.06 |
Table 2 Mean leaf inclination angle,transmission coefficient for diffuse penetration and leaf distribution of‘Shine Muscat’grapevines with different tree shapes
树形 Tree shape | 平均叶倾角/° Mean leaf inclination angle | 天空散射辐射透过率/% Transmission coefficient for diffuse penetration | 叶片分布系数 Leaf distribution | |||||
---|---|---|---|---|---|---|---|---|
0° ~ 90° | 90° ~ 180° | 180° ~ 270° | 270° ~ 360° | $\bar{x}$ | 极差 Range | |||
f | 10.26 a | 0.16 a | 0.87 b | 0.86 b | 0.89 a | 0.87 b | 0.87 b | 0.03 |
Y | 10.33 a | 0.16 a | 0.91 ab | 0.87 ab | 0.90 a | 0.92 ab | 0.90 ab | 0.05 |
T | 10.19 a | 0.06 b | 0.96 a | 0.90 a | 0.92 a | 0.94 a | 0.93 a | 0.06 |
树形 Tree shape | 天顶角区域 Zenith angle area | $\bar{x}$ | 极差 Range | ||||
---|---|---|---|---|---|---|---|
7.5° | 22.5° | 37.5° | 52.5° | 67.5° | |||
f | 0.04 a | 0.12 a | 0.14 a | 0.15 a | 0.09 a | 0.11 a | 0.11 |
Y | 0.05 a | 0.14 a | 0.13 a | 0.14 a | 0.10 a | 0.11 a | 0.09 |
T | 0.02 b | 0.03 b | 0.04 b | 0.03 b | 0.04 b | 0.03 b | 0.02 |
Table 3 Transmission coefficient of radiation penetration of‘Shine Muscat’grapevines with different tree shapes %
树形 Tree shape | 天顶角区域 Zenith angle area | $\bar{x}$ | 极差 Range | ||||
---|---|---|---|---|---|---|---|
7.5° | 22.5° | 37.5° | 52.5° | 67.5° | |||
f | 0.04 a | 0.12 a | 0.14 a | 0.15 a | 0.09 a | 0.11 a | 0.11 |
Y | 0.05 a | 0.14 a | 0.13 a | 0.14 a | 0.10 a | 0.11 a | 0.09 |
T | 0.02 b | 0.03 b | 0.04 b | 0.03 b | 0.04 b | 0.03 b | 0.02 |
树形 Tree shape | 天顶角区域Zenith angle area | $\bar{x}$ | 极差 Range | ||||
---|---|---|---|---|---|---|---|
7.5° | 22.5° | 37.5° | 52.5° | 67.5° | |||
f | 0.96 a | 0.96 a | 0.95 a | 0.96 a | 0.96 a | 0.96 a | 0.01 |
Y | 0.97 a | 0.96 a | 0.95 a | 0.96 a | 0.95 ab | 0.96 a | 0.02 |
T | 0.96 a | 0.95 a | 0.93 a | 0.94 a | 0.94 b | 0.94 b | 0.03 |
Table 4 Extinction coefficients of‘Shine Muscat’grapevines with different tree shapes
树形 Tree shape | 天顶角区域Zenith angle area | $\bar{x}$ | 极差 Range | ||||
---|---|---|---|---|---|---|---|
7.5° | 22.5° | 37.5° | 52.5° | 67.5° | |||
f | 0.96 a | 0.96 a | 0.95 a | 0.96 a | 0.96 a | 0.96 a | 0.01 |
Y | 0.97 a | 0.96 a | 0.95 a | 0.96 a | 0.95 ab | 0.96 a | 0.02 |
T | 0.96 a | 0.95 a | 0.93 a | 0.94 a | 0.94 b | 0.94 b | 0.03 |
树形 Tree shape | 主蔓 Main vine | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 总叶绿素 Total chlorophyll |
---|---|---|---|---|
f | 第一The first | 2.07 ± 0.23 ab | 1.07 ± 0.13 a | 3.14 ± 0.33 a |
第二The second | 2.15 ± 0.07 a | 1.02 ± 0.10 ab | 3.17 ± 0.17 a | |
第三The third | 1.88 ± 0.12 ab | 0.93 ± 0.12 ab | 2.81 ± 0.24 ab | |
Y | 第一The first | 1.97 ± 0.16 ab | 0.95 ± 0.16 ab | 2.93 ± 0.31 ab |
第二The second | 1.92 ± 0.17 ab | 1.02 ± 0.12 ab | 2.94 ± 0.29 ab | |
T | 第一The first | 1.87 ± 0.09 b | 0.95 ± 0.07 ab | 2.82 ± 0.07 ab |
第二The second | 1.83 ± 0.10 b | 0.84 ± 0.09 b | 2.67 ± 0.13 b |
Table 5 Effect of different tree shapes on leaf chlorophyll content of functional leaves of ‘Shine Muscat’grapevines (mg · dm-2)
树形 Tree shape | 主蔓 Main vine | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 总叶绿素 Total chlorophyll |
---|---|---|---|---|
f | 第一The first | 2.07 ± 0.23 ab | 1.07 ± 0.13 a | 3.14 ± 0.33 a |
第二The second | 2.15 ± 0.07 a | 1.02 ± 0.10 ab | 3.17 ± 0.17 a | |
第三The third | 1.88 ± 0.12 ab | 0.93 ± 0.12 ab | 2.81 ± 0.24 ab | |
Y | 第一The first | 1.97 ± 0.16 ab | 0.95 ± 0.16 ab | 2.93 ± 0.31 ab |
第二The second | 1.92 ± 0.17 ab | 1.02 ± 0.12 ab | 2.94 ± 0.29 ab | |
T | 第一The first | 1.87 ± 0.09 b | 0.95 ± 0.07 ab | 2.82 ± 0.07 ab |
第二The second | 1.83 ± 0.10 b | 0.84 ± 0.09 b | 2.67 ± 0.13 b |
Fig. 3 Effect of different tree shapes on photosynthetic characteristics of functional leaves of‘Shine Muscat’grapevines at different stages The different lowercase letters indicate significant difference of different tree shapes at the same period(P < 0.05).
树形 Tree shape | 单果质量/g Single fruit weight | 硬度/ (kg · cm-2) Firmness | 果形指数 Fruit shape index | 可溶性固形物含量/ (mg · g-1) Soluble solids content | 可滴定酸含量/ (mg · g-1) Titratable acidity | 固酸比/% Soluble solids to acidity ratio |
---|---|---|---|---|---|---|
f | 14.89 ± 1.03 a | 1.88 ± 0.09 a | 1.28 ± 0.01 a | 18.99 ± 0.75 a | 0.21 ± 0.01 b | 89.71 ± 6.33 a |
Y | 13.44 ± 0.60 ab | 1.82 ± 0.11 ab | 1.27 ± 0.01 a | 16.38 ± 1.58 b | 0.23 ± 0.02 ab | 73.38 ± 14.34 ab |
T | 12.62 ± 0.91 b | 1.69 ± 0.07 b | 1.29 ± 0.02 a | 14.45 ± 1.03 b | 0.25 ± 0.02 a | 58.43 ± 6.84 b |
Table 6 Effect of different tree shapes on fruit quality of‘Shine Muscat’grapevines
