[1] |
Ahn H I, Han K, Yang H B, Lee E S, Lee Y R, Kim J, Park H Y, Kim D S. 2023. Development and investigation of HRM markers to discriminate two Ogura cytoplasmic male sterility restorer genes in radish. Agronomy, 14 (1):43.
|
[2] |
Alexandre N M, Haji D, Bakhtiari M, Chatla K, Aguilar J M, Arzumanova K, Whiteman N K, Shapiro B. 2022. A reference genome assembly of hybrid-derived California wild radish(Raphanus sativus × raphanistrum). Journal of Heredity, 113 (2):197-204.
|
[3] |
Ayarpadikannan S, Chung E, Kim K, So H A, Schraufnagle K R, Lee J H. 2014. RsERF1 derived from wild radish(Raphanus sativus)confers salt stress tolerance in Arabidopsis. Acta Physiologiae Plantarum, 36 (4):993-1008.
|
[4] |
Bayer P E, Golicz A A, Scheben A, Batley J, Edwards D. 2020. Plant pan-genomes are the new reference. Nature Plants, 6 (8):914-920.
doi: 10.1038/s41477-020-0733-0
pmid: 32690893
|
[5] |
Cai D, Dong Y J, Wang L, Zhao S C. 2025. Integrated metabolomics and transcriptomics analysis provides insights into biosynthesis and accumulation of flavonoids and glucosinolates in different radish varieties. Current Research in Food Science, 10:100938.
|
[6] |
Chen K, Yang H N, Wu D, Peng Y J, Lian L, Bai L Y, Wang L F. 2024a. Weed biology and management in the multi-omics era:Progress and perspectives. Plant Communications, 5 (4):100816.
|
[7] |
Chen K L, Wang Y P, Zhang R, Zhang H W, Gao C X. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual review of Plant Biology, 70:667-697.
doi: 10.1146/annurev-arplant-050718-100049
pmid: 30835493
|
[8] |
Chen S, Xu L, Wang Y, Mao B Z, Zhang X L, Song Q Y, Cui F, Ma Y B, Dong J H, Wang K, Bi H Y, Liu L W. 2025. RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish(Raphanus sativus L.). Molecular Horticulture, 5 (1):14.
doi: 10.1186/s43897-024-00135-x
pmid: 40025622
|
[9] |
Chen W F, Chen L F, Cui L, Liu Z X, Yuan W L. 2024b. Genome-wide analysis of radish AHL gene family and functional verification of RsAHL14 in tomato. Frontiers in Plant Science, 15:1401414.
|
[10] |
Cho A, Jang H, Baek S, Kim M J, Yim B, Huh S, Kwon S H, Yu H J, Mun J H. 2022. An improved Raphanus sativus cv. WK 10039 genome localizes centromeres,uncovers variation of DNA methylation and resolves arrangement of the ancestral Brassica genome blocks in radish chromosomes. Theoretical and Applied Genetics, 135 (5):1731-1750.
|
[11] |
Debener T. 2022. Chapter 1-State of the art of omics technologies in horticultural crops// Rout G R, Peter K V. Omics in horticultural crops. Cambridge: Academic Press:1-14.
|
[12] |
Dong J H, Wang Y, Xu L, Li B S, Wang K, Ying J L, He Q, Liu L W, Turner S. 2023. RsCLE22a regulates taproot growth through an auxin signaling-related pathway in radish(Raphanus sativus L.). Journal of Experimental Botany, 74 (1):233-250.
|
[13] |
Dong J H, Wang Y, Xu L, Li B S, Zhang X L, Chen Y L, Chen S, Cui F, Liu L W. 2025. RsLBD3regulates the secondary growth of taproot by integrating auxin and cytokinin signaling in radish( Raphanus sativus L.). Journal of Integrative Plant Biology, DOI: 10.1111/jipb.13918.
|
[14] |
Fan L X, Wang Y, Xu L, Tang M J, Zhang X L, Ying J L, Li C, Dong J H, Liu L W. 2020. A genome-wide association study uncovers a critical role of the RsPAP2 gene in red-skinned Raphanus sativus L. Horticulture Research, 7 (1):164.
|
[15] |
Fan L X, Xu L, Wang Y, Tang M J, Liu L W. 2019. Genome- and transcriptome-wide characterization of bZIP gene family identifies potential members involved in abiotic stress response and anthocyanin biosynthesis in radish(Raphanus sativus L.). International Journal of Molecular Sciences, 20 (24):6334.
|
[16] |
Fan Lianxue. 2020. Genome-wide association study and critical gene identification of quality characters in radish(Raphanus sativus L.) taproot[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese)
|
|
范莲雪. 2020. 萝卜肉质根品质性状全基因组关联分析与关键基因鉴定[博士论文]. 南京: 南京农业大学.
|
[17] |
Feng H Y, Xu L, Wang Y, Tang M J, Zhu X W, Zhang W, Sun X C, Nie S S, Muleke E M, Liu L W. 2017. Identification of critical genes associated with lignin biosynthesis in radish(Raphanus sativus L.) by de novo transcriptome sequencing. Molecular Genetics and Genomics, 292 (5):1151-1163.
|
[18] |
Gan C X, Deng X H, Cui L, Yu X Q, Yuan W L, Dai Z Y, Yao M H, Pang W X, Ma Y B, Yu X N, Choi S R, Lim Y P, Piao Z Y. 2019. Construction of a high-density genetic linkage map and identification of quantitative trait loci associated with clubroot resistance in radish(Raphanus sativus L.). Molecular Breeding, 39 (8):116.
|
[19] |
Gan C X, Yan C H, Pang W X, Cui L, Fu P Y, Yu X Q, Qiu Z M, Zhu M Y, Piao Z Y, Deng X H. 2022. Identification of novel locus RsCr6 related to clubroot resistance in radish(Raphanus sativus L.). Frontiers in Plant Science, 13:866211.
|
[20] |
Han K, Ahn H I, Yang H B, Lee Y R, Lee E S, Lee J, Jang C S, Kim D S. 2024. Identification of genetic loci associated with bolting time in radish(Raphanus sativus L.) by QTL mapping and GWAS. Agronomy, 14 (11):2700.
|
[21] |
He M, Zhang X L, Ma Y F, Zhang X Y, Chen S, Zhu Y L, Wang Y, Liu L W, Ma Y B, Wang L, Xu L. 2023a. RsCDF3,a member of Cycling Dof Factors,positively regulates cold tolerance via auto-regulation and repressing two RsRbohs transcription in radish(Raphanus sativus L.). Plant Science, 337:111880.
|
[22] |
He Q, He M, Zhang X L, Zhang X Y, Zhang W L, Dong J H, Li J X, Zhu Y L, Wang Y, Liu L W, Xu L. 2023b. RsVQ4-RsWRKY26 module positively regulates thermotolerance by activating RsHSP70-20 transcription in radish(Raphanus sativus L.). Environmental and Experimental Botany, 214:105467.
|
[23] |
He Q, Zhang X Y, He M, Zhang X L, Ma Y F, Zhu Y L, Dong J H, Ying J L, Wang Y, Liu L W, Xu L. 2023c. Genome-wide characterization of RsHSP70 gene family reveals positive role of RsHSP70-20 gene in heat stress response in radish(Raphanus sativus L.). Plant Physiology and Biochemistry, 199:107710.
|
[24] |
Hoang N V, Park S, Park C, Suh H, Kim S T, Chae E, Kang B C, Lee J Y. 2021. Oxidative stress response and programmed cell death guided by NAC 013 modulate pithiness in radish taproots. The Plant Journal, 109 (1):144-163.
doi: 10.1111/tpj.15561
pmid: 34724278
|
[25] |
Jeong Y M, Chung W H, Mun J H, Kim N, Yu H J. 2014. De novo assembly and characterization of the complete chloroplast genome of radish(Raphanus sativus L.). Gene, 551 (1):39-48.
|
[26] |
Jeong Y M, Kim N, Ahn B O, Oh M, Chung W H, Chung H, Jeong S, Lim K B, Hwang Y J, Kim G B, Baek S, Choi S B, Hyung D J, Lee S W, Sohn S H, Kwon S J, Jin M, Seol Y J, Chae W B, Choi K J, Park B S, Yu H J, Mun J H. 2016. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theoretical and Applied Genetics, 129 (7):1357-1372.
|
[27] |
Jin Y Y, Luo X B, Li Y D, Peng X, Wu L J, Yang G Q, Xu X H, Pei Y, Li W, Zhang W P. 2023. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish(Raphanus sativus L.). Theoretical and Applied Genetics, 137 (1):4.
|
[28] |
Jung H, Jo S H, Jung W Y, Park H J, Lee A, Moon J S, Seong S Y, Kim J K, Kim Y S, Cho H S. 2020. Gibberellin promotes bolting and flowering via the floral integrators RsFT and RsSOC1-1 under marginal vernalization in radish. Plants(Basel), 9 (5):594.
|
[29] |
Kakizaki T, Kitashiba H, Zou Z W, Li F, Fukino N, Ohara T, Nishio T, Ishida M. 2017. A 2-Oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiology, 173 (3):1583-1593.
doi: 10.1104/pp.16.01814
pmid: 28100450
|
[30] |
Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M. 2009. QTL mapping of clubroot resistance in radish(Raphanus sativus L.). Theoretical and Applied Genetics, 120 (5):1021-1027.
|
[31] |
Kang J N, Won S Y, Seo M S, Lee J, Lee S M, Kwon S J, Kim J S. 2020. Induction of glucoraphasatin biosynthesis genes by MYB 29 in radish(Raphanus sativus L.)roots. International Journal of Molecular Sciences, 21 (16):5721.
|
[32] |
Kim D H, Lee J, Rhee J, Lee J Y, Lim S H. 2021a. Loss of the R2R3 MYB transcription factor RsMYB 1 shapes anthocyanin biosynthesis and accumulation in Raphanus sativus. International Journal of Molecular Sciences, 22 (20):10927.
|
[33] |
Kim J, Jang H, Huh S M, Cho A, Yim B, Jeong S H, Kim H, Yu H J, Mun J H. 2024. Effect of structural variation in the promoter region of RsMYB1.1 on the skin color of radish taproot. Frontiers in Plant Science, 14:1327009.
|
[34] |
Kim S, Song H, Hur Y. 2021b. Intron-retained radish(Raphanus sativus L.) RsMYB1 transcripts found in colored-taproot lines enhance anthocyanin accumulation in transgenic Arabidopsis plants. Plant Cell Reports, 40 (9):1735-1749.
|
[35] |
Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T. 2014. Draft requences of the radish(Raphanus sativus L.)genome. DNA Research, 21 (5):481-490.
doi: 10.1093/dnares/dsu014
pmid: 24848699
|
[36] |
Lai B, Cheng Y Y, Liu H, Wang Q X, Wang Q, Wang C L, Su R, Chen F B, Wang H C, Du L N. 2019. Differential anthocyanin accumulation in radish taproot:importance of RsMYB1 gene structure. Plant Cell Reports, 39 (2):217-226.
|
[37] |
Lai B, You Y, Zhang L L, Wang Q X, Chen F B, Luo G J, Du L N, Wang H C. 2021. Identification and functional characterization of RsGST1,an anthocyanin-related glutathione S-transferase gene in radish. Journal of Plant Physiology, 263:153468.
|
[38] |
Lee Y P, Kim S, Lim H, Ahn Y S, Sung S K. 2008. Identification of mitochondrial genome rearrangements unique to novel cytoplasmic male sterility in radish(Raphanus sativus L.). Theoretical and Applied Genetics, 118 (4):719-728.
|
[39] |
Li A L, Hao C Y, Wang Z Y, Geng S F, Jia M L, Wang F, Han X, Kong X C, Yin L J, Tao S, Deng Z Y, Liao R Y, Sun G L, Wang K, Ye X G, Jiao C Z, Lu H F, Zhou Y, Liu D C, Fu X D, Zhang X Y, Mao L. 2022a. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 15 (3):504-519.
|
[40] |
Li C, Mao B Z, Wang K, Xu L, Fan L X, Wang Y, Li Y, Ma Y B, Wang L, Liu L W. 2023a. RsERF40 contributes to cold stress tolerance and cell expansion of taproot in radish(Raphanus sativus L.). Horticulture Research, 10 (3):uhad013.
|
[41] |
Li C, Wang K, Chen S, Zhang X L, Zhang X Y, Fan L X, Dong J H, Xu L, Wang Y, Li Y, Liu L W. 2022b. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish(Raphanus sativus L.). Plant Physiology and Biochemistry, 192:285-297.
|
[42] |
Li X M, Liang L, Ran J Z, Yang F, Ran M L, Yong X P, Kong C B, Tang Y, Li H X. 2024. Re-sequencing the mitochondrial genome unveils a novel isomeric form of NWB CMS line in radish and functional verification of its candidate sterile gene. Horticulturae, 10 (4):395.
|
[43] |
Li X M, Wang P, Wang J L, Wang H P, Liu T J, Zhang X H, Song J P, Yang W L, Wu C H, Yang H H, Liu L W, Li X X. 2022c. A comparative transcriptome and metabolome combined analysis reveals the key genes and their regulatory model responsible for glucoraphasatin accumulation in radish fleshy taproots. International Journal of Molecular Sciences, 23 (6):2953.
|
[44] |
Li Y D, Luo X B, Peng X, Jin Y Y, Tan H P, Wu L J, Li J W, Pei Y, Xu X H, Zhang W P. 2023b. Development of SNP and InDel markers by genome resequencing and transcriptome sequencing in radish(Raphanus sativus L.). BMC Genomics, 24 (1):445.
|
[45] |
Lim S H, Kim D H, Lee J Y. 2022. RsTTG1,a WD 40 Protein,interacts with the bHLH transcription factor RsTT8 to regulate anthocyanin and proanthocyanidin biosynthesis in Raphanus sativus. International Journal of Molecular Sciences, 23 (19):11973.
|
[46] |
Lim S H, Kim D H, Lee J Y. 2023. Molecular mechanism controlling anthocyanin composition and content in radish plants with different root colors. Plant Physiology and Biochemistry, 204:108091.
|
[47] |
Lim S H, Song J H, Kim D H, Kim J K, Lee J Y, Kim Y M, Ha S H. 2015. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Reports, 35 (3):641-653.
|
[48] |
Liu D M, Wei X C, Sun D L, Yang S J, Su H N, Wang Z Y, Zhao Y Y, Li L, Liang J F, Yang L M, Zhang X W, Yuan Y X. 2021. An SNP mutation of gene RsPP converts petal color from purple to white in radish(Raphanus sativus L.). Frontiers in Plant Science, 12:643579.
|
[49] |
Liu L W, Zhao L P, Gong Y Q, Wang M X, Chen L M, Yang J L, Wang Y, Yu F M, Wang L Z. 2008. DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD,ISSR and SRAP markers. Scientia Horticulturae, 116 (3):240-247.
|
[50] |
Liu T J, Wang J L, Wu C H, Zhang Y J, Zhang X H, Li X M, Wang H P, Song J P, Li X X. 2019. Combined QTL-seq and traditional linkage analysis to identify candidate genes for purple skin of radish fleshy taproots. Frontiers in Genetics, 10:808.
doi: 10.3389/fgene.2019.00808
pmid: 31608100
|
[51] |
Liu Y, Wang C C, Chen H D, Dai G Q, Cuimu Q S, Shen W J, Gao L i W, Zhu B, Gao C B, Chen L L, Chen D Z, Zhang X L, Tan C. 2024. Comparative transcriptome analysis reveals transcriptional regulation of anthocyanin biosynthesis in purple radish(Raphanus sativus L.). BMC Genomics, 25 (1):624.
doi: 10.1186/s12864-024-10519-4
pmid: 38902601
|
[52] |
Luo X B, Xu L, Wang Y, Dong J H, Chen Y L, Tang M J, Fan L X, Zhu Y L, Liu L W. 2019. An ultra-high-density genetic map provides insights into genome synteny,recombination landscape and taproot skin colour in radish(Raphanus sativus L.). Plant Biotechnology Journal, 18 (1):274-286.
|
[53] |
Ma Y B, Chhapekar S S, Lu L, Yu X N, Kim S, Lee S M, Gan T H, Choi G J, Lim Y P, Choi S R. 2021. QTL mapping for Fusarium wilt resistance based on the whole-genome resequencing and their association with functional genes in Raphanus sativus. Theoretical and Applied Genetics, 134 (12):3925-3940.
|
[54] |
Ma Y F, Huang Y D, Zhang W L, Dong J H, Zhang X L, Zhu Y L, Wang Y, Liu L W, Xu L. 2025. RsNRAMP5,a major metal transporter,promotes cadmium influx and ROS accumulation in radish(Raphanus sativus L.). Plant Physiology and Biochemistry, 218:109323.
|
[55] |
Masukawa T, Cheon K S, Mizuta D, Kadowaki M, Nakatsuka A, Kobayashi N. 2019. Development of mutant RsF3'H allele-based marker for selection of purple and red root in radish(Raphanus sativus L. var. longipinnatus L. H. Bailey). Euphytica, 215 (7):119.
|
[56] |
Meng G, Yong M L, Zhang Z Y, Zhang Y Q, Wang Y H, Xiong A S, Su X J. 2024. Exogenous gibberellin suppressed taproot secondary thickening by inhibiting the formation and maintenance of vascular cambium in radish(Raphanus sativus L.). Frontiers in Plant Science, 15:1395999.
|
[57] |
Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T. 2015. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Scientific Reports, 5 (1):10835.
|
[58] |
Mitsui Y, Yokoyama H, Nakaegawa W, Tanaka K, Komatsu K, Koizuka N, Okuzaki A, Matsumoto T, Takahara M, Tabei Y. 2023. Epistatic interactions among multiple copies of FLC genes with naturally occurring insertions correlate with flowering time variation in radish. Aob Plants, 15 (2):plac066.
|
[59] |
Moghe G D, Hufnagel D E, Tang H, Xiao Y, Dworkin I, Town C D, Conner J K, Shiu S H. 2014. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. The Plant Cell, 26 (5):1925-1937.
|
[60] |
Mun J H, Chung H, Chung W H, Oh M, Jeong Y M, Kim N, Ahn B O, Park B S, Park S, Lim K B, Hwang Y J, Yu H J. 2015. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theoretical and Applied Genetics, 128 (2):259-272.
doi: 10.1007/s00122-014-2426-4
pmid: 25403353
|
[61] |
Nakatsuji R, Hashida T, Matsumoto N, Tsuro M, Kubo N, Hirai M. 2011. Development of genomic and EST-SSR markers in radish(Raphanus sativus L.). Breeding Science, 61 (4):413-419.
doi: 10.1270/jsbbs.61.413
pmid: 23136479
|
[62] |
Pan X, Zheng Y, Lei K, Tao W, Zhou N. 2024. Systematic analysis of Heat Shock Protein 70(HSP70)gene family in radish and potential roles in stress tolerance. BMC Plant Biology, 24 (1):2.
|
[63] |
Park J Y, Lee Y P, Lee J, Choi B S, Kim S, Yang T J. 2013. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish(Raphanus sativus L.) containing DCGMS cytoplasm. Theoretical and Applied Genetics, 126 (7):1763-1774.
|
[64] |
Peng H, Gao J. 2020. The whole genome assembly and evolution analyze of carmine radish(Raphanus sativus L.)mitochondrion. Mitochondrial DNA Part B, 5 (3):2252-2253.
|
[65] |
Qin T J, Wang S, Yi X F, Ying J L, Dong J H, Yao S Q, Ni M, Liu L W, Xu L, Wang Y. 2024. Development of a fast and efficient root transgenic system for exploring the function of RsMYB90 involved in the anthocyanin biosynthesis of radish. Scientia Horticulturae, 323:112490.
|
[66] |
Qiu Yang, Li Xixiang, Li Qingxia, Chen Yichen, Shen Di, Wang Haiping, Song Jiangping. 2014. Establishment of the molecular identification for radish germplasm using SSR markers. Journal of Plant Genetic Resources, 15 (3):648-654. (in Chinese)
doi: 10.13430/j.cnki.jpgr.2014.03.029
|
|
邱杨, 李锡香, 李清霞, 陈亦辰, 沈镝, 王海平, 宋江萍. 2014. 利用SSR标记构建萝卜种质资源分子身份证. 植物遗传资源学报, 15 (3):648-654.
doi: 10.13430/j.cnki.jpgr.2014.03.029
|
[67] |
Raghavan R, Friedrich M J, King I, Chau-Duy-Tam Vo S, Strebinger D, Lash B, Kilian M, Platten M, Macrae R K, Song Y, Nivon L, Zhang F. 2025. Rational engineering of minimally immunogenic nucleases for gene therapy. Nature Communications, 16 (1):105.
|
[68] |
Ren D Y, Ding C Q, Qian Q. 2023. Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin, 68 (3):314-350.
|
[69] |
Shen D, Sun H H, Huang M Y, Zheng Y, Li X X, Fei Z J. 2012. RadishBase: a database for genomics and genetics of radish. Plant and Cell Physiology, 54 (2):e3.
|
[70] |
Shen F, Ying J L, Xu L, Sun X C, Wang J Z, Wang Y, Mei Y, Zhu Y L, Liu L W. 2021. Characterization of annexin gene family and functional analysis of RsANN1a involved in heat tolerance in radish(Raphanus sativus L.). Physiology and Molecular Biology of Plants, 27 (9): 2027-2041.
|
[71] |
Shirasawa K, Hirakawa H, Fukino N, Kitashiba H, Isobe S. 2020. Genome sequence and analysis of a Japanese radish(Raphanus sativus) cultivar named‘Sakurajima Daikon’possessing giant root. DNA Research, 27 (2):dsaa010.
|
[72] |
Sun X J, Liu Y, Wang L J, Zhu X W, Gong Y Q, Xu L, Liu L W. 2012. Molecular characterization of the Rs-Rf1 gene and molecular marker-assisted development of elite radish(Raphanus sativus L.) CMS lines with a functional marker for fertility restoration. Molecular Breeding, 30 (4): 1727-1736.
|
[73] |
Tang M J, Xu L, Wang Y, Dong J H, Zhang X L, Wang K, Ying J L, Li C, Liu L W. 2021. Melatonin-induced DNA demethylation of metal transporters and antioxidant genes alleviates lead stress in radish plants. Horticulture Research, 8 (1):124.
doi: 10.1038/s41438-021-00561-8
pmid: 34059663
|
[74] |
Wang C D, Lezhneva L, Arnal N, Quadrado M, Mireau H. 2021. The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proceedings of the National Academy of Sciences of the United States of America, 118 (35):e2105274118.
|
[75] |
Wang K, Xu L, Wang Y, Ying J L, Li J X, Dong J H, Li C, Zhang X L, Liu L W. 2022. Genome-wide characterization of homeodomain-leucine zipper genes reveals RsHDZ17 enhances the heat tolerance in radish(Raphanus sativus L.). Physiologia Plantarum, 174 (5):e13789.
|
[76] |
Wang Q B, Wang Y P, Sun H H, Sun L, Zhang L. 2020a. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish. Journal of Experimental Botany, 71 (9):2537-2550.
|
[77] |
Wang Q B, Wang Y P, Wu X Y, Shi W Y, Chen N J, Pang Y T, Zhang L. 2024a. Sequence and epigenetic variations of R2R3-MYB transcription factors determine the diversity of taproot skin and flesh colors in different cultivated types of radish(Raphanus sativus L.). Theoretical and Applied Genetics, 137 (6):133.
|
[78] |
Wang Q B, Wang Y P, Zhang L. 2018a. Inheritance and molecular marker for flowering time in radish(Raphanus sativus L.). Plant Molecular Biology Reporter, 36 (5-6):878-887.
|
[79] |
Wang Q B, Zhang Y J, Zhang L. 2018b. A naturally occurring insertion in the RsFLC2 gene associated with late-bolting trait in radish(Raphanus sativus L.). Molecular Breeding, 38 (11):137.
|
[80] |
Wang Qingbiao, Zhang li, Wen Changlong, Yang Jinigjing. 2017. Development and application of high-throughput SNP markers for Ogura-CMS fertility restorer gene in radish. Acta Horticulturae Sinica, 44 (7):1309-1318. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2017-0099
|
|
王庆彪, 张丽, 温常龙, 杨静静. 2017. 萝卜Ogura-CMS育性恢复基因Rfo的高通量SNP标记开发及其应用. 园艺学报, 44 (7):1309-1318.
doi: 10.16420/j.issn.0513-353x.2017-0099
|
[81] |
Wang Y, Liu W, Xu L, Wang Y, Chen Y L, Luo X B, Tang M J, Liu L W. 2017. Development of SNP markers based on transcriptome sequences and their application in germplasm identification in radish(Raphanus sativus L.). Molecular Breeding, 37 (3):26.
|
[82] |
Wang Y, Pan Y, Liu Z, Zhu X W, Zhai L L, Xu L, Yu R G, Gong Y Q, Liu L W. 2013a. de novo transcriptome sequencing of radish(Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genomics, 14 (1):836.
|
[83] |
Wang Y, Ying J L, Zhang Y, Xu L, Zhang W T, Ni M, Zhu Y L, Liu L W. 2020b. Genome-wide identification and functional characterization of the Cation Proton Antiporter(CPA)family related to salt stress response in radish(Raphanus sativus L.). International Journal of Molecular Sciences, 21 (21):8262.
|
[84] |
Wang Y P, Wang Q B, Wu X Y, Pang Y T, Guo Y, Li Z X, Zhang L. 2024b. A NAC transcription factor RsSND 1 regulating secondary cell wall deposition involves in fleshy taproot formation in radish(Raphanus sativus L.). Journal of Plant Growth Regulation, 43 (6):1844-1857.
|
[85] |
Wang Z W, De Wang C, Mei S Y, Gao L, Zhou Y, Wang T. 2015. An insertion-deletion at a pentatricopeptide repeat locus linked to fertility transition to cytoplasmic male sterility in radish(Raphanus sativus L.). Molecular Breeding, 35 (4):108.
|
[86] |
Wang Z W, Wang C, Gao L, Mei S Y, Zhou Y, Xiang C P, Wang T. 2013b. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish(Raphanus sativus L.):a case of overdominance. Journal of Experimental Botany, 64 (7):2041-2048.
|
[87] |
Wang Z W, Zhang L J, Chen J, Xiang C P, Mei S Y, Zhou Y, Wang T. 2009. A chimeric Rfo gene generated by intergenic recombination cosegregates with the fertility restorer phenotype for cytoplasmic male sterility in radish. Molecular Breeding, 25 (2):339-349.
|
[88] |
Wang Z Y, Wang F C, Yu Z H, Shi X R, Zhou X M, Wang P F, Song Y X, Hong D F, Yang G S. 2023. Pyramiding of multiple genes generates rapeseed introgression lines with clubroot and herbicide resistance,high oleic acid content,and early maturity. The Crop Journal, 11 (3):895-903.
|
[89] |
Wei D Y, Zhang C X, Ran M L, Wu J, Li X M, Wu H Z, Wang Z M, Tang Q L, Yang F. 2024. A novel SNP within the Rsa10025320 gene is highly associated with hollowness in red-skinned radish fleshy roots. Theoretical and Applied Genetics, 137 (10):242.
|
[90] |
Xie Y, Xu L, Wang Y, Fan L X, Chen Y L, Tang M J, Luo X B, Liu L W. 2018. Comparative proteomic analysis provides insight into a complex regulatory network of taproot formation in radish(Raphanus sativus L.). Horticulture Research, 5 (1):51.
|
[91] |
Xie Y, Ying J L, Tang M J, Wang Y, Xu L, Liu M Y, Liu L W. 2021. Genome-wide identification of AUX/IAA in radish and functional characterization of RsIAA33 gene during taproot thickening. Gene, 795:145782.
|
[92] |
Xu L, Jiang Q W, Wu J, Wang Y, Gong Y Q, Wang X L, Limera C, Liu L W. 2014. Identification and molecular mapping of the RsDmR locus conferring resistance to downy mildew at seedling stage in radish(Raphanus sativus L.). Journal of Integrative Agriculture, 13 (11):2362-2369.
|
[93] |
Xu L, Wang L J, Gong Y Q, Dai W H, Wang Y, Zhu X W, Wen T C, Liu L W. 2012. Genetic linkage map construction and QTL mapping of cadmium accumulation in radish(Raphanus sativus L.). Theoretical and Applied Genetics, 125 (4):659-670.
|
[94] |
Xu L, Wang Y, Dong J H, Zhang W, Tang M J, Zhang W L, Wang K, Chen Y L, Zhang X L, He Q, Zhang X Y, Wang K, Wang L, Ma Y B, Xia K, Liu L W. 2023. A chromosome-level genome assembly of radish( Raphanus sativus L.)reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnology Journal, doi: 10.1111/pbi.14011.
|
[95] |
Xu L, Zhang F, Tang M J, Wang Y, Dong J H, Ying J L, Chen Y L, Hu B, Li C, Liu L W. 2020. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. Journal of Pineal Research, 69 (1):e12659.
|
[96] |
Yamagishi H, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. 2024. Identification and variation of a new restorer of fertility gene that induces cleavage in orf138 mRNA of Ogura male sterility in radish. Theoretical and Applied Genetics, 137 (10):231.
doi: 10.1007/s00122-024-04736-4
pmid: 39320580
|
[97] |
Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. 2021. A single nucleotide substitution in the coding region of Ogura male sterile gene,orf138,determines effectiveness of a fertility restorer gene,Rfo,in radish. Molecular Genetics and Genomics, 296 (3):705-717.
doi: 10.1007/s00438-021-01777-y
pmid: 33772345
|
[98] |
Yamagishi H, Tanaka Y, Shiiba S, Hashimoto A, Fukunaga A, Terachi T. 2019. Mitochondrial orf463 causing male sterility in radish is possessed by cultivars belonging to the‘Niger’group. Euphytica, 215 (6):109.
|
[99] |
Yamagishi H, Terachi T. 2017. Cytoplasmic male sterility and mitochondrial genome variations in radish. Compendium of Plant Genomes:The Radish Genome,93-108.
|
[100] |
Yang H H, Wei X C, Lei W W, Su H N, Zhao Y Y, Yuan Y X, Zhang X W, Li X X. 2024. Genome-wide identification,expression,and protein analysis of CKX and IPT gene families in radish(Raphanus sativus L.)reveal Their involvement in clubroot resistance. International Journal of Molecular Sciences, 25 (16):8974.
|
[101] |
Yang Q, Huang Y, Cui L, Gan C X, Qiu Z M, Yan C H, Deng X H. 2023. Genome-Wide identification of the CDPK gene family and their involvement in taproot cracking in radish. International Journal of Molecular Sciences, 24 (20):15059.
|
[102] |
Yi X F, Sun X C, Tian R, Li K X, Ni M, Ying J L, Xu L, Liu L W, Wang Y. 2022. Genome-wide characterization of the aquaporin gene family in radish and functional analysis of RsPIP2-6 involved in salt stress. Frontiers in Plant Science, 13:860742.
|
[103] |
Yi X F, Wang C C, Yuan X Q, Zhang M, Zhang C W, Qin T J, Wang H Y, Xu L, Liu L W, Wang Y. 2024. Exploring an economic and highly efficient genetic transformation and genome-editing system for radish through developmental regulators and visible reporter. The Plant Journal, 120 (4):1682-1692.
doi: 10.1111/tpj.17068
pmid: 39387436
|
[104] |
Yi X F, Yuan X Q, Zhang M, Qin T J, He Y P, Ying J L, Wang H Y, Xu L, Liu L W, Wang Y. 2025. Ethylene-mediated RsCBF2 and RsERF 18 enhance salt tolerance by directly regulating aquaporin gene RsPIP2-1 in radish( Raphanus sativus L.). Plant,Cell & Environment, doi: 10.1111/pce.15547.
|
[105] |
Ying J L, Hu J B, M'Mbone Muleke E, Shen F, Wen S S, Ye Y J, Cai Y F, Qian R J. 2024a. RsOBP2a,a member of OBF BINDING PROTEIN transcription factors,inhibits two chlorophyll degradation genes in green radish. International Journal of Biological Macromolecules, 277:134139.
|
[106] |
Ying J L, Wang Y, Xu L, Qin T J, Xia K, Zhang P, Ma Y B, Zhang K Y, Wang L, Dong J H, Fan L X, Zhu Y L, Liu L W. 2024b. Establishing VIGS and CRISPR/Cas 9 techniques to verify RsPDS function in radish. Journal of Integrative Agriculture, 23 (5):1557-1567.
|
[107] |
Ying J L, Wang Y, Xu L, Yao S Q, Wang K, Dong J H, Ma Y B, Wang L, Xie Y, Yan K, Li J X, Liu L W. 2023. RsGLK2.1-RsNF-YA9a module positively regulates the chlorophyll biosynthesis by activating RsHEMA2 in green taproot of radish. Plant Science, 334 (Pt 2):111768.
|
[108] |
Yu X N, Choi S R, Chhapekar S S, Lu L, Ma Y B, Lee J Y, Hong S, Kim Y Y, Oh S H, Lim Y P. 2019a. Genetic and physiological analyses of root cracking in radish(Raphanus sativus L.). Theoretical and Applied Genetics, 132 (12):3425-3437.
|
[109] |
Yu X N, Lu L, Ma Y B, Chhapekar S S, Yi S Y, Lim Y P, Choi S R. 2019b. Fine-mapping of a major QTL(Fwr1)for fusarium wilt resistance in radish. Theoretical and Applied Genetics, 133 (1):329-340.
|
[110] |
Zhai L L, Xu L, Wang Y, Cheng H, Chen Y L, Gong Y Q, Liu L W. 2013. Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish(Raphanus sativus L.). Molecular Breeding, 33 (3):611-624.
|
[111] |
Zhang W T, Li J X, Dong J H, Wang Y, Xu L, Li K X, Yi X F, Zhu Y L, Liu L W. 2021a. RsSOS1 responding to salt stress might be involved in regulating salt tolerance by maintaining Na+ homeostasis in radish(Raphanus sativus L.). Horticulturae, 7 (11):458.
|
[112] |
Zhang X H, Liu T J, Wang J L, Wang P, Qiu Y, Zhao W, Pang S, Li X M, Wang H P, Song J P, Zhang W L, Yang W L, Sun Y Y, Li X X. 2021b. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated,wild,and weedy radishes. Molecular Plant, 14 (12):2032-2055.
|
[113] |
Zhang X H, Yue Z, Mei S Y, Qiu Y, Yang X H, Chen X H, Cheng F, Wu Z Y, Sun Y Y, Jing Y, Liu B, Shen D, Wang H P, Cui N, Duan Y D, Wu J, Wang J L, Gan C X, Wang J, Wang X W, Li X X. 2015. A de novo genome of a Chinese radish cultivar. Horticultural Plant Journal, 1 (3):155-164.
|
[114] |
Zhang X L, Cao Y, Xin R X, Xu L, Wang Y, Wang L, Ma Y B, Liu L W. 2023a. Genome-wide identification of the RsSWEET gene family and functional analysis of RsSWEET17 in root growth and development in radish. Horticulturae, 9 (6):698.
|
[115] |
Zhang X L, Xu L, Wang Y, He M, Xin R X, Yang Z H, Chu W J, Ma Y B, Chen Y L, Wang L, Liu L W. 2025a. RsWOX13 promotes taproot development by activating cell division and expansion and sucrose metabolism in radish. Plant Physiology and Biochemistry, 220:109449.
|
[116] |
Zhang X Y, Ma Y F, Lai D Q, He M, Zhang X L, Zhang W L, Ji M M, Zhu Y L, Wang Y, Liu L W, Xu L. 2023b. RsPDR8,a member of ABCG subfamily,plays a positive role in regulating cadmium efflux and tolerance in radish(Raphanus sativus L.). Plant Physiology and Biochemistry, 205:108149.
|
[117] |
Zhang X Y, Ma Y F, Zhang W L, Ji M M, Dong J H, Lai D Q, Yu W W, Zhang X L, Zhu Y L, Wang Y, Liu L W, Xu L. 2025b. RsWRKY 75 promotes ROS scavenging and cadmium efflux via activating the transcription of RsAPX1 and RsPDR8 in radish(Raphanus sativus L.). Plant Cell Reports, 44 (3):65.
|
[118] |
Zhu X F, Zhang X L, Cao Y, Xin R X, Ma Y B, Wang L, Xu L, Wang Y, Liu R, Liu L W. 2022. Genome-wide identification of sucrose transporter genes and functional analysis of RsSUC1b in radish(Raphanus sativus L.). Horticulturae, 8 (11):1058.
|
[119] |
Zou Z W, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T. 2013. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-Methylthio-3-Butenyl glucosinolate contents in roots of radish,Raphanus sativus L. PLoS ONE, 8 (1):e53541.
|