园艺学报 ›› 2022, Vol. 49 ›› Issue (9): 1945-1956.doi: 10.16420/j.issn.0513-353x.2021-0794
贾鑫1, 曾臻1, 陈月1, 冯慧2, 吕英民1,*(
), 赵世伟2,*(
)
收稿日期:2022-04-07
修回日期:2022-07-01
出版日期:2022-09-25
发布日期:2022-10-08
通讯作者:
吕英民,赵世伟
E-mail:luyingmin@bjfu.edu.cn;zhaoshiwei@beijingbg.com
基金资助:
JIA Xin1, ZENG Zhen1, CHEN Yue1, FENG Hui2, LÜ Yingmin1,*(
), ZHAO Shiwei2,*(
)
Received:2022-04-07
Revised:2022-07-01
Online:2022-09-25
Published:2022-10-08
Contact:
LÜ Yingmin,ZHAO Shiwei
E-mail:luyingmin@bjfu.edu.cn;zhaoshiwei@beijingbg.com
摘要:
以月季‘月月粉’(Rosa chinensis‘Old Blush’)扦插苗为试验材料,基于干旱胁迫的转录组克隆得到响应干旱胁迫的AP2/ERF类转录因子基因RcDREB2A,对其进行生物信息分析、表达分析以及转录因子特性分析。结果表明,RcDREB2A包含1 155 bp的开放阅读框,编码384个氨基酸,在75 ~ 142位氨基酸区域含有1个保守的AP2结构域;系统进化树分析表明RcDREB2A与野草莓(Fragaria vesca)FvDREB2A(XP_004307690.1)亲缘性最高;RcDREB2A蛋白预测分子量为5 737,理论等电点为4.75,无跨膜结构域,不含信号肽;定位于细胞核,没有转录激活活性;RcDREB2A在月季‘月月粉’叶片中表达量较高,且能被ABA、干旱、低温、盐胁迫处理诱导表达上调。以上结果表明,RcDREB2A可能参与月季多种非生物胁迫的响应。
中图分类号:
贾鑫, 曾臻, 陈月, 冯慧, 吕英民, 赵世伟. 月季‘月月粉’RcDREB2A的克隆与表达分析[J]. 园艺学报, 2022, 49(9): 1945-1956.
JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’[J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956.
| 用途 Application | 质粒名称 Plasmid name | 引物序列(5′-3′) Primer sequence |
|---|---|---|
| 扩增RcDREB2A全长 Amplification of RcDREB2A full length | RcDREB2A-F | ATGGGTGCTTATGATCAAGGTTCTAATGG |
| RcDREB2A-R | GTTTGCATTGCCGCCGCAGCCT | |
| 荧光定量PCR Quantitative Real-time PCR | RcDREB2A-F1 | GAGCAGGCACATGACTGGATTAGC |
| RcDREB2A-R1 | TCTCGGAGCAGGGATGGGTTTAC | |
| 内参基因荧光定量PCR | RcPP2A-F | GAGGACAGGACCAGGAAGG |
| Internal reference genes Quantitative Real-time PCR | RcPP2A-R | GCTCTACGCCGCCAACAT |
| 亚细胞定位 Subcellular localization | pBI121-RcDREB2A-GFP-F | CATTTACGAACGATACTCGAGATGGGTGCTTATGATCAAGGTTCTAATGG |
| pBI121-RcDREB2A-GFP-R | CACCATCACTAGTACGTCGACGTTTGCATTGCCGCCGCAGCCT | |
| 转录激活活性分析 Transcriptional activation activity analysis | pGBKT7-RcDREB2A-A-F | ATGGAGGCCGAATTCATGGGTGCTTATGATCAAGGTTC |
| pGBKT7-RcDREB2A-A-R | CCGCTGCAGGTCGACGGATCCGTTTGCATTGCCGCCGCA | |
| pGBKT7-RcDREB2A-N-F | ATGGAGGCCGAATTCATGGGTGCTTATGATCAAGGTTC | |
| pGBKT7-RcDREB2A-N-R | CCGCTGCAGGTCGACGGATCCAAAGATTCCTCCTCTGCACAGACC | |
| pGBKT7-RcDREB2A-C-F | ATGGAGGCCGAATTCTATAGTGAAAACTGAGGATGGTGAGG | |
| pGBKT7-RcDREB2A-C-R | CAGGTCGACGGATCCGTTTGCATTGCCGCCGCA |
表1 相关引物
Table 1 Related primers
| 用途 Application | 质粒名称 Plasmid name | 引物序列(5′-3′) Primer sequence |
|---|---|---|
| 扩增RcDREB2A全长 Amplification of RcDREB2A full length | RcDREB2A-F | ATGGGTGCTTATGATCAAGGTTCTAATGG |
| RcDREB2A-R | GTTTGCATTGCCGCCGCAGCCT | |
| 荧光定量PCR Quantitative Real-time PCR | RcDREB2A-F1 | GAGCAGGCACATGACTGGATTAGC |
| RcDREB2A-R1 | TCTCGGAGCAGGGATGGGTTTAC | |
| 内参基因荧光定量PCR | RcPP2A-F | GAGGACAGGACCAGGAAGG |
| Internal reference genes Quantitative Real-time PCR | RcPP2A-R | GCTCTACGCCGCCAACAT |
| 亚细胞定位 Subcellular localization | pBI121-RcDREB2A-GFP-F | CATTTACGAACGATACTCGAGATGGGTGCTTATGATCAAGGTTCTAATGG |
| pBI121-RcDREB2A-GFP-R | CACCATCACTAGTACGTCGACGTTTGCATTGCCGCCGCAGCCT | |
| 转录激活活性分析 Transcriptional activation activity analysis | pGBKT7-RcDREB2A-A-F | ATGGAGGCCGAATTCATGGGTGCTTATGATCAAGGTTC |
| pGBKT7-RcDREB2A-A-R | CCGCTGCAGGTCGACGGATCCGTTTGCATTGCCGCCGCA | |
| pGBKT7-RcDREB2A-N-F | ATGGAGGCCGAATTCATGGGTGCTTATGATCAAGGTTC | |
| pGBKT7-RcDREB2A-N-R | CCGCTGCAGGTCGACGGATCCAAAGATTCCTCCTCTGCACAGACC | |
| pGBKT7-RcDREB2A-C-F | ATGGAGGCCGAATTCTATAGTGAAAACTGAGGATGGTGAGG | |
| pGBKT7-RcDREB2A-C-R | CAGGTCGACGGATCCGTTTGCATTGCCGCCGCA |
| 元件名称 Site name | 序列 Sequence | 元件数 Number of sites | 功能 Function |
|---|---|---|---|
| ABRE | ACGTG | 3 | 脱落酸响应元件Abscisic acid-responsive element |
| ATCT-motif | AATCTAATCC | 1 | 光响应元件Light responsive element |
| CGTCA-motif | CGTCA | 1 | 茉莉酸响应元件MeJA-responsive element |
| MYB | AAACCA | 2 | 干旱诱导相关MYB结合位点MYB binding site involved in drought-inducibility |
| G-Box | CACGTT | 2 | 光响应元件Light responsive element |
| GARE-motif | TCTGTTG | 1 | 赤霉素响应元件Gibberellin-responsive element |
| LTR | CCGAAA | 2 | 低温响应元件Low-temperature responsive element |
| P-box | CCTTTTG | 1 | 赤霉素响应元件Gibberellin-responsive element |
| TATC-box | TATCCCA | 1 | 赤霉素响应元件Gibberellin-responsive element |
| TGA-element | AACGAC | 2 | 生长素响应元件Auxin-responsive element |
| TGACG-motif | TGACG | 1 | 茉莉酸响应元件MeJA-responsive element |
表2 RcDREB2A启动子顺式作用元件
Table 2 The cis-acting regulatory elements in the promoter of RcDREB2A
| 元件名称 Site name | 序列 Sequence | 元件数 Number of sites | 功能 Function |
|---|---|---|---|
| ABRE | ACGTG | 3 | 脱落酸响应元件Abscisic acid-responsive element |
| ATCT-motif | AATCTAATCC | 1 | 光响应元件Light responsive element |
| CGTCA-motif | CGTCA | 1 | 茉莉酸响应元件MeJA-responsive element |
| MYB | AAACCA | 2 | 干旱诱导相关MYB结合位点MYB binding site involved in drought-inducibility |
| G-Box | CACGTT | 2 | 光响应元件Light responsive element |
| GARE-motif | TCTGTTG | 1 | 赤霉素响应元件Gibberellin-responsive element |
| LTR | CCGAAA | 2 | 低温响应元件Low-temperature responsive element |
| P-box | CCTTTTG | 1 | 赤霉素响应元件Gibberellin-responsive element |
| TATC-box | TATCCCA | 1 | 赤霉素响应元件Gibberellin-responsive element |
| TGA-element | AACGAC | 2 | 生长素响应元件Auxin-responsive element |
| TGACG-motif | TGACG | 1 | 茉莉酸响应元件MeJA-responsive element |
图5 RcDREB2A组织特异性及不同胁迫条件下表达模式分析 t测验,与同期对照的差异显著性(**α=0.01)。
Fig. 5 Expression patterns analysis of RcDREB2A in different tissue and under various stress treatments Signifcant differences compared with the control were determined using unpaired Student’s t-tests(**α=0.01).
图6 RcDREB2A转录激活活性分析 pGBKT7-53与pGADT7-T共同转化酵母细胞为阳性对照,pGBKT7-Lamin与pGADT7-T共同转化酵母细胞为阴性对照。
Fig. 6 Transactivation assay of RcDREB2A The co-transformations of yeast cells with pGBKT7 and pGADT7-T were positive controls,and those with pGBKT7-Lamin and pGADT7-T were negative controls.
| [1] | Cao S L, Wang Y, Li X T, Gao F, Feng J C, Zhou Y J. 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants,doi:10.3390/plants9040455. |
| [2] |
Chen J R, Lue J J, Liu R, Xiong X Y, Wang T X, Chen S Y, Guo L B, Wang H F. 2010. DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose(Rosa chinensis Jacq.). Plant Growth Regulation, 60:199-211.
doi: 10.1007/s10725-009-9434-4 URL |
| [3] |
Chen J R, Chen Y B, Ziemianska M, Liu R, Deng Z N, Niedzwiecka-Filipiak I, Li Y L, Jiao J X, Xiong X Y. 2016. Co-expression of MtDREB1C and RcXET enhances stress tolerance of transgenic China rose(Rosa chinensis Jacq.). Journal of Plant Growth Regulation, 35:586-599.
doi: 10.1007/s00344-015-9564-z URL |
| [4] |
Chen K, Tang W, Zhou Y, Chen J, Xu Z, Ma R, Dong Y, Ma Y, Chen M. 2021. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Biochemistry, 170:287-295.
doi: 10.1016/j.plaphy.2021.12.014 pmid: 34933148 |
| [5] |
Cheng L B, Yang J J, Yin L, Hui L C, Qian H M, Li S Y, Li L J. 2017. Transcription factor NnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana. Biologia Plantarum, 61 (4):651-658.
doi: 10.1007/s10535-017-0718-7 URL |
| [6] | Cui Bo, Hao Ping’an, Liang Fang, Zhang Yan,Wang Ximeng,Li Junlin,Jiang Suhua,Xu Shenping. 2020. Cloning and expression analysis of AP2/ERF family gene from Phalaenopsis under low temperature. Acta Horticulturae Sinica, 47 (1):85-97. (in Chinese) |
| 崔波, 郝平安, 梁芳, 张燕, 王喜蒙, 李俊霖, 蒋素华, 许申平. 2020. 蝴蝶兰AP2/ERF家族基因的克隆及在低温下表达特性分析. 园艺学报, 47 (1):85-97. | |
| [7] |
Cui M, Zhang W J, Zhang Q, Xu Z Q, Zhu Z G, Duan F P, Wu R. 2011. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry, 49 (12):1384-1391.
doi: 10.1016/j.plaphy.2011.09.012 URL |
| [8] |
Dong C, Xi Y, Chen X L, Cheng Z M. 2021. Genome-wide identification of AP2/EREBP in Fragaria vesca and expression pattern analysis of the FvDREB subfamily under drought stress. BMC Plant Biology, 21:295.
doi: 10.1186/s12870-021-03095-2 URL |
| [9] | El-Esawi M A, Alayafi A A. 2019. Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton(Gossypium barbadense L.). Genes,doi:10.3390/genes10020142. |
| [10] |
Erpen L, Devi H S, Grosser J W, Dutt M. 2018. Potential use of the DREB/ERF,MYB,NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue and Organ Culture, 132:1-25.
doi: 10.1007/s11240-017-1320-6 URL |
| [11] | Ge Shibei, Jiang Xiaochun, Wang Lingyu, Yu Jingquan, Zhou Yanhong. 2020. Recent advances in the role and mechanism of arbuscular mycorrhiza-induced improvement of abiotic stress tolerance in horticultural plants. Acta Horticulturae Sinica, 47 (9):1752-1776. (in Chinese) |
| 葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 2020. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展. 园艺学报, 47 (9):1752-1776. | |
| [12] | Gou Yanli, Gao Lili, Wu Xinxin, Guo huan, Bao Aike. 2021. Cloning and expression of the AcDREB2 transcription factor gene in Atriplex canescens. Pratacultural Science, 38:523-530. (in Chinese) |
| 苟艳丽, 高丽莉, 吴欣欣, 郭欢, 包爱科. 2021. 四翅滨藜AcDREB2转录因子编码基因的克隆及其表达. 草业科学, 38:523-530. | |
| [13] | Han Miaohua, Teng Ruimin, Li Hui, Liu Hao, Lin Shijia, Zhuang Jing. 2020. Cloning of Tea plant CsDREB-A2 transcription factor gene and analysis of response to abiotic stress. Journal of Nuclear Agriculture Science, 34:2647-2657. (in Chinese) |
|
韩妙华, 腾瑞敏, 李辉, 刘昊, 林世佳, 庄静. 2020. 茶树CsDREB-A2转录因子基因的克隆与非生物胁迫响应的分析. 核农学报, 34:2647-2657.
doi: 10.11869/j.issn.100-8551.2020.12.2647 |
|
| [14] | Huang Gang, Xiong Qijie, Zhang Yingjie, Zhou Junfei, Chen Lihong. 2021. Cloning and expression analysis of BdDREB1H gene in Brachypodium distachyon. Acta Abriculture Boreali-Sinica, 36:60-66. (in Chinese) |
|
黄钢, 熊琦婕, 张英洁, 周俊飞, 陈利红. 2021. 二穗短柄草BdDREB1H基因的克隆和表达分析. 华北农学报, 36:60-66.
doi: 10.7668/hbnxb.20191755 |
|
| [15] | Jia X, Feng H, Bu Y, Ji N, Lyu Y, Zhao S. 2021. Comparative transcriptome and weighted gene co-expression network analysis identify key transcription factors of Rosa chinensis‘Old Blush’after exposure to a gradual drought stress followed by recovery. Frontiers in Genetics, 2021 (12):690264. |
| [16] | Li T, Huang Y, Khadr A, Wang Y H, Xu Z S, Xiong A S. 2020. DcDREB1A,a DREB-binding transcription factor from Daucus carota,enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes. Environmental and Experimental Botany,169 (2020) 103896. |
| [17] |
Li W, Geng Z, Zhang C, Wang K, Jiang X. 2021. Whole-genome characterization of Rosa chinensis AP2/ERF transcription factors and analysis of negative regulator RcDREB2B in Arabidopsis. BMC Genomics,(2021) 22:90.
doi: 10.1186/s12864-021-07396-6 URL |
| [18] |
Lian X, Zhao X, Zhao Q, Wang G, Li Y, Hao Y. 2021. MdDREB2A in apple is involved in the regulation of multiple abiotic stress responses. Horticultural Plant Journal, 7 (3):197-208.
doi: 10.1016/j.hpj.2021.03.006 URL |
| [19] |
Liu B J, Zhou Y, Lan W, Zhou Q, Li F, Chen F, Bao M Z, Liu G F. 2019. LlDREB1G,a novel DREB subfamily gene from Lilium longiflorum,can enhance transgenic Arabidopsis tolerance to multiple abiotic stresses. Plant Cell Tissue and Organ Culture, 138:489-506.
doi: 10.1007/s11240-019-01644-0 URL |
| [20] | Qu Dong, Peng Xue, Yan Fei. 2021. Cloning and expression analysis of CsDREB-A6 transcription factor in tea plant(Camellia sinensis). Molecular Plant Breeding, 19 (24):8095-8120. (in Chinese) |
| 曲东, 彭雪, 燕飞. 2020. 茶树CsDREB-A6转录因子基因克隆及表达分析. 分子植物育种, 19 (24):8095-8120. | |
| [21] | Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2006a. Functional analysis of an Arabidopsis transcription factor,DREB2A,involved in drought-responsive gene expression. Plant Cell,(18):1292-1309. |
| [22] | Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. 2006b. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006 (103):18822-18827. |
| [23] |
Singh K, Chandra A. 2021. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia, 76:3043-3055.
doi: 10.1007/s11756-021-00840-8 URL |
| [24] |
Singh S, Chopperla R, Shingote P, Chhapekar S S, Deshmukh R, Khan S, Padaria J C, Sharma T R, Solanke A U. 2021. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. Journal of Biotechnology, 336:10-24.
doi: 10.1016/j.jbiotec.2021.06.013 URL |
| [25] | Sun Ruifeng, Zhang Yanfang, Nie Lizheng, Niu Suqing, Han Pengai, Geng Mudan, Chang Yue, Tang Kuangang. 2021. Gene cloning of HaDREBA5 from sunflower(Helianthus annuus)and its responses to biotic and abiotic stress. Journal of Agricultural Biotechnology, 29:900-914. (in Chinese) |
| 孙瑞芬, 张艳芳, 聂利珍, 牛素清, 韩平安, 耿牡丹, 常悦, 唐宽刚. 2021. 向日葵HaDREBA5基因克隆及其对生物和非生物胁迫的响应. 农业生物技术学报, 29:909-914. | |
| [26] |
Vu T T H, Le T T C, Pham T L. 2021. Growth responses and differential expression of VrDREB2A gene at different growth stages of mungbean (Vigna radiata L. Wilczek)under drought stress. Physiology and Molecular Biology of Plants, 27 (11):2447-2458.
doi: 10.1007/s12298-021-01089-w URL |
| [27] | Wang Y N, Wang Y, Meng Z G, Wei Y X, Du X M, Liang C Z, Zhang R. 2021. Elevation of GhDREB1B transcription by a copy number variant significantly improves chilling tolerance in cotton. Planta,(2021) 254. |
| [28] |
Xiong B, Wang Y, Zhang Y, Ma M, Wang Z. 2020. Alleviation of drought stress and the physiological mechanisms in Citrus cultivar(Huangguogan)treated with methyl jasmonate. Bioscience Biotechnology and Biochemistry, 84:1958-1965.
doi: 10.1080/09168451.2020.1771676 URL |
| [29] |
Yong Y, Zhang Y, Lyu Y. 2019. A stress-responsive NAC transcription factor from tiger lily(LlNAC2)interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 20:3225.
doi: 10.3390/ijms20133225 URL |
| [30] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 21:133-139.
doi: S1369-5266(14)00106-X pmid: 25104049 |
| [31] | Zhang X X, Tang Y J, Ma Q B, Yang C Y, Mu Y H, Suo H C, Luo L H, Nian H. 2013. OsDREB2A,a rice transcription factor,significantly affects salt tolerance in transgenic soybean. PLoS ONE,(8):12,e83011. |
| [32] |
Zhong T, Zhang L, Sun S, Zeng H, Han L. 2014. Effect of localized reduction of gibberellins in different tobacco organs on drought stress tolerance and recovery. Plant Biotechnology Reports, 8:399-408.
doi: 10.1007/s11816-014-0330-7 URL |
| [33] | Zhou Y B, Chen M, Guo J K, Wang Y X, Min D H, Jiang Q Y, Ji H T, Huang C Y, Wei W, Xu H J, Chen X, Li L C, Xu Z S, Cheng X G, Wang C X, Wang C S, Ma Y Z. 2020a. Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany, 6:1842-1857. |
| [34] | Zhou Y X, Zhou W, Liu H, Liu P, Li Z G. 2020b. Genome-wide analysis of the soybean DREB gene family:identification,genomic organization and expression profiles in response to drought stress. Plant Breeding, 6:1158-1167. |
| [35] | Zhang Zhifeng, Yang Zhijian, Zhou Qian, Zhao Zhili. 2014. Advanced study on gene expression regulatory mechanisms of DREB2s transcription factor gene. Plant Science Journal, 32:297-303. (in Chinese) |
| 张志飞, 杨知建, 周倩, 赵志丽. 2014. DREB2s转录因子基因的表达调控机制研究进展. 植物科学学报, 32:297-303. |
| [1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
| [2] | 宋艳红, 陈亚铎, 张晓玉, 宋 盼, 刘丽锋, 李 刚, 赵 霞, 周厚成, . 森林草莓FvbHLH130转录因子调控植株提前开花[J]. 园艺学报, 2023, 50(2): 295-306. |
| [3] | 韩 睿, 钟雄辉, 陈登辉, 崔 建, 乐祥庆, 颉建明, 康俊根, . 黑腐病菌效应因子XopR的甘蓝靶标基因BobHLH34的克隆及功能分析[J]. 园艺学报, 2023, 50(2): 319-330. |
| [4] | 田明康, 徐智祥, 刘秀群, 眭顺照, 李名扬, 李志能, . 蜡梅AP2亚家族转录因子鉴定及CpAP2-L11功能研究[J]. 园艺学报, 2023, 50(2): 382-396. |
| [5] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
| [6] | 欧阳丽莹, 黄艳飞, 陈君梅, 阳 淑, 练华山. 微型月季新品种‘九儿’[J]. 园艺学报, 2022, 49(S2): 223-224. |
| [7] | 练华山, 欧阳丽莹, 吴 珊, 陈君梅, 舒 彬. 微型月季新品种‘夜华’[J]. 园艺学报, 2022, 49(S2): 225-226. |
| [8] | 陈君梅, 练华山, 黄艳飞, 禹 婷, 蒋天仪. 微型月季新品种‘流星’[J]. 园艺学报, 2022, 49(S2): 227-228. |
| [9] | 徐小萍, 曹清影, 蔡柔荻, 官庆栩, 张梓浩, 陈裕坤, 徐涵, 林玉玲, 赖钟雄. 龙眼miR408与DlLAC12克隆及其在球形胚发生和非生物胁迫下的表达分析[J]. 园艺学报, 2022, 49(9): 1866-1882. |
| [10] | 李茂福, 杨媛, 王华, 范又维, 孙佩, 金万梅. 月季中R2R3-MYB基因RhMYB113c调控花青素苷合成[J]. 园艺学报, 2022, 49(9): 1957-1966. |
| [11] | 许海峰, 王中堂, 陈新, 刘志国, 王利虎, 刘平, 刘孟军, 张琼. 冬枣果皮着色相关类黄酮靶向代谢组学及潜在MYB转录因子分析[J]. 园艺学报, 2022, 49(8): 1761-1771. |
| [12] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
| [13] | 钱婕妤, 蒋玲莉, 郑钢, 陈佳红, 赖吴浩, 许梦晗, 付建新, 张超. 百日草花青素苷合成相关MYB转录因子筛选及ZeMYB9功能研究[J]. 园艺学报, 2022, 49(7): 1505-1518. |
| [14] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
| [15] | 陈道宗, 刘镒, 沈文杰, 朱博, 谭晨. 白菜、甘蓝和甘蓝型油菜PAP1/2同源基因的鉴定及分析[J]. 园艺学报, 2022, 49(6): 1301-1312. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司