树形 Tree shape | 单果质量/g Single fruit weight | 硬度/ (kg · cm-2) Firmness | 果形指数 Fruit shape index | 可溶性固形物含量/ (mg · g-1) Soluble solids content | 可滴定酸含量/ (mg · g-1) Titratable acidity | 固酸比/% Soluble solids to acidity ratio |
---|---|---|---|---|---|---|
f | 14.89 ± 1.03 a | 1.88 ± 0.09 a | 1.28 ± 0.01 a | 18.99 ± 0.75 a | 0.21 ± 0.01 b | 89.71 ± 6.33 a |
Y | 13.44 ± 0.60 ab | 1.82 ± 0.11 ab | 1.27 ± 0.01 a | 16.38 ± 1.58 b | 0.23 ± 0.02 ab | 73.38 ± 14.34 ab |
T | 12.62 ± 0.91 b | 1.69 ± 0.07 b | 1.29 ± 0.02 a | 14.45 ± 1.03 b | 0.25 ± 0.02 a | 58.43 ± 6.84 b |
树形 Tree shape | 第1个挂果年度 The first fruiting year | 第2个挂果年度 The second fruiting year | 第3个挂果年度 The third fruiting year |
---|---|---|---|
f | 12.90 ± 1.16 b | 27.23 ± 1.79 a | 29.57 ± 1.22 a |
Y | 15.51 ± 1.22 a | 26.04 ± 1.40 ab | 26.36 ± 1.59 b |
T | 10.64 ± 0.99 c | 23.49 ± 1.38 b | 24.20 ± 1.79 b |
Table 7 Effect of different tree shapes on fruit yield of‘Shine Muscat’grapevines (t · hm-2)
树形 Tree shape | 第1个挂果年度 The first fruiting year | 第2个挂果年度 The second fruiting year | 第3个挂果年度 The third fruiting year |
---|---|---|---|
f | 12.90 ± 1.16 b | 27.23 ± 1.79 a | 29.57 ± 1.22 a |
Y | 15.51 ± 1.22 a | 26.04 ± 1.40 ab | 26.36 ± 1.59 b |
T | 10.64 ± 0.99 c | 23.49 ± 1.38 b | 24.20 ± 1.79 b |
树形 Tree shape | 色差值 Chromatic aberration | |||||
---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | CIRG | |
f | 39.16 ± 1.16 b | -4.73 ± 0.52 a | 13.91 ± 1.47 b | 14.69 ± 1.54 b | 108.78 ± 0.86 a | 1.32 ± 0.02 a |
Y | 41.76 ± 0.36 a | -4.89 ± 0.67 a | 16.16 ± 2.17 ab | 16.88 ± 2.27 ab | 106.82 ± 0.31 b | 1.25 ± 0.06 a |
T | 43.38 ± 0.91 a | -5.85 ± 0.52 a | 18.26 ± 0.65 a | 19.17 ± 0.77 a | 107.74 ± 0.88 ab | 1.16 ± 0.04 b |
Table 8 Effect of different tree shapes on fruit coloration of‘Shine Muscat’grapevines
树形 Tree shape | 色差值 Chromatic aberration | |||||
---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | CIRG | |
f | 39.16 ± 1.16 b | -4.73 ± 0.52 a | 13.91 ± 1.47 b | 14.69 ± 1.54 b | 108.78 ± 0.86 a | 1.32 ± 0.02 a |
Y | 41.76 ± 0.36 a | -4.89 ± 0.67 a | 16.16 ± 2.17 ab | 16.88 ± 2.27 ab | 106.82 ± 0.31 b | 1.25 ± 0.06 a |
T | 43.38 ± 0.91 a | -5.85 ± 0.52 a | 18.26 ± 0.65 a | 19.17 ± 0.77 a | 107.74 ± 0.88 ab | 1.16 ± 0.04 b |
[1] |
|
[2] |
|
程建峰, 沈允钢. 2010. 作物高光效之管见. 作物学报, 36 (8):1235-1247.
|
|
[3] |
|
[4] |
|
郭俊强. 2021. 避雨栽培提升鲜食葡萄果实品质和降低病害发生的研究[硕士论文]. 杨凌:西北农林科技大学.
|
|
[5] |
|
焦念元, 李亚辉, 李法鹏, 胡浩博, 穆耀东, 张煜, 帛张岳. 2015. 间作玉米穗位叶的光合和荧光特性. 植物生理学报, 51 (7):1029-1037.
|
|
[6] |
|
李芳菲, 王莎, 谷世超, 程大伟, 顾红, 李明, 陈锦永, 杨英军. 2020. 叶面喷施ABA和PDJ对‘巨峰’葡萄果实着色及品质的影响. 果树学报, 37 (3):362-370.
|
|
[7] |
doi: 10.16420/j.issn.0513-353x.2022-0057 |
李中瀚, 唐美玲, 郑秋玲, 刘明慧, 康慧, 高振, 杜远鹏. 2023. 聚乙烯编织物Coverlys TF150®覆盖对‘蜜光’葡萄果实品质的影响. 园艺学报, 50 (5):1073-1084.
doi: 10.16420/j.issn.0513-353x.2022-0057 |
|
[8] |
|
林琭, 李志强, 蔚露, 王红宁, 牛自勉. 2020. 苹果两种树形叶片对光强和CO2浓度互作的光合响应及光抑制特性. 园艺学报, 47 (11):2073-2085.
|
|
[9] |
|
刘凤之, 段长青. 2012. 葡萄设施栽培技术. 葡萄生产配套技术手册. 北京: 中国农业出版社.
|
|
[10] |
|
刘俊, 晁无疾, 亓桂梅, 刘寅喆, 汉瑞峰. 2020. 蓬勃发展的中国葡萄产业. 中外葡萄与葡萄酒,(1):1-8.
|
|
[11] |
|
刘帅. 2015. 阳光玫瑰葡萄光合特性研究[硕士论文]. 南京: 南京农业大学.
|
|
[12] |
|
[13] |
|
罗家坤, 高磊, 郑焕, 陶建敏. 2022. ‘阳光玫瑰’葡萄WH树形枝条垂化处理对叶片光合特性及果实品质的影响. 果树学报, 39 (11):2064-2073.
|
|
[14] |
|
吕芳德, 徐德聪, 潘晓杰. 2003. 果树光合作用研究进展. 湖南林业科技, 30 (3):34-38.
|
|
[15] |
doi: 10.16420/j.issn.0513-353x.2019-0193 |
马小龙, 马豆豆, 史继东, $\boxed{\hbox{韩明玉}}$, 杨伟伟, 张东. 2020. 双主干并棒树形对矮化自根砧苹果幼树生长和结果的影响. 园艺学报, 47 (3):541-550.
doi: 10.16420/j.issn.0513-353x.2019-0193 |
|
[16] |
|
[17] |
|
潘明启, 张付春, 钟海霞, 韩守安, 周晓明, 张雯, 伍新宇. 2017. 北方葡萄水平棚架“顺沟高厂”树形的高光效、省力化评价. 果树学报, 34 (9):1134-1143.
|
|
[18] |
|
乔寅英, 柴强. 2017. 带型及施氮水平对玉米间作豌豆群体光分布的影响. 甘肃农业大学学报, 52 (6):33-38,43.
|
|
[19] |
pmid: 27112012 |
史祥宾, 刘凤之, 程存刚, 王孝娣, 王宝亮, 郑晓翠, 王海波. 2015. 不同叶幕形对设施葡萄叶幕微环境、叶片质量及果实品质的影响. 应用生态学报, 26 (12):3730-3736.
pmid: 27112012 |
|
[20] |
|
舒展, 张晓素, 陈娟, 陈根云, 许大全. 2010. 叶绿素含量测定的简化. 植物生理学通讯, 46 (4):399-402.
|
|
[21] |
|
[22] |
|
[23] |
doi: 10.11924/j.issn.1000-6850.2008-0424 |
王建新, 牛自勉. 2008. 叶幕结构与光合作用的关系研究. 中国农学通报, 24 (11):302-306.
|
|
[24] |
|
王世平, 李勃. 2019. 中国设施葡萄发展概况. 落叶果树,(1):1-5.
|
|
[25] |
|
夏宏义, 彭家清, 刘巧, 潘亮, 朱先波, 刘涛, 肖丽丽, 柯艳, 杨静. 2021. 一种适于简易单栋拱棚的葡萄树形及构建方法. 中国:ZL 2020 1 0458682.6,2021.07.30
|
|
[26] |
|
杨航, 赵雅姣, 刘晓静. 2023. 紫花苜蓿/燕麦间作的光合特征及其对产量的调控效应. 草地学报, 31 (1):187-195.
|
|
[27] |
|
杨晓盆, 翟秋喜, 张国强, 王跃进. 2007. 不同架式温室葡萄冠位叶片及叶绿体结构的变化. 中国农学通报, 23 (3):332-335.
|
|
[28] |
doi: 10.16420/j.issn.0513-353x.2019-0146 |
蔚露, 牛自勉, 林琭, 姜闯道, 王红宁, 谢鹏, 李志强, 郭晋鸣. 2020. 小冠开心形和细型主干形‘玉露香’梨光能截获与光合作用差异. 园艺学报, 47 (1):11-22.
doi: 10.16420/j.issn.0513-353x.2019-0146 |
|
[29] |
|
[30] |
|
张大鹏, 姜红英, 陈星黎, 许雪峰. 1995. 叶幕微气候与葡萄生理,产量和品质形成之间基本关系的研究. 园艺学报, 22 (2):110-116.
|
|
[31] |
|
张秀珍, 宋文龙, 梁海永, 王志彬. 2022. 四倍体白榆叶片形态特征和光合特性研究. 林业科技, 47 (6):1-4.
|
|
[32] |
doi: 10.11924/j.issn.1000-6850.casb17100014 |
郑秋玲, 刘珅坤, 崔万锁, 曹志毅, 王婷, 肖慧琳, 唐美玲. 2019. 不同树形及花穗整形长度对夏黑葡萄果实品质的影响. 中国农学通报, 35 (2):53-56.
doi: 10.11924/j.issn.1000-6850.casb17100014 |
|
[33] |
|
郑婷, 吴江, 刘凡启, 许瀛之, 李生保, 房经贵. 2021. 葡萄种植架式及其应用. 中外葡萄与葡萄酒,(2):40-45.
|
[1] | ZHANG Songyan, DIE Pengxiang, SONG Mengting, LI Zhijian, and ZHOU Jian, . Effect of Overexpression of Robinia pseudoacacia RpACBP3 Gene on Photosynthetic Physiological Characteristics of Nicotiana tabacum [J]. Acta Horticulturae Sinica, 2024, 51(9): 2155-2167. |
[2] | YANG Jinghui, XU Yuan, XIAO Ting, CHU Shupin, LIU Jixiang, and YAO Kebing, . Resistance of Colletotrichum gloeosporioides Species Complexes from Grape to Azoxystrobin [J]. Acta Horticulturae Sinica, 2024, 51(8): 1906-1912. |
[3] | WANG Wenjun, WANG Jingjing, CHEN Qiling, and ZHENG Qiangqing . Parameter Determination and Modeling of Central Leader Tree Shape for High Quality and High Yield Production of Ziziphus jujuba‘Huizao’ [J]. Acta Horticulturae Sinica, 2024, 51(4): 832-846. |
[4] | SUN Quan, HE Zhengchen, YE Junli, WEI Ranran, YIN Yingzi, CHAI Lijun, XIE Zongzhou, XU Qiang, XU Juan, GUO Wenwu, CHENG Yunjiang, DENG Xiuxin. Storage with Climacteric Fruits Improves Color and Quality of Citrus Fruit [J]. Acta Horticulturae Sinica, 2024, 51(3): 601-615. |
[5] | YANG Jiangshan, CHEN Yajuan, DAI Zibo, LI Dou, SHAO Zhang, JIN Xin, WANG Yuhang, WANG Chunheng. Effects of Potassium Fulvic Acid on Photosynthetic Characteristics and Fruit Quality of‘Cabernet Gernischt’Grape [J]. Acta Horticulturae Sinica, 2024, 51(12): 2843-2856. |
[6] | LIN Lu, YU Lu, XIE Peng, LI Zhiqiang, WANG Hongning, ZHAO Guoping, NIU Zimian. Influences of Dwarfing Intermediate Stock SC1 on Apple Photosynthetic Characteristics and Fruit Quality [J]. Acta Horticulturae Sinica, 2024, 51(12): 2871-2885. |
[7] | CHEN Xin, WU Xiaolong, LIU Shengrui, HU Xianchun, and LIU Chunyan, . Effects of AMF on Photosynthetic Characteristics and Gene Expressions of Tea Plants Under Drought Stress [J]. Acta Horticulturae Sinica, 2024, 51(10): 2358-2370. |
[8] | WANG Wen, ZHANG Kenan, FANG Mofei, DING Siyue, WANG Xuefei, XI Zhumei. Effects of Different Color Bags on Anthocyanin Accumulation in‘Cabernet Sauvignon’Grape Skin [J]. Acta Horticulturae Sinica, 2023, 50(8): 1723-1738. |
[9] | ZHANG Chen, LI Mengjie, YANG Xiaoxue, WANG Meiyun, XIAO Dong, WANG Jianjun, HOU Xilin, HU Jun, LIU Tongkun. The Creation and Study on Characteristics of New Material of Autotetraploid Purple Tsai-tai [J]. Acta Horticulturae Sinica, 2023, 50(7): 1419-1428. |
[10] | WANG Hongxiu, ZHOU Shangling, HE Shaoguo, TIAN Zaize, MA Jinghua, PENG Liangzhi, CHUN Changpin. Study on the Standard of Nutrient Elements Contents in Eureka Lemon Leaves [J]. Acta Horticulturae Sinica, 2023, 50(7): 1535-1546. |
[11] | CHEN Min, WU Tianli, Lü Yuanda, JIANG Bo, YAN Huaxue, LI Juan, ZHONG Yun. Analysis on Growth,Physiology and Fruit Quality of‘Hongjiang’Orange Grafted with Different Rootstocks Under Container Culture [J]. Acta Horticulturae Sinica, 2023, 50(7): 1547-1562. |
[12] | LI Zhonghan, TANG Meiling, ZHENG Qiuling, LIU Minghui, KANG Hui, GAO Zhen, DU Yuanpeng. The Effect of Rain Shelter Material Coverlys TF150® on the Fruit Quality of‘Miguang’Grape [J]. Acta Horticulturae Sinica, 2023, 50(5): 1073-1084. |
[13] | LI Yumei, LOU Yusui, WANG Xiaolong, MA Yuquan, WANG Haibo, LÜ Zhongwei. Research on Nutritional Diagnosis of Leaves and Soil in High Quality Grape Orchard of‘Summer Black’ [J]. Acta Horticulturae Sinica, 2023, 50(4): 864-874. |
[14] | GAO Jinhui, ZHANG Danqiu, LIAN Shixun, WANG Chuanqing, WEI Min, MI Qinghua, LI Yan. Effects of Spectral Matching-based Light Conversion Greenhouse Films on Growth and Fruit Quality of Capsicum annuum [J]. Acta Horticulturae Sinica, 2023, 50(12): 2653-2664. |
[15] | FU Shenzao, REN Jun, WANG Xin, WANG Ningning, FANG Jian, XU Donghui, YANG Kun. Effects of Pumpkin Rootstock Grafting on the Expressions of Basic DUS Characteristics and Fruit Quality Indicators in Cucumber [J]. Acta Horticulturae Sinica, 2023, 50(12): 2665-2679. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd