https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 279-294.doi: 10.16420/j.issn.0513-353x.2021-1081

• Research Papers • Previous Articles     Next Articles

Functional Analysis of Dicer-like Genes in Fusarium oxysporum f. sp. cubense Race 4

ZHANG Xin, QI Yanxiang, ZENG Fanyun, WANG Yanwei, XIE Peilan, XIE Yixian*(), PENG Jun*()   

  1. Key Laboratory of Integrated Pest Management on Tropical Crops,Ministry of Agriculture and Rural Affairs,Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests,Environment and Plant Protection Institute,Chinese Academy of Tropical Agricultural Sciences,Haikou 571101,China
  • Received:2022-06-16 Revised:2022-09-27 Online:2023-02-25 Published:2023-03-06
  • Contact: *(E-mail:yixian81@126.comswaupj2@126.com

Abstract:

The fungal pathogen Fusarium oxysporum f. sp. cubense(Foc)is an important soil-borne pathogenic fungus which causes Banana Fusarium wilt. The Foc race 4(Foc 4)attacking almost all Cavendish cultivars is currently noteworthy in global banana production. In order to explore the function of DCL-like genes in Foc4,the gene-knockout mutants ΔFocDCL1ΔFocDCL2 and ΔFocDCL1/2 were obtained by homologous recombination technique. The phenotype analysis showed the mutants showed no significant differences on vegetative growth but significant reduced in conidia production compared to the Foc4. The ΔFocDCL2 mutant increased sensitive to Congo red,and the mutant significantly reduced the size of the colony and increased the number of aerial hyphae after Congo red treatment. Next,the pathogenicity test showed that virulence of ΔFocDCL2 and ΔFocDCL1/2 were significantly reduced compared with Foc4,respectively. Furthermore,miRNA deep sequencing data showed the length distribution of the total reads,and the frequency of the 5′ first nucleotide bias of the mutants were markedly changed compared with Foc4,respectively. The miRNA could be generated depending on individual,alternative or joint DCL manners,indicating the FocDCL with overlapped and redundant function in small RNA biogenesis. In addition,DCLs-independent miRNA also be identified in the sequencing data. These results indicated that FocDCL function involved in the stress response,conidia,pathogenicity and generation of miRNAs in Foc4.

Key words: banana, Fusarium wilt, Fusarium oxysporum f. sp. cubense, Dicer-like gene, pathogenicity test, miRNA

CLC Number: