https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

ACTA HORTICULTURAE SINICA ›› 2018, Vol. 45 ›› Issue (12): 2371-2382.doi: 10.16420/j.issn.0513-353x.2018-0433

• Research Papers • Previous Articles     Next Articles

Cloning and Expression Regulation of the AdCCS1 from Actinidia chinensis var. deliciosa

CHEN Yiting,FENG Xin*,LAI Ruilian,GAO Minxia,CHEN Wenguang,and WU Rujian   

  1. Fruit Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou 350013,China
  • Online:2018-12-25 Published:2018-12-25

Abstract: Copper/zinc superoxide dismutases(Cu/Zn SOD),acting as an essential antioxidant enzyme,play important roles in plant growth and development,stress response and fruit senescence,while their activities depended on the copper chaperone for Cu/Zn SOD(CCS)to delivering copper to them. Therefore,CCS is also involved in the plant growth and development and stress response. In this study,a 1 066 bp gene of copper chaperone for Cu/Zn SOD(AdCCS1)was isolated from Actinidia chinensis var. deliciosa‘Miliang 1’by using reverse transcription(RT-PCR),and its accession number was KY471361. The AdCCS1 gene had an open reading frame of 984 bp and encoded 327 amino acids,which contained three typical domains(N-terminal domain,central domain and C-terminal domain)and two conserved metal binding sites(MXCXXC and CXC). Gene structure analysis showed that AdCCS1 gene consisted of six extrons and five introns. Phylogenetic analysis revealed that AdCCS1 was clustered in the dicotyledonous branch with close relation to tea CsCCS. In addition,a variety of cis-acting elements associated with light response,stress response and hormone response were present in the 5′ terminal regulatory region of the AdCCS1 gene. Quantitative PCR analysis showed that AdCCS1 was expressed strongly in kiwifruit leaves,followed by ripe fruits,flowers,young fruits and stems,but weakly in roots. The expression level of AdCCS1 in kiwifruits stored at 4 ℃ was lower than that of the same time stored at 25 ℃,which suggested that low temperature inhibit the expression of AdCCS1. The expression of AdCCS1 in fruits was down-regulated after being treated with abscisic acid and gibberellin,while their expression patterns were different.

Key words: Actinidia chinensis, AdCCS1, storage temperature, ABA, GA3, expression analysis

CLC Number: