Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (4): 733-748.doi: 10.16420/j.issn.0513-353x.2020-0069
• Reviews • Previous Articles Next Articles
Received:
2020-08-20
Online:
2021-04-25
Published:
2021-04-29
Contact:
LI Meng
E-mail:mli@njau.edu.cn
CLC Number:
HUANG Weijian, LI Meng. Status and Prospects Whole Genome Sequencing in Fruit Trees[J]. Acta Horticulturae Sinica, 2021, 48(4): 733-748.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0069
测序技术代数 Sequencing technolog generation | DNA扩增方式 DNA amplification method | 测序平台 Sequencing platform | 平均读长/bp Average read length | 正确率/% Accuracy | 成本/($·Gb-1) Cost | 测序时间/h Sequencing time |
---|---|---|---|---|---|---|
一代1st | 质粒扩增Plasmid amplification | Sanger | 700 | 99.9 | 500 000.00 | 1 |
二代2nd | 乳液PCR Emulsion PCR | Roche 454 | 700 | 99 | 9 500.00 | 23 |
SOLiD | 120 | 99.9 | 50.00 | 144 | ||
桥式PCR Bridge PCR | Solexa | 300 | 99.9 | 20.00 | 19 ~ 40 | |
三代3rd | 单分子测序 | PacBio RSⅡ | 10 000 | 85 ~ 90 | 1 000.00 | 0.5 ~ 6 |
Single molecule sequencing | MinION | 200 ~ 500 | 70 ~ 90 | 1 000.00 | 48 |
Table 1 Three generations of sequencing technology
测序技术代数 Sequencing technolog generation | DNA扩增方式 DNA amplification method | 测序平台 Sequencing platform | 平均读长/bp Average read length | 正确率/% Accuracy | 成本/($·Gb-1) Cost | 测序时间/h Sequencing time |
---|---|---|---|---|---|---|
一代1st | 质粒扩增Plasmid amplification | Sanger | 700 | 99.9 | 500 000.00 | 1 |
二代2nd | 乳液PCR Emulsion PCR | Roche 454 | 700 | 99 | 9 500.00 | 23 |
SOLiD | 120 | 99.9 | 50.00 | 144 | ||
桥式PCR Bridge PCR | Solexa | 300 | 99.9 | 20.00 | 19 ~ 40 | |
三代3rd | 单分子测序 | PacBio RSⅡ | 10 000 | 85 ~ 90 | 1 000.00 | 0.5 ~ 6 |
Single molecule sequencing | MinION | 200 ~ 500 | 70 ~ 90 | 1 000.00 | 48 |
物种 Species | 测序材料 Sequencing material | 测序方法 Sequencing method | 基因组/ Mb Genome size | 组装全 长/Mb Assembly | 基因 数量 Number of gene | 重复 序列 比率 /% Repeat | 总序列 骨架数 Scaffold Total | Contig N50/kb | 基因组杂 合度/% Genomic Hetero- zygosity | 测序深度 Sequencing depth | 倍性 Ploidy | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
苹果Apple (Malus× domestica) | 金冠Golden Delicious | Sanger, Roche454 | 742.3 | 603.9 | 57 386 | 67 | 1 629 | 16.7 | 缺失 Deficiency | 16.9× | 二倍体 Diploid | Velasco et al., |
金冠Golden Delicious | Illumina HiSeq, PacBio RS II | 701 | 632.4 | 53 922 | 60 | 缺失 Deficiency | 111.6 | 缺失 Deficiency | 131× | 二倍体 Diploid | Li et al. | |
金冠双单倍 体 GDDH13 | Illumina HiSeq, PacBio RS II | 651 | 649.7 | 42 140 | 57.3 | 280 | 699 | 缺失 Deficiency | 835× | 双单倍体 Double haploid | Daccord et al., | |
寒富HFTH1 | Illumina HiSeq, PacBio RS II | 708.5 | 658.9 | 44 677 | 59.8 | 502 | 6 990 | 缺失 Deficiency | 552× | 三倍体 Triploid | Zhang et al., | |
柑橘 Citrus | 甜橙Sweet Orange (C.sinensis) | Illumina GAII | 367 | 320.5 | 29 445 | 20 | 4 811 | 49.89 | 50 | 214× | 二倍体 Diploid | Xu et al. |
克里曼丁橘 Clemenules (C. clementina) | Sanger | 302 | 310 | 24 533 | 44.7 | 2 931 | 115.9 | 缺失 Deficiency | 6.94× | 单倍体 Haploid | Wu et al. | |
枳柚 Swingle Citrumelo (C. paradise Macf. × Poncirus trifoliata(L.) Raf.) | Illumina HiSeq | 380 | 280.6 | 29 054 | 16.8 | 66 319 | 11.4 | 缺失 Deficiency | 15× | 不可用 Not Available | Zhang et al., | |
柚Pummelo (C. grandis) | Illumina HiSeq, PacBio RS II | 380.8 | 344.8 | 30 123 | 45.8 | 1 612 | 2 180 | 缺失 Deficiency | 427× | 单倍体 Haploid | Wang et al., | |
温州蜜橘 Satsuma(C. unshiuMarc.) | Illumina HiSeq, PacBio RS II | 不可用 Not Available | 359 | 29 024 | 39.5 | 20 876 | 缺失 Deficiency | 0.44 | 缺失 Deficiency | 二倍体 Diploid | Shimizu et al., | |
莽山野柑 Mangshan Mandarin (C. reticulata) | Illumina HiSeq | 344.3 | 334 | 28 820 | 50.1 | 42 714 | 24.7 | 缺失 Deficiency | 199.7× | 二倍体 Diploid | Wang et al., | |
香港金橘 Hongkong Kumquat (Fortunella hindsii) | Illumina HiSeq, PacBio | 389 | 373.6 | 32 257 | 14.3 | 900 | 2 200 | 0.8 | 145× | 二倍体 Diploid | Zhu et al. | |
葡萄Grape (Vitis vinifera) | 黑皮诺 PN40024 | Sanger | 475 | 487.1 | 30 434 | 41.4 | 3 514 | 65.9 | 2.6 | 8.4× | 单倍体 Haploid | Jaillon et al., |
赤霞珠 Cabernet Sauvignon | PacBio RS II | 633 | 591.4 | 36 687 | 51.1 | 1 314 | 2 170 | 缺失 Deficiency | 缺失 Deficiency | 二倍体 Diploid | Chin et al., | |
霞多丽 Chardonnay | Illumina HiSeq, PacBio RS II, MiSeq | 580 | 490 | 29 675 | 38.7 | 缺失 Deficiency | 935 | 缺失 Deficiency | 115× | 二倍体 Diploid | Roach et al., | |
霞多丽 FPS 04 | Illumina HiSeq, PacBio RS II | 600 | 606 | 38 020 | 47.3 | 684 | 1 240 | 缺失 Deficiency | 220× | 二倍体 Diploid | Zhou et al., | |
梨 Pear | 砀山酥梨 Dangshan Suli (Pyrus bretschneideriRehd.) | Illumina HiSeq | 527 | 512 | 42 812 | 53.1 | 2 103 | 35.7 | 1.99 | 194× | 二倍体 Diploid | Wu et al. |
西洋梨 Bartlett (P. communisL.) | Roche 454 | 600 | 577.3 | 43 419 | 34.1 | 142 083 | 6.53 | 缺失 Deficiency | 11.4× | 单倍体 Haploid | Chagne et al., | |
西洋梨 BartlettDHv2.0 (P. communisL.) | PacBio SII | 528 | 496.9 | 37 445 | 49.7 | 494 | 5 300 | 缺失 Deficiency | 63× | 双单倍体 Double haploid | Linsmith et al., | |
山西杜梨 Shanxi Duli (P. betuleafolia) | Illumina HiSeq, PacBio | 511 | 532.7 | 59 522 | 46.4 | 139 | 1 570 | 1.54 | 缺失 Deficiency | 缺失 Deficiency | Dong et al., | |
草莓 Strawberry | 森林草莓 Hawaii 4 (Fragaria vesca) | Roche 454, SOLiD, Illumina HiSeq | 240 | 209.8 | 34 809 | 23 | 3 263 | 13 000 | 缺失 Deficiency | 39× | 二倍体 Diploid | Shulaev et al., |
Reikou (F. ananassa) | Roche 454, Illumina HiSeq | 692 | 698 | 45 377 | 5 | 7 598 | 46.8 | 缺失 Deficiency | 缺失 Deficiency | 八倍体 Octoploid | Hirakawa et al. | |
卡麦罗莎草莓 Camarosa (F. ananassa) | Illumina HiSeq, PacBio RS II | 813.4 | 660 | 108 087 | 36 | 25 426 | 79.9 | 缺失 Deficiency | 615× | 八倍体 Octoploid | Edger et al., | |
黄毛草莓 Ruegen(F. nilgerrensis) | Illumina HiSeq, PacBio SMRT | 276 | 270.3 | 28 780 | 43.4 | 257 | 85 000 | 缺失 Deficiency | 152× | 二倍体 Diploid | Zhang et al., | |
香蕉 Banana | 彭亨香蕉 DH-Pahang (Musa acuminata) | Sanger, Roche454, Illumina GAIIx | 523 | 472.2 | 36 542 | 44 | 7 513 | 43.1 | 缺失 Deficiency | 50× | 双单倍体 Double haploid | D'Hont et al., |
Pisang Klutuk Wulung(M. balbisiana) | Illumina HiSeq | 432.7 | 341.4 | 36 638 | 29.5 | 63 245 | 7.9 | 缺失 Deficiency | 41.4× | 二倍体 Diploid | Davey et al., | |
阿宽蕉(M. itinerans) | Illumina HiSeq | 615.2 | 462.1 | 32 456 | 38.9 | 7 194 | 33.9 | 0.25 | 120.7× | 二倍体 Diploid | Wu et al. | |
DH-PKW(M. balbisiana) | Illumina HiSeq, PacBio, | 492 | 430 | 35 148 | 55.8 | 294 | 1 830 | 缺失 Deficiency | 417× | 双单倍体 Double haploid | Wang et al., | |
桃Peach (Prunus persica) | Lovell | Sanger | 265 | 224.6 | 27 852 | 37.14 | 202 | 294 | 缺失 Deficiency | 8.47× | 二倍体 Diploid | Verde et al., |
Table 2 Summary of seven sequenced fruit trees
物种 Species | 测序材料 Sequencing material | 测序方法 Sequencing method | 基因组/ Mb Genome size | 组装全 长/Mb Assembly | 基因 数量 Number of gene | 重复 序列 比率 /% Repeat | 总序列 骨架数 Scaffold Total | Contig N50/kb | 基因组杂 合度/% Genomic Hetero- zygosity | 测序深度 Sequencing depth | 倍性 Ploidy | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
苹果Apple (Malus× domestica) | 金冠Golden Delicious | Sanger, Roche454 | 742.3 | 603.9 | 57 386 | 67 | 1 629 | 16.7 | 缺失 Deficiency | 16.9× | 二倍体 Diploid | Velasco et al., |
金冠Golden Delicious | Illumina HiSeq, PacBio RS II | 701 | 632.4 | 53 922 | 60 | 缺失 Deficiency | 111.6 | 缺失 Deficiency | 131× | 二倍体 Diploid | Li et al. | |
金冠双单倍 体 GDDH13 | Illumina HiSeq, PacBio RS II | 651 | 649.7 | 42 140 | 57.3 | 280 | 699 | 缺失 Deficiency | 835× | 双单倍体 Double haploid | Daccord et al., | |
寒富HFTH1 | Illumina HiSeq, PacBio RS II | 708.5 | 658.9 | 44 677 | 59.8 | 502 | 6 990 | 缺失 Deficiency | 552× | 三倍体 Triploid | Zhang et al., | |
柑橘 Citrus | 甜橙Sweet Orange (C.sinensis) | Illumina GAII | 367 | 320.5 | 29 445 | 20 | 4 811 | 49.89 | 50 | 214× | 二倍体 Diploid | Xu et al. |
克里曼丁橘 Clemenules (C. clementina) | Sanger | 302 | 310 | 24 533 | 44.7 | 2 931 | 115.9 | 缺失 Deficiency | 6.94× | 单倍体 Haploid | Wu et al. | |
枳柚 Swingle Citrumelo (C. paradise Macf. × Poncirus trifoliata(L.) Raf.) | Illumina HiSeq | 380 | 280.6 | 29 054 | 16.8 | 66 319 | 11.4 | 缺失 Deficiency | 15× | 不可用 Not Available | Zhang et al., | |
柚Pummelo (C. grandis) | Illumina HiSeq, PacBio RS II | 380.8 | 344.8 | 30 123 | 45.8 | 1 612 | 2 180 | 缺失 Deficiency | 427× | 单倍体 Haploid | Wang et al., | |
温州蜜橘 Satsuma(C. unshiuMarc.) | Illumina HiSeq, PacBio RS II | 不可用 Not Available | 359 | 29 024 | 39.5 | 20 876 | 缺失 Deficiency | 0.44 | 缺失 Deficiency | 二倍体 Diploid | Shimizu et al., | |
莽山野柑 Mangshan Mandarin (C. reticulata) | Illumina HiSeq | 344.3 | 334 | 28 820 | 50.1 | 42 714 | 24.7 | 缺失 Deficiency | 199.7× | 二倍体 Diploid | Wang et al., | |
香港金橘 Hongkong Kumquat (Fortunella hindsii) | Illumina HiSeq, PacBio | 389 | 373.6 | 32 257 | 14.3 | 900 | 2 200 | 0.8 | 145× | 二倍体 Diploid | Zhu et al. | |
葡萄Grape (Vitis vinifera) | 黑皮诺 PN40024 | Sanger | 475 | 487.1 | 30 434 | 41.4 | 3 514 | 65.9 | 2.6 | 8.4× | 单倍体 Haploid | Jaillon et al., |
赤霞珠 Cabernet Sauvignon | PacBio RS II | 633 | 591.4 | 36 687 | 51.1 | 1 314 | 2 170 | 缺失 Deficiency | 缺失 Deficiency | 二倍体 Diploid | Chin et al., | |
霞多丽 Chardonnay | Illumina HiSeq, PacBio RS II, MiSeq | 580 | 490 | 29 675 | 38.7 | 缺失 Deficiency | 935 | 缺失 Deficiency | 115× | 二倍体 Diploid | Roach et al., | |
霞多丽 FPS 04 | Illumina HiSeq, PacBio RS II | 600 | 606 | 38 020 | 47.3 | 684 | 1 240 | 缺失 Deficiency | 220× | 二倍体 Diploid | Zhou et al., | |
梨 Pear | 砀山酥梨 Dangshan Suli (Pyrus bretschneideriRehd.) | Illumina HiSeq | 527 | 512 | 42 812 | 53.1 | 2 103 | 35.7 | 1.99 | 194× | 二倍体 Diploid | Wu et al. |
西洋梨 Bartlett (P. communisL.) | Roche 454 | 600 | 577.3 | 43 419 | 34.1 | 142 083 | 6.53 | 缺失 Deficiency | 11.4× | 单倍体 Haploid | Chagne et al., | |
西洋梨 BartlettDHv2.0 (P. communisL.) | PacBio SII | 528 | 496.9 | 37 445 | 49.7 | 494 | 5 300 | 缺失 Deficiency | 63× | 双单倍体 Double haploid | Linsmith et al., | |
山西杜梨 Shanxi Duli (P. betuleafolia) | Illumina HiSeq, PacBio | 511 | 532.7 | 59 522 | 46.4 | 139 | 1 570 | 1.54 | 缺失 Deficiency | 缺失 Deficiency | Dong et al., | |
草莓 Strawberry | 森林草莓 Hawaii 4 (Fragaria vesca) | Roche 454, SOLiD, Illumina HiSeq | 240 | 209.8 | 34 809 | 23 | 3 263 | 13 000 | 缺失 Deficiency | 39× | 二倍体 Diploid | Shulaev et al., |
Reikou (F. ananassa) | Roche 454, Illumina HiSeq | 692 | 698 | 45 377 | 5 | 7 598 | 46.8 | 缺失 Deficiency | 缺失 Deficiency | 八倍体 Octoploid | Hirakawa et al. | |
卡麦罗莎草莓 Camarosa (F. ananassa) | Illumina HiSeq, PacBio RS II | 813.4 | 660 | 108 087 | 36 | 25 426 | 79.9 | 缺失 Deficiency | 615× | 八倍体 Octoploid | Edger et al., | |
黄毛草莓 Ruegen(F. nilgerrensis) | Illumina HiSeq, PacBio SMRT | 276 | 270.3 | 28 780 | 43.4 | 257 | 85 000 | 缺失 Deficiency | 152× | 二倍体 Diploid | Zhang et al., | |
香蕉 Banana | 彭亨香蕉 DH-Pahang (Musa acuminata) | Sanger, Roche454, Illumina GAIIx | 523 | 472.2 | 36 542 | 44 | 7 513 | 43.1 | 缺失 Deficiency | 50× | 双单倍体 Double haploid | D'Hont et al., |
Pisang Klutuk Wulung(M. balbisiana) | Illumina HiSeq | 432.7 | 341.4 | 36 638 | 29.5 | 63 245 | 7.9 | 缺失 Deficiency | 41.4× | 二倍体 Diploid | Davey et al., | |
阿宽蕉(M. itinerans) | Illumina HiSeq | 615.2 | 462.1 | 32 456 | 38.9 | 7 194 | 33.9 | 0.25 | 120.7× | 二倍体 Diploid | Wu et al. | |
DH-PKW(M. balbisiana) | Illumina HiSeq, PacBio, | 492 | 430 | 35 148 | 55.8 | 294 | 1 830 | 缺失 Deficiency | 417× | 双单倍体 Double haploid | Wang et al., | |
桃Peach (Prunus persica) | Lovell | Sanger | 265 | 224.6 | 27 852 | 37.14 | 202 | 294 | 缺失 Deficiency | 8.47× | 二倍体 Diploid | Verde et al., |
[1] |
Ardui S, Ameur A, Vermeesch J R, Hestand M S. 2018. Single molecule real-time(SMRT)sequencing comes of age:applications and utilities for medical diagnostics. Nucleic Acids Res, 46 (5):2159-2168.
doi: 10.1093/nar/gky066 URL |
[2] |
Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush M R, Gormley N A, Humphray S J, Irving L J, Karbelashvili M S, Kirk S M, Li H, Liu X, Maisinger K S, Murray L J, Obradovic B, Ost T, Parkinson M L, Pratt M R, Rasolonjatovo I M J, Reed M T, Rigatti R, Rodighiero C, Ross M T, Sabot A, Sankar S V, Scally A, Schroth G P, Smith M E, Smith V P, Spiridou A, Torrance P E, Tzonev S S, Vermaas E H, Walter K, Wu X, Zhang L, Alam M D, Anastasi C, Aniebo I C, Bailey D M D, Bancarz I R, Banerjee S, Barbour S G, Baybayan P A, Benoit V A, Benson K F, Bevis C, Black P J, Boodhun A, Brennan J S, Bridgham J A, Brown R C, Brown A A, Buermann D H, Bundu A A, Burrows J C, Carter N P, Castillo N, Chiara E, Catenazzi M, Chang S, Neil Cooley R, Crake N R, Dada O O, Diakoumakos K D, Dominguez-Fernandez B, Earnshaw D J, Egbujor U C, Elmore D W, Etchin S S, Ewan M R, Fedurco M, Fraser L J, Fuentes Fajardo K V, Scott Furey W, George D, Gietzen K J, Goddard C P, Golda G S, Granieri P A, Green D E, Gustafson D L, Hansen N F, Harnish K, Haudenschild C D, Heyer N I, Hims M M, Ho J T, Horgan A M, Hoschler K, Hurwitz S, Ivanov D V, Johnson M Q, James T, Huw Jones T A, Kang G, Kerelska T H, Kersey A D, Khrebtukova I, Kindwall A P, Kingsbury Z, Kokko-Gonzales P I, Kumar A, Laurent M A, Lawley C T, Lee S E, Lee X, Liao A K, Loch J A, Lok M, Luo S, Mammen R M, Martin J W, McCauley P G, McNitt P, Mehta P, Moon K W, Mullens J W, Newington T, Ning Z, Ling Ng B, Novo S M, O Neill M J, Osborne M A, Osnowski A, Ostadan O, Paraschos L L, Pickering L, Pike A C, Pike A C, Chris Pinkard D, Pliskin D P, Podhasky J, Quijano V J, Raczy C, Rae V H, Rawlings S R, Chiva Rodriguez A, Roe P M, Rogers J, Rogert Bacigalupo M C, Romanov N, Romieu A, Roth R K, Rourke N J, Ruediger S T, Rusman E, Sanches-Kuiper R M, Schenker M R, Seoane J M, Shaw R J, Shiver M K, Short S W, Sizto N L, Sluis J P, Smith M A, Ernest Sohna Sohna J, Spence E J, Stevens K, Sutton N, Szajkowski L, Tregidgo C L, Turcatti G, VandeVondele S, Verhovsky Y, Virk S M, Wakelin S, Walcott G C, Wang J, Worsley G J, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin J C, Hurles M E, McCooke N J, West J S, Oaks F L, Lundberg P L, Klenerman D, Durbin R, Smith A J. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456 (7218):53-59.
doi: 10.1038/nature07517 pmid: 18987734 |
[3] |
Chagne D, Crowhurst R N, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knabel M, Saeed M, Montanari S, Kim Y K, Nicolini D, Larger S, Stefani E, Allan A C, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens R P, Brewer L, Bus V G, Schaffer R J, Gardiner S E, Velasco R. 2014. The draft genome sequence of European pear(Pyrus communis L.‘Bartlett’). PLoS ONE, 9 (4):e92644.
doi: 10.1371/journal.pone.0092644 URL |
[4] |
Chen W, Kalscheuer V, Tzschach A, Menzel C, Ullmann R, Schulz M H, Erdogan F, Li N, Kijas Z, Arkesteijn G, Pajares I L, Goetz-Sothmann M, Heinrich U, Rost I, Dufke A, Grasshoff U, Glaeser B, Vingron M, Ropers H H. 2008. Mapping translocation breakpoints by next-generation sequencing. Genome Res, 18 (7):1143-1149.
doi: 10.1101/gr.076166.108 pmid: 18326688 |
[5] |
Chin C S, Peluso P, Sedlazeck F J, Nattestad M, Concepcion G T, Clum A, Dunn C, O'Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer G R, Delledonne M, Luo C, Ecker J R, Cantu D, Rank D R, Schatz M C. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods, 13 (12):1050-1054.
doi: 10.1038/NMETH.4035 |
[6] |
Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro E A, Gouzy J, Rees D, Guerif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet, 49 (7):1099-1106.
doi: 10.1038/ng.3886 |
[7] |
Davey M W, Gudimella R, Harikrishna J A, Sin L W, Khalid N, Keulemans J. 2013. A draft Musa balbisiana genome sequence for molecular genetics in polyploid,inter- and intra-specific Musa hybrids. BMC Genomics, 14 (1):683.
doi: 10.1186/1471-2164-14-683 URL |
[8] |
D'Hont A, Denoeud F, Aury J M, Baurens F C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da S C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengelle J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain M R, Leebens-Mack J, Burgess D, Freeling M, Mbeguie-A-Mbeguie D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A M, Weissenbach J, Ruiz M, Glaszmann J C, Quetier F, Yahiaoui N, Wincker P. 2012. The banana( Musa acuminata)genome and the evolution of monocotyledonous plants. Nature, 488 (7410):213-217.
doi: 10.1038/nature11241 URL |
[9] |
Dong X, Wang Z, Tian L, Zhang Y, Qi D, Huo H, Xu J, Li Z, Liao R, Shi M, Wahocho S A, Liu C, Zhang S, Tian Z, Cao Y. 2020. De novo assembly of a wild pear( Pyrus betuleafolia)genome. Plant Biotechnol J, 18 (2):581-595.
doi: 10.1111/pbi.v18.2 URL |
[10] |
Edger P P, Poorten T J, VanBuren R, Hardigan M A, Colle M, McKain M R, Smith R D, Teresi S J, Nelson A, Wai C M, Alger E I, Bird K A, Yocca A E, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Acharya C B, Cole G S, Mower J P, Childs K L, Jiang N, Lyons E, Freeling M, Puzey J R, Knapp S J. 2019. Origin and evolution of the octoploid strawberry genome. Nat Genet, 51 (3):541-547.
doi: 10.1038/s41588-019-0356-4 URL |
[11] |
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. 2009. Real-time DNA sequencing from single polymerase molecules. Science, 323 (5910):133-138.
doi: 10.1126/science.1162986 URL |
[12] |
Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, Yamada M, Kohara M, Watanabe A, Kishida Y, Fujishiro T, Tsuruoka H, Minami C, Sasamoto S, Kato M, Nanri K, Komaki A, Yanagi T, Guoxin Q, Maeda F, Ishikawa M, Kuhara S, Sato S, Tabata S, Isobe S N. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res, 21 (2):169-181.
doi: 10.1093/dnares/dst049 URL |
[13] |
Imelfort M, Edwards D. 2009. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform, 10 (6):609-618.
doi: 10.1093/bib/bbp039 URL |
[14] |
Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del F C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe M E, Valle G, Morgante M, Caboche M, Adam-Blondon A F, Weissenbach J, Quetier F, Wincker P. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449 (7161):463-467.
doi: 10.1038/nature06148 URL |
[15] |
Ji P, Zhang Y, Wang J, Zhao F. 2017. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun, 8:14306.
doi: 10.1038/ncomms14306 URL |
[16] |
Laver T, Harrison J, O'Neill P A, Moore K, Farbos A, Paszkiewicz K, Studholme D J. 2015. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif, 3:1-8.
doi: 10.1016/j.bdq.2015.02.001 URL |
[17] |
Li X, Kui L, Zhang J, Xie Y, Wang L, Yan Y, Wang N, Xu J, Li C, Wang W, van Nocker S, Dong Y, Ma F, Guan Q. 2016. Improved hybrid de novo genome assembly of domesticated apple (Malus × domestica). Gigascience, 5 (1):35.
doi: 10.1186/s13742-016-0139-0 URL |
[18] |
Li Y, Wang L R. 2020. Genetic resources,reeding programs in China,and gene mining of peach:a review. Horticultural Plant Journal, 6 (4):205-215.
doi: 10.1016/j.hpj.2020.06.001 URL |
[19] | Linsmith G, Rombauts S, Montanari S, Deng C H, Celton J M, Guerif P, Liu C, Lohaus R, Zurn J D, Cestaro A, Bassil N V, Bakker L V, Schijlen E, Gardiner S E, Lespinasse Y, Durel C E, Velasco R, Neale D B, Chagne D, van de Peer Y, Troggio M, Bianco L. 2019. Pseudo-chromosome-length genome assembly of a double haploid“Bartlett”pear(Pyrus communis L.). BioRxiv,651778. |
[20] | Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. 2012. Comparison of next-generation sequencing systems. J Biomed Biotechnol, 2012 (7):251364. |
[21] |
Lu H, Giordano F, Ning Z. 2016. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics, 14 (5):265-279.
doi: 10.1016/j.gpb.2016.05.004 URL |
[22] |
Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437 (7057):376-380.
pmid: 16056220 |
[23] |
Niedringhaus T P, Milanova D, Kerby M B, Snyder M P, Barron A E. 2011. Landscape of next-generation sequencing technologies. Anal Chem, 83 (12):4327-4341.
doi: 10.1021/ac2010857 URL |
[24] | Qiao Xin, Li Meng, Yin Hao, Li Lei-yan, Wu Jun, Zhang Shao-ling. 2014. Advances in whole genome sequencing of fruit trees. Acta Horticulturae Sinica, 41 (1):165-177. (in Chinese) |
乔鑫, 李梦, 殷豪, 李雷廷, 吴俊, 张绍铃. 2014. 果树全基因组测序研究进展. 园艺学报, 41 (1):165-177. | |
[25] |
Rhoads A, Au K F. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 13 (5):278-289.
doi: 10.1016/j.gpb.2015.08.002 URL |
[26] |
Roach M J, Johnson D L, Bohlmann J, van Vuuren H, Jones S, Pretorius I S, Schmidt S A, Borneman A R. 2018. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genet, 14 (11):e1007807.
doi: 10.1371/journal.pgen.1007807 URL |
[27] |
Rothberg J M, Leamon J H. 2008. The development and impact of 454 sequencing. Nat Biotechnol, 26 (10):1117-1124.
doi: 10.1038/nbt1485 URL |
[28] |
Schuster S C. 2008. Next-generation sequencing transforms today’s biology. Nat Methods, 5 (1):16-18.
doi: 10.1038/nmeth1156 URL |
[29] |
Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat Biotechnol, 26 (10):1135-1145.
doi: 10.1038/nbt1486 URL |
[30] |
Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y. 2017. Draft sequencing of the heterozygous diploid genome of Satsuma( Citrus unshiu Marc.)using a hybrid assembly approach. Front Genet, 8:180.
doi: 10.3389/fgene.2017.00180 URL |
[31] |
Shulaev V, Sargent D J, Crowhurst R N, Mockler T C, Folkerts O, Delcher A L, Jaiswal P, Mockaitis K, Liston A, Mane S P, Burns P, Davis T M, Slovin J P, Bassil N, Hellens R P, Evans C, Harkins T, Kodira C, Desany B, Crasta O R, Jensen R V, Allan A C, Michael T P, Setubal J C, Celton J M, Rees D J, Williams K P, Holt S H, Ruiz R J, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin S A, Troggio M, Viola R, Ashman T L, Wang H, Dharmawardhana P, Elser J, Raja R, Priest H D, Bryant D J, Fox S E, Givan S A, Wilhelm L J, Naithani S, Christoffels A, Salama D Y, Carter J, Lopez G E, Zdepski A, Wang W, Kerstetter R A, Schwab W, Korban S S, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen J L, Salzberg S L, Dickerman A W, Velasco R, Borodovsky M, Veilleux R E, Folta K M. 2011. The genome of woodland strawberry (Fragaria vesca). Nat Genet, 43 (2):109-116.
doi: 10.1038/ng.740 URL |
[32] | Torpdahl M, Löfström C, Nielsen E M. 2010. Whole genome sequencing. Methods in Molecular Biology, 628 (6):215. |
[33] |
Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek J A, Costa G, McKernan K, Sidow A, Fire A, Johnson S M. 2008. A high-resolution,nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res, 18 (7):1051-1063.
doi: 10.1101/gr.076463.108 pmid: 18477713 |
[34] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald L M, Gutin N, Lanchbury J, Macalma T, Mitchell J T, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu V T, King S T, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater M M, Masiero S, Lasserre P, Lespinasse Y, Allan A C, Bus V, Chagne D, Crowhurst R N, Gleave A P, Lavezzo E, Fawcett J A, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens R P, Durel C E, Gutin A, Bumgarner R E, Gardiner S E, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. 2010. The genome of the domesticated apple( Malus × domestica Borkh.). Nat Genet, 42 (10):833-839.
doi: 10.1038/ng.654 |
[35] |
Velculescu V E, Zhang L, Zhou W, Vogelstein J, Basrai M A, Bassett D J, Hieter P, Vogelstein B, Kinzler K W. 1997. Characterization of the yeast transcriptome. Cell, 88 (2):243-251.
pmid: 9008165 |
[36] |
Verde I, Abbott A G, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori M T, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel L A, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein D M, Xuan P, Del F C, Aramini V, Copetti D, Gonzalez S, Horner D S, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar D S. 2013. The high-quality draft genome of peach( Prunus persica)identifies unique patterns of genetic diversity,domestication and genome evolution. Nat Genet, 45 (5):487-494.
doi: 10.1038/ng.2586 URL |
[37] |
Wang L, He F, Huang Y, He J, Yang S, Zeng J, Deng C, Jiang X, Fang Y, Wen S, Xu R, Yu H, Yang X, Zhong G, Chen C, Yan X, Zhou C, Zhang H, Xie Z, Larkin R M, Deng X, Xu Q. 2018. Genome of wild mandarin and domestication history of mandarin. Mol Plant, 11 (8):1024-1037.
doi: S1674-2052(18)30187-4 pmid: 29885473 |
[38] |
Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J, Wu G, Tian S, Chen C, Liu Y, Yu H, Yang X, Lan H, Wang N, Wang L, Xu J, Jiang X, Xie Z, Tan M, Larkin R M, Chen L L, Ma B G, Ruan Y, Deng X, Xu Q. 2017. Genomic analyses of primitive,wild and cultivated citrus provide insights into asexual reproduction. Nat Genet, 49 (5):765-772.
doi: 10.1038/ng.3839 URL |
[39] |
Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J, Li J, Xu Y, Wang J, Ma W, Wu Z, Yu L, Yang Y, Liu C, Guo Y, Sun S, Baurens F C, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo A, Xie J, Li Y, Ding Z, Yan Y, Tie W, D'Hont A, Hu W, Jin Z. 2019. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat Plants, 5 (8):810-821.
doi: 10.1038/s41477-019-0452-6 URL |
[40] |
Wu G A, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita M A, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del F C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo F R, Estornell L H, Munoz-Sanz J V, Ibanez V, Herrero-Ortega A, Aleza P, Perez-Perez J, Ramon D, Brunel D, Luro F, Chen C, Farmerie W G, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astua J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado M A, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D. 2014. Sequencing of diverse mandarin,pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol, 32 (7):656-662.
doi: 10.1038/nbt.2906 |
[41] |
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan M A, Tao S, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull R E, Bennetzen J L, Wang J, Zhang S. 2013. The genome of the pear( Pyrus bretschneideri Rehd.). Genome Res, 23 (2):396-408.
doi: 10.1101/gr.144311.112 URL |
[42] |
Wu W, Yang Y L, He W M, Rouard M, Li W M, Xu M, Roux N, Ge X J. 2016. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Sci Rep, 6:31586.
doi: 10.1038/srep31586 URL |
[43] |
Xu Q, Chen L L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas M K, Zeng W, Guo F, Cao H, Yang X, Xu X W, Cheng Y J, Xu J, Liu J H, Luo O J, Tang Z, Guo W W, Kuang H, Zhang H Y, Roose M L, Nagarajan N, Deng X X, Ruan Y. 2013. The draft genome of sweet orange (Citrus sinensis). Nat Genet, 45 (1):59-66.
doi: 10.1038/ng.2472 URL |
[44] |
Zhang C M, Hao Y J. 2020. Advances in genomic,transcriptomic,and metabolomic analyses of fruit quality in fruit crops. Horticultural Plant Journal, 6 (4):205-215.
doi: 10.1016/j.hpj.2020.06.001 URL |
[45] |
Zhang J, Lei Y, Wang B, Li S, Yu S, Wang Y, Li H, Liu Y, Ma Y, Dai H, Wang J, Zhang Z. 2020. The high-quality genome of diploid strawberry ( Fragaria nilgerrensis)provides new insights into anthocyanin accumulation. Plant Biotechnol J, 18 (9):1908-1924.
doi: 10.1111/pbi.v18.9 URL |
[46] |
Zhang L, Hu J, Han X, Li J, Gao Y, Richards C M, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun, 10 (1):1494.
doi: 10.1038/s41467-019-09518-x pmid: 30940818 |
[47] |
Zhang Y, Barthe G, Grosser J W, Wang N. 2016. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome. BMC Genomics, 17:485.
doi: 10.1186/s12864-016-2779-y URL |
[48] | Zhou Y, Minio A, Massonnet M, Solares E A, Gaut B S. 2019. Structural variants,clonal propagation,and genome evolution in grapevine (Vitis vinifera). BioRxiv:508119. |
[49] |
Zhu C, Zheng X, Huang Y, Ye J, Chen P, Zhang C, Zhao F, Xie Z, Zhang S, Wang N, Li H, Wang L, Tang X, Chai L, Xu Q, Deng X. 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnol J, 17 (11):2199-2210.
doi: 10.1111/pbi.v17.11 URL |
[1] | CHEN Ran, SU Houwen, JIANG Weitao, LI Qianjin, CHEN Xuesen, SHEN Xiang, YIN Chengmiao, and MAO Zhiquan, . The Growth of Apple Container Seedlings in Replanted Soil and Characteristics of Soil Environment [J]. Acta Horticulturae Sinica, 2022, 49(1): 1-10. |
[2] | ZHOU Tie, PAN Bin, LI Feifei, MA Xiaochuan, TANG Mengjing, LIAN Xuefei, CHANG Yuanyuan, CHEN Yuewen, and LU Xiaopeng, . Effects of Drought Stress at Enlargement Stage on Fruit Quality Formation of Satsuma Mandarin and the Law of Water Absorption and Transportation in Tree After Re-watering [J]. Acta Horticulturae Sinica, 2022, 49(1): 11-22. |
[3] | HE Yan, SUN Yanli, ZHAO Fangfang, and DAI Hongjun. Effect of Exogenous Brassinolides Treatment on Sugar Metabolism of Merlot Grape Berries [J]. Acta Horticulturae Sinica, 2022, 49(1): 117-128. |
[4] | WANG Qiang, CONG Peihua, ZHANG Caixia, ZHANG Liyi, YANG Ling, LI Wuxing, KANG Liqun, HAN Xiaolei, and LIU Xiaofeng. A New Mid-late Ripening Apple Cultivar‘Huahong 2’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2763-2764. |
[5] | WANG Qiang, CONG Peihua, ZHANG Caixia, ZHANG Liyi, YANG Ling, LI Wuxing, KANG Liqun, HAN Xiaolei, and LIU Xiaofeng. A New Late Ripening Apple Cultivar‘Huafei’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2765-2766. |
[6] | YANG Ling, CONG Peihua, WANG Qiang, LI Wuxing, and KANG Liqun. A New Middle Ripening Apple Cultivar‘Huali’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2767-2768. |
[7] | HUANG Jingmiao, WANG Jinxin, HAO Jie, YAN Xinmin, FENG Jianzhong, LI Jianming, SUO Xiangmin, and LI Xueying. A New Late Ripening Apple Cultivar‘Jiping 4’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2769-2770. |
[8] | WANG Yaru, LI Yong, WANG Jin, WANG Yingtao, LI Xiao, and WANG Yongbo. A New Mid-ripening Pear Cultivar‘Jijin’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2771-2772. |
[9] | WANG Yingying, WANG Haibo, SHI Xiangbin, JI Xiaohao, WANG Zhiqiang, and WANG Xiaodi. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Hantao 4’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2773-2774. |
[10] | WANG Xiaodi, WANG Yingying, WANG Baoliang, WANG Xiaolong, and ZHANG Yican. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Hantao 6’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2775-2776. |
[11] | YANG Xingwang, WANG Yingying, SHI Xiangbin, JI Xiaohao, LIU Hongdi, and WANG Xiaodi. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Hantao 7’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2777-2778. |
[12] | WANG Yingying, WANG Zhiqiang, ZHANG Yican, WANG Xiaodi, and YANG Xingwang. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Hantao 9’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2779-2780. |
[13] | GUO Jiying, ZHAO Jianbo, ZHANG Yu, WANG Shangde, LIU Xin, LI Xinyue, WANG Zhen, REN Fei, and JIANG Quan. A New Late-ripening Flat Peach Cultivar‘Ruipan 101’with Yellow Flesh [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2783-2784. |
[14] | LI Xiujie, HAN Zhen, ZHU Ziguo, ZHANG Qingtian, NIU Qinglin, and LI Bo, . A New Early Ripening Grape Cultivar‘Jinhong’for Table [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2791-2792. |
[15] | WU Juxun, YI Hualin, XIE Heping, SU Mei, ZHONG Jiacheng, and YAN Xianshuo. A New Citrus Cultivar‘Huayi 1’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2811-2812. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd