园艺学报 ›› 2022, Vol. 49 ›› Issue (10): 2143-2162.doi: 10.16420/j.issn.0513-353x.2022-0859
苏江硕, 贾棣文, 王思悦, 张飞, 蒋甲福, 陈素梅, 房伟民, 陈发棣()
收稿日期:
2022-07-27
修回日期:
2022-08-22
出版日期:
2022-10-25
发布日期:
2022-10-31
通讯作者:
陈发棣
E-mail:chenfd@njau.edu.cn
基金资助:
SU Jiangshuo, JIA Diwen, WANG Siyue, ZHANG Fei, JIANG Jiafu, CHEN Sumei, FANG Weimin, and CHEN Fadi()
Received:
2022-07-27
Revised:
2022-08-22
Online:
2022-10-25
Published:
2022-10-31
Contact:
and CHEN Fadi
E-mail:chenfd@njau.edu.cn
摘要:
简要介绍了菊花在中国的发展历程,回顾了60年来中国在菊花种质资源、重要性状遗传和形成的分子机制、传统育种和现代生物技术育种进展及取得的主要成就,阐述了转基因、基因编辑、分子标记辅助选择、多组学等现代生物学技术在中国菊花遗传育种研究中的应用现状,并针对存在的主要问题提出育种发展建议。
中图分类号:
苏江硕, 贾棣文, 王思悦, 张飞, 蒋甲福, 陈素梅, 房伟民, 陈发棣. 中国菊花遗传育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2143-2162.
SU Jiangshuo, JIA Diwen, WANG Siyue, ZHANG Fei, JIANG Jiafu, CHEN Sumei, FANG Weimin, and CHEN Fadi. Retrospection and Prospect of Chrysanthemum Genetic Breeding for Last Six Decades in China[J]. Acta Horticulturae Sinica, 2022, 49(10): 2143-2162.
性状 Trait | 基因 Gene | 供体 Used for transgene isolated | 受体 For genetic transformation | 获得性状 Changed trait | 文献 Reference |
---|---|---|---|---|---|
花色 Flower color | CmMYB#7 | '神马''Jinba' | '神马''Jinba' | 负调控花色苷合成Negative regulator of anthocyanin biosynthesis | Xiang et al., |
CmMYB012 | '南农粉翠' 'Nannong Fencui' | '南农粉翠' 'Nannong Fencui' | 花色变浅 Pink flower color becomes lighter | Zhou et al., | |
CmMYB21 | '粉安娜' 'Anastasia Pink' | 烟草 Tobacco | 花色变浅Pink flower color becomes lighter | Wang et al., | |
CmMYB9a | '粉安娜' 'Anastasia Pink' | 烟草 Tobacco | 花色加深 Pink flower color becomes darker | Wang et al., | |
CmbHLH16 | '南农粉翠' 'Nannong Fencui' | '南农粉翠' 'Nannong Fencui' | 在不同红光和远红光比例下调控花色 Regulates flower color under different red and far-red lights | Zhou et al., | |
花型 Flower shape | CmXTH1-4 | '杭白菊''Hangbaiju' | '杭白菊''Hangbaiju' | 促进舌状花花瓣伸长 Promote elongation of ray florets | Wen et al., |
CmTCP20 | '神马''Jinba' | '神马''Jinba' | 促进舌状花花瓣伸长 Promote elongation of ray florets | Wang et al., | |
CmYAB1 | '神马''Jinba' | '神马''Jinba' | 改变舌状花翻卷程度和花型 Changes in petal curvature and inflorescence morphology | Ding et al., | |
CmCYC2a-2f | '毛香玉''Maoxiangyu' | 甘菊 Chrysanthemun lavandulifolium | 调控舌状花形成和花对称性 Regulation of ray florets formation and flower symmetry | Yuan et al., | |
CmBES1;CmCUC2/ 3 | '神马''Jinba' | '神马''Jinba' | 影响舌状花融合程度Affection in merged degree of the ray florets | Cheng et al., 夏伟康, | |
株型 Plant | CmERF053 | '神马''Jinba' | 拟南芥 Arabidopsis | 促进分枝和侧根形成 Promote branching and lateral root formation | Nie et al., |
architecture | CmMAX1 | '神马''Jinba' | 拟南芥 Arabidopsis | 减少分枝数Reduce branch numbers | Dong et al., |
CmSWEET17 | '神马''Jinba' | '神马''Jinba' | 促进腋芽生长Promote axillary bud outgrowth | 刘伟鑫, | |
CmHLB,CmKNAT7 | '神马''Jinba' | '神马''Jinba' | 植株矮化,茎秆增粗 Dwarf plants,thickened stems | Zhao et al., | |
CmDIV | '毛香玉''Maoxiangyu' | 拟南芥 Arabidopsis | 植株较低矮,叶片小且圆 Plants become shorter,with smaller and rounder leaves | 刘轶奇, |
表1 菊花花色、花型和株型形成的分子机制研究
Table 1 The studies on molecular mechanism of flower color,flower shape and plant architecture traits in chrysanthemum
性状 Trait | 基因 Gene | 供体 Used for transgene isolated | 受体 For genetic transformation | 获得性状 Changed trait | 文献 Reference |
---|---|---|---|---|---|
花色 Flower color | CmMYB#7 | '神马''Jinba' | '神马''Jinba' | 负调控花色苷合成Negative regulator of anthocyanin biosynthesis | Xiang et al., |
CmMYB012 | '南农粉翠' 'Nannong Fencui' | '南农粉翠' 'Nannong Fencui' | 花色变浅 Pink flower color becomes lighter | Zhou et al., | |
CmMYB21 | '粉安娜' 'Anastasia Pink' | 烟草 Tobacco | 花色变浅Pink flower color becomes lighter | Wang et al., | |
CmMYB9a | '粉安娜' 'Anastasia Pink' | 烟草 Tobacco | 花色加深 Pink flower color becomes darker | Wang et al., | |
CmbHLH16 | '南农粉翠' 'Nannong Fencui' | '南农粉翠' 'Nannong Fencui' | 在不同红光和远红光比例下调控花色 Regulates flower color under different red and far-red lights | Zhou et al., | |
花型 Flower shape | CmXTH1-4 | '杭白菊''Hangbaiju' | '杭白菊''Hangbaiju' | 促进舌状花花瓣伸长 Promote elongation of ray florets | Wen et al., |
CmTCP20 | '神马''Jinba' | '神马''Jinba' | 促进舌状花花瓣伸长 Promote elongation of ray florets | Wang et al., | |
CmYAB1 | '神马''Jinba' | '神马''Jinba' | 改变舌状花翻卷程度和花型 Changes in petal curvature and inflorescence morphology | Ding et al., | |
CmCYC2a-2f | '毛香玉''Maoxiangyu' | 甘菊 Chrysanthemun lavandulifolium | 调控舌状花形成和花对称性 Regulation of ray florets formation and flower symmetry | Yuan et al., | |
CmBES1;CmCUC2/ 3 | '神马''Jinba' | '神马''Jinba' | 影响舌状花融合程度Affection in merged degree of the ray florets | Cheng et al., 夏伟康, | |
株型 Plant | CmERF053 | '神马''Jinba' | 拟南芥 Arabidopsis | 促进分枝和侧根形成 Promote branching and lateral root formation | Nie et al., |
architecture | CmMAX1 | '神马''Jinba' | 拟南芥 Arabidopsis | 减少分枝数Reduce branch numbers | Dong et al., |
CmSWEET17 | '神马''Jinba' | '神马''Jinba' | 促进腋芽生长Promote axillary bud outgrowth | 刘伟鑫, | |
CmHLB,CmKNAT7 | '神马''Jinba' | '神马''Jinba' | 植株矮化,茎秆增粗 Dwarf plants,thickened stems | Zhao et al., | |
CmDIV | '毛香玉''Maoxiangyu' | 拟南芥 Arabidopsis | 植株较低矮,叶片小且圆 Plants become shorter,with smaller and rounder leaves | 刘轶奇, |
基因 Gene | 供体Used for transgene isolated | 受体For genetic transformation | 获得性状 Changed trait | 途径 Pathway | 文献 Reference | |||
---|---|---|---|---|---|---|---|---|
DenFUL | 甘菊Chrysanthemun lavandulifolium | 拟南芥 Arabidopsis | 提前开花 Early-flowering | 不详Unknown | 王翊,2013 | |||
CmBBX24 | 'Fall Color' | 'Fall Color' | 延迟开花Late-flowering | 光周期和赤霉素途径 Photoperiod and GA pathways | Yang et al., | |||
AtCO | 拟南芥 Arabidopsis | '火焰''Huoyan' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | 宋凤艳, | |||
CmFTL1 | '神马''Jinba' | '神马''Jinba' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | Mao et al., | |||
CmFTL2 | '优香''Yuuka' | '优香''Yuuka' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | Sun et al., | |||
CmNF-YB8 | 'Fall Color' | 'Fall Color' | 延迟开花Late-flowering | 年龄途径 Aging pathway | Wei et al., | |||
ClPHYB | 甘菊Chrysanthemun lavandulifolium | 拟南芥 Arabidopsis | 推迟开花Late-flowering | 光周期途径 Photoperiod pathway | 马朝峰, | |||
CmBBX13 | '优香''Yuuka' | 拟南芥 Arabidopsis | 推迟开花Late-flowering | 独立于光周期途径 Independently of the photoperiod pathway | Ping et al., | |||
CmTPL1-2 | '神马''Jinba' | '神马''Jinba' | 推迟开花Late-flowering | 不详Unknown | Zhang et al., | |||
CmBBX8 | '优香''Yuuka' | '优香''Jinba' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | Wang et al., | |||
CmAP1L1 | '神马''Jinba' | '神马''Jinba' | 提前开花Early-flowering | 不详Unknown | Zhao et al., | |||
CmJAZ1-like | '神马''Jinba' | '神马''Jinba' | 延迟开花Late-flowering | 不详Unknown | Guan et al., | |||
CmERF110,CmFLK | '神马''Jinba' | '神马''Jinba' | 提前开花Early-flowering | 自主途径Autonomous pathway | Huang et al., |
表2 菊花开花时间的分子调控机制研究
Table 2 The studies on molecular mechanism of flowering time in chrysanthemum
基因 Gene | 供体Used for transgene isolated | 受体For genetic transformation | 获得性状 Changed trait | 途径 Pathway | 文献 Reference | |||
---|---|---|---|---|---|---|---|---|
DenFUL | 甘菊Chrysanthemun lavandulifolium | 拟南芥 Arabidopsis | 提前开花 Early-flowering | 不详Unknown | 王翊,2013 | |||
CmBBX24 | 'Fall Color' | 'Fall Color' | 延迟开花Late-flowering | 光周期和赤霉素途径 Photoperiod and GA pathways | Yang et al., | |||
AtCO | 拟南芥 Arabidopsis | '火焰''Huoyan' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | 宋凤艳, | |||
CmFTL1 | '神马''Jinba' | '神马''Jinba' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | Mao et al., | |||
CmFTL2 | '优香''Yuuka' | '优香''Yuuka' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | Sun et al., | |||
CmNF-YB8 | 'Fall Color' | 'Fall Color' | 延迟开花Late-flowering | 年龄途径 Aging pathway | Wei et al., | |||
ClPHYB | 甘菊Chrysanthemun lavandulifolium | 拟南芥 Arabidopsis | 推迟开花Late-flowering | 光周期途径 Photoperiod pathway | 马朝峰, | |||
CmBBX13 | '优香''Yuuka' | 拟南芥 Arabidopsis | 推迟开花Late-flowering | 独立于光周期途径 Independently of the photoperiod pathway | Ping et al., | |||
CmTPL1-2 | '神马''Jinba' | '神马''Jinba' | 推迟开花Late-flowering | 不详Unknown | Zhang et al., | |||
CmBBX8 | '优香''Yuuka' | '优香''Jinba' | 提前开花Early-flowering | 光周期途径 Photoperiod pathway | Wang et al., | |||
CmAP1L1 | '神马''Jinba' | '神马''Jinba' | 提前开花Early-flowering | 不详Unknown | Zhao et al., | |||
CmJAZ1-like | '神马''Jinba' | '神马''Jinba' | 延迟开花Late-flowering | 不详Unknown | Guan et al., | |||
CmERF110,CmFLK | '神马''Jinba' | '神马''Jinba' | 提前开花Early-flowering | 自主途径Autonomous pathway | Huang et al., |
类型 Type | 基因 Gene | 供体Used for transgene isolated | 受体For genetic transformation | 获得性状 Changed trait | 文献 Reference | |||
---|---|---|---|---|---|---|---|---|
非生物胁迫 | DgNAC1 | '神马''Jinba' | '神马''Jinba' | 耐旱性Drought tolerance | Zhao et al., | |||
Abiotic stress | CmBBX19,CmABF3 | 'Fall Color' | 'Fall Color' | 耐旱性Drought tolerance | Xu et al., | |||
CgDREB22 | '纽9717''Niu9717' | 烟草 Tobacco | 耐旱性Drought tolerance | 杨伊如, | ||||
CmRH56 | 'Fall Color' | 菊花C. morifolium | 耐旱性Drought tolerance | Zhang et al., | ||||
CmSOS1,CmRCD1 | '神马''Jinba' | '神马''Jinba' | 耐涝性Waterlogging tolerance | Wang et al., | ||||
DlNAC1 | 甘菊 Chrysanthemun lavandulifolium | 烟草 Tobacco | 耐热性Heat tolerance | 朱凯 等, | ||||
eIF5B1 | 拟南芥 Arabidopsis | 菊花 C. morifolium | 耐热性Heat tolerance | Wei et al., | ||||
DgMYB1 | '神马''Jinba' | '神马''Jinba' | 耐寒性Cold tolerance | 何玲,2019 | ||||
CmICE2 | '神马''Jinba' | 拟南芥 Arabidopsis | 耐寒性Cold tolerance | Zhang et al., | ||||
DgC3H1 | 菊花 C. morifolium | 菊花 C. morifolium | 耐寒性Cold tolerance | Bai et al., | ||||
CmHSFA4;DgWRKY2; DgMBF1,DgJAZ1 | '神马''Jinba' | '神马''Jinba' | 耐盐性Salt tolerance | Li et al., | ||||
ClSND1.1,ClVND1,ClBRN1 | 甘菊 Chrysanthemun lavandulifolium | 拟南芥 Arabidopsis | 耐盐性Salt tolerance | 王海 等, | ||||
CmBBX24 | 'Fall Color' | 'Fall Color' | 耐干旱和低温 Drought and cold tolerance | Yang et al., | ||||
CdICE1 | 异色菊 C. dichrum | '神马''Jinba' | 干旱、低温、盐 Drought,cold and salt tolerance | Chen et al., | ||||
DmDREBa/b | 菊花C. morifolium | 烟草 Tobacco | 干旱、低温、盐 Drought,cold and salt tolerance | 武剑 等, | ||||
CmDREBa-2 | 'C029' | 'C029' | 耐旱性和抗白锈病 Drought and white rust resistance | 毕蒙蒙 等, | ||||
CgbZIP | '纽9717' 'Niu9717' | 烟草 Tobacco | 耐盐性和耐旱性 Salt and drought tolerance | Liu et al., | ||||
生物胁迫 Biotic stress | CmWRKY15;CmWRKY33.1; CmMLO17,CmKIC | '神马''Jinba' | '神马''Jinba' | 黑斑病抗性 Black spot disease resistance | Fan et al., | |||
CmMYB19;CmTPS2/3;CmMYB15 | '神马''Jinba' | '神马''Jinba' | 抗蚜虫性Aphid resistance | Wang et al., |
表3 菊花响应逆境胁迫的分子机制研究
Table 3 The studies on molecular mechanism of stress response in chrysanthemum
类型 Type | 基因 Gene | 供体Used for transgene isolated | 受体For genetic transformation | 获得性状 Changed trait | 文献 Reference | |||
---|---|---|---|---|---|---|---|---|
非生物胁迫 | DgNAC1 | '神马''Jinba' | '神马''Jinba' | 耐旱性Drought tolerance | Zhao et al., | |||
Abiotic stress | CmBBX19,CmABF3 | 'Fall Color' | 'Fall Color' | 耐旱性Drought tolerance | Xu et al., | |||
CgDREB22 | '纽9717''Niu9717' | 烟草 Tobacco | 耐旱性Drought tolerance | 杨伊如, | ||||
CmRH56 | 'Fall Color' | 菊花C. morifolium | 耐旱性Drought tolerance | Zhang et al., | ||||
CmSOS1,CmRCD1 | '神马''Jinba' | '神马''Jinba' | 耐涝性Waterlogging tolerance | Wang et al., | ||||
DlNAC1 | 甘菊 Chrysanthemun lavandulifolium | 烟草 Tobacco | 耐热性Heat tolerance | 朱凯 等, | ||||
eIF5B1 | 拟南芥 Arabidopsis | 菊花 C. morifolium | 耐热性Heat tolerance | Wei et al., | ||||
DgMYB1 | '神马''Jinba' | '神马''Jinba' | 耐寒性Cold tolerance | 何玲,2019 | ||||
CmICE2 | '神马''Jinba' | 拟南芥 Arabidopsis | 耐寒性Cold tolerance | Zhang et al., | ||||
DgC3H1 | 菊花 C. morifolium | 菊花 C. morifolium | 耐寒性Cold tolerance | Bai et al., | ||||
CmHSFA4;DgWRKY2; DgMBF1,DgJAZ1 | '神马''Jinba' | '神马''Jinba' | 耐盐性Salt tolerance | Li et al., | ||||
ClSND1.1,ClVND1,ClBRN1 | 甘菊 Chrysanthemun lavandulifolium | 拟南芥 Arabidopsis | 耐盐性Salt tolerance | 王海 等, | ||||
CmBBX24 | 'Fall Color' | 'Fall Color' | 耐干旱和低温 Drought and cold tolerance | Yang et al., | ||||
CdICE1 | 异色菊 C. dichrum | '神马''Jinba' | 干旱、低温、盐 Drought,cold and salt tolerance | Chen et al., | ||||
DmDREBa/b | 菊花C. morifolium | 烟草 Tobacco | 干旱、低温、盐 Drought,cold and salt tolerance | 武剑 等, | ||||
CmDREBa-2 | 'C029' | 'C029' | 耐旱性和抗白锈病 Drought and white rust resistance | 毕蒙蒙 等, | ||||
CgbZIP | '纽9717' 'Niu9717' | 烟草 Tobacco | 耐盐性和耐旱性 Salt and drought tolerance | Liu et al., | ||||
生物胁迫 Biotic stress | CmWRKY15;CmWRKY33.1; CmMLO17,CmKIC | '神马''Jinba' | '神马''Jinba' | 黑斑病抗性 Black spot disease resistance | Fan et al., | |||
CmMYB19;CmTPS2/3;CmMYB15 | '神马''Jinba' | '神马''Jinba' | 抗蚜虫性Aphid resistance | Wang et al., |
图2 菊花传统育种结合现代生物技术育种体系
Fig. 2 A hypothetical comprehensive breeding strategy for chrysanthemum integrating conventional with modern biotechnological approaches
[1] |
An C, Sheng L P, Du X P, Wang Y J, Zhang Y, Song A P, Jiang J F, Guan Z Y, Fang W M, Chen F D, Chen S M. 2019. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. Horticulture Research, 6:84.
doi: 10.1038/s41438-019-0166-y URL |
[2] |
Bai H R, Lin P, Li X, Liao X Q, Wan L H, Yang X H, Luo Y C, Zhang L, Zhang F, Liu S L, Liu Q L. 2021. DgC3H1,a CCCH zinc finger protein gene,confers cold tolerance in transgenic chrysanthemum. Scientia Horticulturae, 281:109901.
doi: 10.1016/j.scienta.2021.109901 URL |
[3] | Bi Meng-meng, Zhu Peng-fang, Li Xue-ying, Mao Hong-yu. 2019. Functional verification of CmDREBa-2 in Chrysanthemum. Journal of Shenyang Agricultural University, 50:406-413. (in Chinese) |
毕蒙蒙, 祝朋芳, 李雪莹, 毛洪玉. 2019. 菊花CmDREBa-2基因的功能验证. 沈阳农业大学学报, 50:406-413. | |
[4] | Cai Hai-yan, Wen Li-zhu, Zheng Cheng-shu, Li Ying-ying, Sun Xia, Sun Xian-zhi. 2013. Mutation types of chyrsanthemum induced with EMS and molecular identification of the important mutation characteristics. Journal of Shandong Agricultural University(Natural Science), 44 (2):171-175. (in Chinese) |
蔡海燕, 温立柱, 郑成淑, 李莹莹, 孙霞, 孙宪芝. 2013. EMS诱发菊花突变类型及重要性状的分子鉴定. 山东农业大学学报(自然科学版), 44 (2):171-175. | |
[5] | Chang Shu-lin. 1965. Studies on the classification of garden varieties of florists' Chrysanthemum. Acta Horticulturae Sinica, 4 (1):35-46. (in Chinese) |
张树林. 1965. 菊花品种分类的研究. 园艺学报, 4 (1):35-46. | |
[6] | Chen Fa-di, Chen Pei-du, Fang Wei-min, Li Hong-jian. 1998. Cytogenetics of F1-hybrids between two small-headed cultivars of Dendranthema × grandiflorum and two wild Dendranthema species. Acta Horticulturae Sinica, 25 (3):308-309. (in Chinese) |
陈发棣, 陈佩度, 房伟民, 李鸿渐. 1998. 栽培小菊与野生菊间杂交一代的细胞遗传学初步研究. 园艺学报, 25 (3):308-309. | |
[7] | Chen Fa-di, Chen Pei-du, Li Hong-jian. 1996. Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China. Acta Horticulturae Sinica, 23 (1):67-72. (in Chinese) |
发棣, 陈佩度, 李鸿渐. 1996. 几种中国野生菊的染色体组分析及亲缘关系初步研究. 园艺学报, 23 (1):67-72. | |
[8] | Chen Fa-di, Chen Su-mei, Fang Wei-min, Zhang Fei, Jiang Jia-fu, Teng Nian-jun, Guan Zhi-yong, Wang Hai-bin, Song Ai-ping, Zhao Shuang. 2016. Discovery of excellent chrysanthemum germplasms and germplasm enhancement. Bulletin of National Natural Science Foundation of China, 30 (2):112-116. (in Chinese) |
陈发棣, 陈素梅, 房伟民, 张飞, 蒋甲福, 滕年军, 管志勇, 王海滨, 宋爱萍, 赵爽. 2016. 菊花优异种质资源挖掘与种质创新研究. 中国科学基金, 30 (2):112-116. | |
[9] | Chen Feng-huai, Wang Qui-pu. 1979. Chrysanthemum retraces. Chinese Journal of Nature,(10):62-63. (in Chinese) |
陈封怀, 王秋圃. 1979. 菊花探源. 自然杂志,(10):62-63. | |
[10] | Chen Jun-yu. 2012. The origin of garden chrysanthemum. Hefei: Anhui Science and Technology Press:67-87. (in Chinese) |
陈俊愉. 2012. 菊花起源. 合肥: 安徽科技出版社:67-87. | |
[11] |
Chen L, Chen Y, Jiang J F, Chen S M, Chen F D, Guan Z Y, Fang W M. 2012. The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature,salinity and drought tolerance. Plant Cell Reports, 31:1747-1758.
doi: 10.1007/s00299-012-1288-y pmid: 22645020 |
[12] |
Chen X, Zhou X, Xi L, Li J, Zhao R, Ma N, Zhao L. 2013. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum(Dendranthema × grandiflora cv. Jinba). PLoS ONE, 8:e61717.
doi: 10.1371/journal.pone.0061717 URL |
[13] | Cheng Li-na, Wei Qian, Muhammad Imtiaz, Gao Jun-ping, Hong Bo. 2013. Advances in application of transgenic breeding technology in the traits improvement of chrysanthemum. Acta Horticulturae Sinica, 40 (9):1813-1825. (in Chinese) |
成丽娜, 魏倩, Muhammad Imtiaz, 高俊平, 洪波. 2013. 转基因育种技术在菊花性状改良中的应用进展. 园艺学报, 40 (9):1813-1825. | |
[14] |
Cheng P L, Liu Y N, Yang Y M, Chen H, Cheng H, Hu Q, Zhang Z X, Gao J J, Zhang J X, Ding L, Fang W M, Chen S M, Chen F D, Jiang J F. 2020. CmBES1 is a regulator of boundary formation in chrysanthemum ray florets. Horticulture Research, 7:129.
doi: 10.1038/s41438-020-00351-8 URL |
[15] |
Chong X R, Su J S, Wang F, Wang H B, Song A P, Guan Z Y, Fang W M, Jiang J F, Chen S M, Chen F D, Zhang F. 2019. Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. Plant Molecular Biology, 99:407-420.
doi: 10.1007/s11103-019-00826-w pmid: 30701353 |
[16] | Chong X R, Zhang F, Wu Y Y, Yang X D, Zhao N, Wang H B, Guan Z Y, Fang W M, Chen F D. 2016. A SNP-enabled assessment of genetic diversity,evolutionary relationships and the identification of candidate genes in chrysanthemum. Genome Biology and Evolution, 8:3661-3671. |
[17] |
Cobb J N, Biswas P S, Platten J D. 2019. Back to the future:revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 132:647-667.
doi: 10.1007/s00122-018-3266-4 URL |
[18] | Dai Si-lan, Chen Jun-yu. 1996. Artificial interspecific cross among seven species of dendranthema in China. Journal of Beijing Forestry University,(4):16-22. (in Chinese) |
戴思兰, 陈俊愉. 1996. 菊属7个种的人工种间杂交试验. 北京林业大学学报,(4):16-22. | |
[19] |
Dai Si-lan, Huang He, Fu Jian-xin, Hong Yan. 2013. Advances in molecular breeding of ornamental plants. Chinese Bulletin of Botany, 48 (6):589-607. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00589 URL |
戴思兰, 黄河, 付建新, 洪艳. 2013. 观赏植物分子育种研究进展. 植物学报, 48 (6):589-607.
doi: 10.3724/SP.J.1259.2013.00589 |
|
[20] |
Dierck R, Leus L, Dhooghe E, van Huylenbroeck J, de Riek J, van Der Straeten D, de Keyser E. 2018. Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport. Plant Growth Regulation, 86 (1):23-36.
doi: 10.1007/s10725-018-0408-2 URL |
[21] |
Ding L, Song A P, Zhang X, Li S, Su J S, Xia W K, Zhao K K, Zhao W Q, Guan Y X, Fang W M, Chen S M, Jiang J F, Chen F D. 2020. The core regulatory networks and hub genes regulating flower development in Chrysanthemum morifolium. Plant Molecular Biology, 103:669-688.
doi: 10.1007/s11103-020-01017-8 URL |
[22] |
Ding L, Zhao K K, Zhang X, Song A P, Su J S, Hu Y H, Zhao W Q, Jiang J F, Chen F D. 2019. Comprehensive characterization of a floral mutant reveals the mechanism of hooked petal morphogenesis in Chrysanthemum morifolium. Plant Biotechnology Journal, 17:2325-2340.
doi: 10.1111/pbi.13143 URL |
[23] |
Dong L L, Wang Q, Xiong F, Liu N, Zhang S M. 2018. Isolation and functional analysis of CmMAX1 from chrysanthemum. Journal of the American Society for Horticultural Science, 143:430-435.
doi: 10.21273/JASHS04412-18 URL |
[24] |
Fan M, Gao Y K, Wu Z P, Zhang Q X. 2020. Linkage map development by EST-SSR markers and QTL analysis for inflorescence and leaf traits in chrysanthemum(Chrysanthemum morifolium Ramat.). Plants, 9:1342.
doi: 10.3390/plants9101342 URL |
[25] |
Fan Q Q, Song A P, Xin J J, Chen S M, Jiang J F, Wang Y J, Li X R, Chen F D. 2015. CmWRKY15facilitates Alternaria tenuissima infection of chrysanthemum. PLoS ONE, 10:e0143349. doi: https://doi.org/10.1371/journal.pone.0143349.
doi: https://doi.org/10.1371/journal.pone.0143349 URL |
[26] | Fu Jing, Dai Si-lan. 2016. Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging. Journal of Beijing Forestry University, 38 (8):88-98. (in Chinese) |
伏静, 戴思兰. 2016. 基于高光谱成像技术的菊花花色表型和色素成分分析. 北京林业大学学报, 38 (8):88-98. | |
[27] | Fu X, Su J S, Yu K L, Cai Y F, Zhang F, Chen S M, Fang W M, Chen F D, Guan Z Y. 2018. Genetic variation and association mapping of aphid(Macrosiphoniella sanbourni)resistance in chrysanthemum(Chrysanthemum morifolium Ramat.). Euphytica, 214:1-9. |
[28] | Fu Xiao, Su Jiang-shuo, Li Yuan-yuan, Zhang Fei, Fang Wei-min, Chen Su-mei, Chen Fa-di, Guan Zhi-yong. 2019. Genetic variation and QTL mapping for aphid resistance in an F1 population of chrysanthemum. Acta Horticulturae Sinica, 46 (7):1351-1358. (in Chinese) |
付晓, 苏江硕, 李媛媛, 张飞, 房伟民, 陈素梅, 陈发棣, 管志勇. 2019. 菊花F1代抗蚜性遗传变异与QTL定位. 园艺学报, 46 (7):1351-1358. | |
[29] | Gai Jun-yi. 2003. Genetic research on quantitative traits in plants—separation analysis method of major gene-polygene genetic system. Scientific Chinese, 11:46-48. (in Chinese) |
盖钧镒. 2003. 植物数量性状遗传研究——主基因-多基因遗传体系分离分析方法. 科学中国人, 11:46-48. | |
[30] | Gleim S, Lubieniechi S, Smyth S J. 2020. CRISPR-Cas 9 application in Canadian public and private plant breeding. The CRISPR Journal, 3:44-51. |
[31] |
Guan Y X, Ding L, Jiang J F, Shentu Y Y, Zhao W Q, Zhao K K, Zhang X, Song A P, Chen S M, Chen F D. 2021. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Horticulture Research, 8:87.
doi: 10.1038/s41438-021-00525-y URL |
[32] | Han X Y, Luo Y T, Lin J Y, Wu H Y, Sun H, Zhou L J, Chen S M, Guan Z Y, Fang W M, Zhang F, Chen F D, Jiang J F. 2021. Generation of purple-violet chrysanthemums via anthocyanin B-ring hydroxylation and glucosylation introduced from Osteospermum hybrid F3'5'H and Clitoria ternatea A3'5'GT. Ornamental Plant Research, 1:1-9. |
[33] | He Jun-ping, Chen Fa-di, Chen Su-mei, Fang Wei-min. 2010. Aphid-resistance of chrysanthemum cultivars. Chinese Journal of Eclolgy, 29:1382-1386. (in Chinese) |
何俊平, 陈发棣, 陈素梅, 房伟民. 2010. 不同菊花品种抗蚜虫性鉴定. 生态学杂志, 29:1382-1386. | |
[34] |
He L, Wu Y H, Zhao Q, Wang B, Liu Q L, Zhang L. 2018. Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic chrysanthemum. International Journal of Molecular Sciences, 19:2062.
doi: 10.3390/ijms19072062 URL |
[35] | He Ling. 2019. Joint sequencing analysis of transcriptome in chrysanthemum leaves under low temperature stress and cloning and functional identification of DgMYB1 gene[M. D. Dissertation]. Ya'an: Sichuan Agricultural University. (in Chinese) |
何玲. 2019. 低温胁迫下菊花叶转录组联合测序分析及DgMYB1基因的克隆与功能鉴定[硕士论文]. 雅安: 四川农业大学. | |
[36] | He Zhen. 2015. Studies on evaluation of standard cut flower of chrysanthemum branching characteristics and heredity analysis[M. D. Dissertation]. Nanjing: China Agricultural University. (in Chinese) |
何臻. 2015. 标准切花菊分枝特性评价及其遗传分析[硕士论文]. 南京: 南京农业大学. | |
[37] |
Hirakawa H, Sumitomo K, Hisamatsu T, Nagano S, Shirasawa K, Higuchi Y, Kusaba M, Koshioka M, Nakano Y, Yagi M. 2019. De novo whole-genome assembly in Chrysanthemum seticuspe,a model species of Chrysanthemums,and its application to genetic and gene discovery analysis. DNA Research, 26:195-203.
doi: 10.1093/dnares/dsy048 pmid: 30689773 |
[38] | Hong Bo, Shi Chun-feng, Zhang Xiao-jiao, Gao Jun-ping. 2009. Advances in research of ornamental and agricultural traits in chrysanthemum by gene engineering. Scientia Agricultura Sinica, 42:1348-1358. (in Chinese) |
洪波, 史春凤, 张晓娇, 高俊平. 2009. 菊花观赏性状和农艺性状基因工程改良研究进展. 中国农业科学, 42:1348-1358. | |
[39] |
Huang H, Hu K, Han K T, Xiang Q Y, Dai S L. 2013. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. PLoS ONE, 8:e74395.
doi: 10.1371/journal.pone.0074395 URL |
[40] |
Huang H F, Gao X K, Gao X, Zhang S Q, Zheng Y, Zhang N, Hong B, Zhao X, Gu Z Y. 2022a. Flower color mutation,pink to orange,through CmGATA4-CCD4a-5 module regulates carotenoids degradation in chrysanthemum. Plant Science, 322:111290.
doi: 10.1016/j.plantsci.2022.111290 URL |
[41] |
Huang Q X, Liao X Q, Yang X H, Luo Y C, Lin P, Zeng Q H, Bai H R, Jiang B B, Pan Y Z, Zhang F, Zhang L, Jia Y, Li Q L. 2021. Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum. Plant Biotechnology Journal, 19:1125-1140.
doi: 10.1111/pbi.13533 pmid: 33368971 |
[42] |
Huang Y Y, Xing X J, Tang Y, Jin J Y, Ding L, Song A P, Chen S M, Chen F D, Jiang J F, Fang W M. 2022b. An ethylene-responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum. Plant Cell Environment, 45:1442-1456.
doi: 10.1111/pce.14261 URL |
[43] | Ji Qing-ping. 1987. Experiments and discussion on the origin of Chinese chrysanthemum[Ph. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
吉庆萍. 1987. 有关中国菊花起源的实验与探讨[博士论文]. 北京: 北京林业大学. | |
[44] |
Kishi-Kaboshi M, Aida R, Sasaki K. 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, 58:216-226.
doi: 10.1093/pcp/pcw222 pmid: 28049122 |
[45] | Lan Feng. 2018. The study on mutagenic effects of 60Co γ-rays on two kinds of ground-grow chrysanthemum[M. D. Dissertation]. Harbin: Northeast Forestry University. (in Chinese) |
兰凤. 2018. 60Co-γ射线对两种露地菊品种辐射诱变效应的研究[硕士论文]. 哈尔滨: 东北林业大学. | |
[46] | Li Cui, Hao Fu-shun, Sun Li-rong. 2018. DgGA20ox was effectively silenced by CRISPR/Cas 9 technology in Chrysanthemum. Journal of Henan Institute of Science and Technology(Natural Science Edition), 46:22-26. (in Chinese) |
李翠, 郝福顺, 孙立荣. 2018. 利用 CRISPR/Cas9 技术有效沉默菊花DgGA20ox基因. 河南科技学院学报(自然科学版), 46:22-26. | |
[47] |
Li F, Zhang H R, Zhao H S, Gao T W, Song A P, Jiang J F, Chen F D, Chen S M. 2018. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnology Journal, 16:1311-1321.
doi: 10.1111/pbi.12871 URL |
[48] | Li Hong-jian, Shao Jian-wen. 1990. Investigation,collection and classification of chrysanthemum cultivars in China. Journal of Nanjing Agricultural University, 13 (1):30-36. (in Chinese) |
李鸿渐, 邵建文. 1990. 中国菊花品种资源的调查收集与分类. 南京农业大学学报, 13 (1):30-36. | |
[49] |
Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F. 2016. Genetic diversity,population structure and association analysis in cut chrysanthemum(Chrysanthemum morifolium Ramat.). Molecular Genetics and Genomics, 291:1117-1125.
doi: 10.1007/s00438-016-1166-3 URL |
[50] |
Li P L, Song A P, Gao C Y, Jiang J F, Chen S M, Fang W M, Zhang F, Chen F D. 2015. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiology and Biochemistry, 95:26-34.
doi: 10.1016/j.plaphy.2015.07.002 pmid: 26184088 |
[51] | Li P R, Su J S, Guan Z Y, Fang W M, Chen F D, Zhang F. 2018. Association analysis of drought tolerance in cut chrysanthemum(Chrysanthemum morifolium Ramat.)at seedling stage. 3 Biotech, 8:1-9. |
[52] |
Li X, Yang Q, Liao X Q, Tian Y C, Zhang F, Zhang L, Liu Q L. 2022. A natural antisense RNA improves chrysanthemum cold tolerance by regulating the transcription factor DgTCP1. Plant Physiology,doi: https://doi.org/10.1093/plphys/kiac267.
doi: https://doi.org/10.1093/plphys/kiac267 URL |
[53] | Li Xin-lei, Chen Fa-di. 2004a. Advances of genetic improvement and germplasm resources for chrysanthemum. Chinese Bulletin of Botany, 21:392-401. (in Chinese) |
李辛雷, 陈发棣. 2004a. 菊花种质资源与遗传改良研究进展. 植物学通报, 21:392-401. | |
[54] | Li Xin-lei, Chen Fa-di. 2004b. RAPD analysis of wild species cultivars and interspecific hybrids in Dendranthema. Journal of Nanjing Agricultural University,(3):29-33. (in Chinese) |
李辛雷, 陈发棣. 2004b. 菊属野生种、栽培菊花及种间杂种的RAPD分析. 南京农业大学学报,(3):29-33. | |
[55] |
Liang J L, Zhao L J, Challis R, Leyser O. 2010. Strigolactone regulation of shoot branching in chrysanthemum(Dendranthema grandiflorum). Journal of Experimental Botany, 61:3069-3078.
doi: 10.1093/jxb/erq133 URL |
[56] | Liu Rui. 2010. Phylogenetic relationship studies on some wild species and cultivated varieties in chrysanthemum[M. D. Dissertation]. Baoding: Agricultural University of Hebei Province. (in Chinese) |
刘蕤. 2010. 部分菊属野生种与栽培菊花亲缘关系研究[硕士论文]. 保定: 河北农业大学. | |
[57] | Liu Wei-xin. 2019. Molecular mechanism of sucrose regulates axillary bud growth in chrysanthemum[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
刘伟鑫. 2019. 蔗糖调控菊花侧芽生长的分子机理研究[博士论文]. 南京: 南京农业大学. | |
[58] |
Liu X F, Xiang L L, Yin X R, Grierson D, Li F, Chen K S. 2015. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Scientia Horticulturae, 194:278-285.
doi: 10.1016/j.scienta.2015.08.018 URL |
[59] |
Liu Y, Wang L, Liu C X, Yin H, Liu H, Luo H, He M, Zhou Y W. 2022. CgbZIP1:a bZIP transcription factor from Chrysanthemum grandiflora confers plant tolerance to salinity and drought stress. Agronomy, 12:556.
doi: 10.3390/agronomy12030556 URL |
[60] |
Liu Y, Xin J, Liu L, Song A, Guan Z, Fang W, Chen F. 2020. A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. Horticulture Research, 7:23.
doi: 10.1038/s41438-020-0245-0 pmid: 32140232 |
[61] | Liu Yi-qi. 2016. Isolation and function analysis of floral symmetry gene CmDIV in Chrysanthemum morifolium'Maoxiangyu'[M. D. Dissertation]. Beijing: Beijing Foresty University. (in Chinese) |
刘轶奇. 2016. 菊花'毛香玉'花对称性调控CmDIV基因克隆及分析[硕士论文]. 北京: 北京林业大学. | |
[62] |
Liu Z L, Wang J, Tian Y, Dai S L. 2019. Deep learning for image-based large-flowered chrysanthemum cultivar recognition. Plant Methods, 15:1-11.
doi: 10.1186/s13007-018-0385-5 URL |
[63] | Ma Chao-feng. 2019. Expression analysis of PHYA and PHYB homologous gene in Chrysanthemum lavandulifolium and C. vestitum and ClPHYB functional verification[M. D. Dissertation]. Beijing: Beijing Foresty University. (in Chinese) |
马朝峰. 2019. 甘菊和毛华菊PHYA和PHYB同源基因表达分析及ClPHYB功能验证[硕士论文]. 北京: 北京林业大学. | |
[64] |
Mao Y, Sun J, Cao P, Zhang R, Fu Q, Chen S, Chen F, Jiang J. 2016. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium. Horticulture Research, 3:16058.
doi: 10.1038/hortres.2016.58 URL |
[65] |
Nakano M, Hirakawa H, Fukai E, Toyoda A, Kajitani R, Minakuchi Y, Itoh T, Higuchi Y, Kozuka T, Bono H. 2021. A chromosome-level genome sequence of Chrysanthemum seticuspe,a model species for hexaploid cultivated chrysanthemum. Communications Biology, 4:1-11.
doi: 10.1038/s42003-020-01566-0 URL |
[66] |
Nie J, Wen C, Xi L, Lv S H, Zhao Q C, Kou Y P, Ma N, Zhao L J, Zhou X F. 2018. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching,lateral root,and drought tolerance. Plant Cell Reports, 37:1049-1060.
doi: 10.1007/s00299-018-2290-9 URL |
[67] |
Peng H, Zhang F, Jiang J F, Chen S M, Fang W M, Guan Z Y, Chen F D. 2015. Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica, 202:385-392.
doi: 10.1007/s10681-014-1259-1 URL |
[68] |
Ping Q, Cheng P L, Huang F, Ren L P, Cheng H, Guan Z Y, Fang W M, Chen S M, Chen F D, Jiang J F. 2019. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering. Plant Physiology and Biochemistry, 144:480-487.
doi: S0981-9428(19)30420-6 pmid: 31655346 |
[69] |
Qi C, Gao J, Chen K, Shu L, Pearson S. 2022. Tea Chrysanthemum detection by leveraging generative adversarial networks and edge computing. Frontiers in Plant Science, 13:850606.
doi: 10.3389/fpls.2022.850606 URL |
[70] | Qi Meng-wen, Wang Hua-guo. 1997. Progress and analysis of flower radiation breeding in China. Journal of Nuclear Agricultural Sciences,(6):39-41. (in Chinese) |
齐孟文, 王化国. 1997. 我国花卉辐射育种的进展与剖析. 核农学通报,(6): 39-41. | |
[71] |
Song C, Liu Y F, Song A P, Dong G Q, Zhao H B, Sun W, Ramakrishnan S, Wang Y, Wang S B, Li T Z, Niu Y, Jiang J F, Dong B, Xia Y, Chen S M, Hu Z G, Chen F D, Chen S L. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant, 11:1482-1491.
doi: S1674-2052(18)30308-3 pmid: 30342096 |
[72] | Song Feng-yan. 2016. Photoperiod pathway related gene AtCO in genetic transformation of Chrysanthemum morifolium'Huoyan'[M. D. Dissertation]. Harbin: Northeast Forestry University. (in Chinese) |
宋凤艳. 2016. 光周期途径相关基因AtCO在露地菊'火焰'中的遗传转化[硕士论文]. 哈尔滨: 东北林业大学. | |
[73] |
Song X B, Xu Y H, Gao K, Fan G X, Zhang F, Deng C Y, Dai S L, Huang H, Xin H G, Li Y Y. 2020. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum(Chrysanthemum× morifolium Ramat.). Horticulture Research, 7:108.
doi: 10.1038/s41438-020-0333-1 URL |
[74] |
Song X B, Zhao X G, Fan G X, Gao K, Dai S L, Zhang M, Ma C F, Wu X Y. 2018. Genetic analysis of the corolla tube merged degree and the relative number of ray florets in chrysanthemum(Chrysanthemum × morifolium Ramat.). Scientia Horticulturae, 242:214-224.
doi: 10.1016/j.scienta.2018.07.010 URL |
[75] | Su J S, Jiang J F, Zhang F, Liu Y, Ding L, Chen S M, Chen F D. 2019a. Current achievements and future prospects in the genetic breeding of chrysanthemum:a review. Horticulture Research, 6:109. |
[76] |
Su J S, Yang X C, Zhang F, Wu S F, Xiong S Y, Shi L M, Guan Z Y, Fang W M, Chen F D. 2018. Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum. Planta, 247:899-924.
doi: 10.1007/s00425-017-2833-2 pmid: 29273861 |
[77] |
Su J S, Zhang F, Chong X R, Song A P, Guan Z Y, Fang W M, Chen F D. 2019b. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Horticulture Research, 6:21.
doi: 10.1038/s41438-018-0101-7 URL |
[78] |
Su J S, Zhang F, Li P R, Guan Z Y, Fang W M, Chen F D. 2016. Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta, 244:1241-1252.
pmid: 27522648 |
[79] |
Su J S, Zhang F, Yang X C Feng Y X, Yang X D, Wu Y Y, Guan Z Y, Fang W M, Chen F D. 2017. Combining ability,heterosis,genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica, 213 (2):1-15.
doi: 10.1007/s10681-016-1788-x URL |
[80] |
Sun J, Wang H, Ren L P, Chen S M, Jiang J F. 2017. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum. Horticulture Research, 4:17001.
doi: 10.1038/hortres.2017.1 URL |
[81] |
Sun W, Yang X C, Su J S, Guan Z Y, Jiang J F, Chen F D, Fang W M, Zhang F. 2019. The genetics of planting density-dependent branching in chrysanthemum. Scientia Horticulturae, 256:108598.
doi: 10.1016/j.scienta.2019.108598 URL |
[82] |
Tang M W, Xue W J, Li X Q, Wang L S, Wang M, Wang W P, Yin X, Chen B W, Qu X T, Li J Y, Gao X Y, Wei X F, Bu F Q, Zhang L Y, Sui Z R, Ding B, Wang Y, Zhang Q Z, Li Y H, Zhang Y. 2022. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in Chrysanthemum. New Phytologist,doi: https://doi.org/10.1111/nph.18389.
doi: https://doi.org/10.1111/nph.18389 URL |
[83] |
Teixeira da Silva J A, Shinoyama H, Aida R, Matsushita Y, Raj S K, Chen F D. 2013. Chrysanthemum biotechnology:Quo vadis? Critical Reviews in Plant Sciences, 32:21-52.
doi: 10.1080/07352689.2012.696461 URL |
[84] |
van Lieshout N, van Kaauwen M, Kodde L, Arens P, Smulders M J, Visser R G, Finkers R. 2022. De novo whole-genome assembly of Chrysanthemum makinoi, a key wild chrysanthemum. G3, 12:jkab358. doi: https://doi.org/10.1093/g3journal/jkab358.
doi: https://doi.org/10.1093/g3journal/jkab358 URL |
[85] | Wang Bo-nan. 2007. Mutagenic effect of γ-Rays on Dendrite ma. moratorium Tzvel. Henan Science, 25 (5):758-760. (in Chinese) |
王柏楠. 2007. γ射线对菊花的诱变效应. 河南科学, 25 (5):758-760. | |
[86] |
Wang C C, Zhang F, Guan Z Y, Chen S M, Jiang J F, Fang W M, Chen F D. 2014. Inheritance and molecular markers for aphid(Macrosiphoniella sanbourni)resistance in chrysanthemum(Chrysanthemum morifolium Ramat.). Scientia Horticulturae, 180:220-226.
doi: 10.1016/j.scienta.2014.10.038 URL |
[87] | Wang Hai, Li Tong, Zhou Yuan-yuan, Wang Wang, Zhao Hui-en. 2021. Cloning and expression analysis of Lignin-regulated transcription factor ClSND1-like from Chrysanthemum lavandulifolium. Acta Botanica Boreali-Occidentalia Sinica, 41:359-367. (in Chinese) |
王海, 李童, 周圆圆, 汪王, 赵惠恩. 2021. 甘菊木质素调控转录因子ClSND1-like的克隆与表达分析. 西北植物学报, 41:359-367. | |
[88] | Wang Hong, Chen Fa-di, Zhao Hong-bo, Fang Wei-min. 2007. Mutagenic effect of Pingyangmycin on Dendranthema × grandiflorum'Italy Red' with small inflorescence. Journal of Nanjing Agricultural University,(4):39-43. (in Chinese) |
王红, 陈发棣, 赵宏波, 房伟民. 2007. 平阳霉素对盆栽小菊意大利红的诱变效应. 南京农业大学学报,(4):39-43. | |
[89] |
Wang J J, Guan Y X, Ding L, Li P R, Zhao W Q, Jiang J F, Chen S M, Chen F D. 2019. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science, 280:248-257.
doi: 10.1016/j.plantsci.2018.12.008 URL |
[90] |
Wang L J, Gao J J, Zhang Z X, Liu W M, Cheng P L, Mu W T, Su T, Chen S M, Chen F D, Jiang J F. 2020a. Overexpression of CmSOS1 confers waterlogging tolerance in chrysanthemum. Journal of Integrative Plant Biology, 62:1059-1064.
doi: 10.1111/jipb.12889 URL |
[91] |
Wang L J, Sun J, Ren L P, Zhou M, Han X Y, Ding L, Zhang F, Guan Z Y, Fang W M, Chen S M, Chen F D, Jiang J F. 2020b. CmBBX8 accelerates flowering by targeting CmFTL1directly in summer chrysanthemum. Plant Biotechnology Journal, 18:1562-1572.
doi: 10.1111/pbi.13322 URL |
[92] |
Wang T L, Wei Q, Wang Z L, Liu W W, Zhao X, Ma C, Gao J P, Xu Y J, Hong B. 2022a. CmNF‐YB 8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. Journal of Integrative Plant Biology, 64:741-755.
doi: 10.1111/jipb.13201 URL |
[93] | Wang Wei-jiao. 2019. Cloning of terpene synthase genes CmTPS1,2, 3 and functional identification of CmTPS2,3 in chrysanthemum[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
王威姣. 2019. 菊花萜烯合成酶基因CmTPS1,2, 3的克隆及CmTPS2,3的功能鉴定[硕士论文]. 南京: 南京农业大学. | |
[94] | Wang Yi. 2013. The expression pattern and functional characterization of flowering related genes in Chrysanthemum lavandulifolium(Fisch. Ex Trautv.)Makino[Ph. D. Dissertation]. Beijing: Beijing Foresty University. (in Chinese) |
王翊. 2013. 甘菊成花相关基因表达模式和功能的研究[博士论文]. 北京: 北京林业大学. | |
[95] |
Wang Y G, Zhou L J, Wang Y X, Geng Z Q, Ding B Q, Jiang J F, Chen S M, Chen F D. 2022b. An R2R3-MYB transcription factor CmMYB 21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum. Scientia Horticulturae, 293:110674.
doi: 10.1016/j.scienta.2021.110674 URL |
[96] |
Wang Y G, Zhou L J, Wang Y X, Geng Z Q, Liu S H, Chen C W, Chen S M, Jiang J F, Chen F D. 2022c. CmMYB9a activates floral coloration by positively regulating anthocyanin biosynthesis in chrysanthemum. Plant Molecular Biology, 108:51-63.
doi: 10.1007/s11103-021-01206-z URL |
[97] |
Wang Y J, Sheng L P, Zhang H R, Du X P, An C, Xia X L, Chen F D, Jiang J F, Chen S M. 2017. CmMYB19 over-expression improves aphid tolerance in chrysanthemum by promoting lignin synthesis. International Journal of Molecular Sciences, 18:619.
doi: 10.3390/ijms18030619 URL |
[98] |
Wei Q, Ma C, Xu Y J, Wang T L, Chen Y Y, Lv J, Zhang L L, Jiang C Z, Hong B, Gao J P. 2017. Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications, 8:829.
doi: 10.1038/s41467-017-00812-0 pmid: 29018260 |
[99] |
Wei Z Q, Lv M J, Wan W, Yu F, Cao X Y, Meng L S. 2019. Transformation of eIF5B1 gene into chrysanthemum to gain calluses of high temperature tolerance. Biologia, 74:1271-1277.
doi: 10.2478/s11756-019-00312-0 URL |
[100] | Wen L, Sun X, Ren H, Fan H, Yu Y, Guo Y, Zheng C. 2017. Cloning and functional verification of chrysanthemum CmXTHs genes related to petal elongation. Acta Horticulturae Sinica, 44:2150-2162. |
[101] |
Wen X H, Li Z J, Wang L L, Lu C F, Gao Q, Xu P, Pu Y, Zhang Q L, Hong Y, Hong L, Huang H, Xin H, Wu X Y, Kang D R, Gao K, Li Y J, Ma C F, Li X M, Zheng H K, Wang Z C, Jiao Y N, Zhang L S, Dai S L. 2022. The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse capitulum types. Horticulture Research, 9:uhab022. doi: https://doi.org/10.1093/hr/uhab022.
doi: https://doi.org/10.1093/hr/uhab022 URL |
[102] |
Wen X H, Qi S, Yang L W, Hong Y, Dai S L. 2019. Expression pattern of candidate genes in early capitulum morphogenesis of Chrysanthemum lavandulifolium. Scientia Horticulturae, 252:332-341.
doi: 10.1016/j.scienta.2019.03.064 URL |
[103] | Wu Jian, Yang Yan-fang, Wang Hui, Zhu Kai, Liu Li-qing, Chen Fa-di, Yu De-yue. 2016. Study of DmDREBa/b gene enhanced stress tolerance in transgenic tobacco. Molecular Plant Breeding, 14:3063-3072. (in Chinese) |
武剑, 杨艳芳, 王慧, 朱凯, 刘黎卿, 陈发棣, 喻德跃. 2016. 菊花DmDREBa/b基因提高转基因烟草耐逆性研究. 分子植物育种, 14:3063-3072. | |
[104] | Xi L, Wen C, Fang S, Chen X L, Nie J, Chu J F, Yuan C Q, Yan C Y, Ma N, Zhao L J. 2015. Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum(Dendranthema grandiflorum cv.Jinba). Frontiers in Plant Science, 6:694. |
[105] | Xia Wei-kang. 2020. Functional analysis of transcription factors CmCUC2and CmCUC3 in chrysanthemum[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
夏伟康. 2020. 菊花转录因子CmCUC2和CmCUC3的功能分析[硕士论文]. 南京: 南京农业大学. | |
[106] |
Xiang L L, Liu X F, Li H, Yin X R, Grierson D, Li F, Chen K S. 2019. CmMYB#7,an R3 MYB transcription factor,acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum. Journal of Experimental Botany, 70:3111-3123.
doi: 10.1093/jxb/erz121 pmid: 30994176 |
[107] | Xin Jing-jing. 2020. Molecular mechanisms of CmMLO17 involved in Alternaria alternata infection[Ph. D. Dissertation]. Nanjing: China Agricultural University. (in Chinese) |
辛静静. 2020. 菊花CmMLO17参与链格孢菌侵染的分子机制[博士论文]. 南京: 南京农业大学. | |
[108] | Xing Li-li, Chen Fa-di, Miao Heng-bin. 2009. Meiosis and ISSR analysis on genetic variation of 60Co γ-rays irradiated variants of cut chrysanthemum. Journal of Nuclear Agricultural Sciences, 23:587-591. (in Chinese) |
邢莉莉, 陈发棣, 缪恒彬. 2009. 切花菊'长紫'辐照后代减数分裂行为及ISSR遗传变异分析. 核农学报, 23:587-591.
doi: 10.11869/hnxb.2009.04.0587 |
|
[109] | Xing Xiao-juan. 2019. The lateral bud development related candidate genes research and functional verfication of inhibition of high temperature on verification inhibition og high temperature on cut-flower chrysanthemum'Sei No Issei'[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
邢晓娟. 2019. 高温抑制切花菊'精の一世'侧枝发育相关候选基因挖掘与功能验证[博士论文]. 南京: 南京农业大学. | |
[110] | Xu Ting-ting, Ma-Jie, Chi Tian-hua, Ye Dan, Guan Zhi-yong, Fang Wei-min, Chen Fa-di, Zhang Fei. 2019. Genetic variation and molecular markers for cold tolerance of cut-chrysanthemum cultivars at seedling stage. Journal of Nuclear Agricultural Sciences, 33:199-207. (in Chinese) |
徐婷婷, 马杰, 迟天华, 叶丹, 管志勇, 房伟民, 陈发棣, 张飞. 2019. 切花菊苗期抗寒性评价及相关的分子标记挖掘. 核农学报, 33:199-207.
doi: 10.11869/j.issn.100-8551.2019.01.0199 |
|
[111] |
Xu Y J, Zhao X, Aiwaili P, Mu X Y, Zhao M, Zhao J, Cheng L N, Ma C, Gao J P, Hong B. 2020. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. The Plant Journal, 103:1783-1795.
doi: 10.1111/tpj.14863 URL |
[112] | Xue Shou-ji. 2004. Coloratlas of the chrysanthemum of China. Beijing: China Forestry Press:1-5. (in Chinese) |
薛守纪. 2004. 中国菊花图谱. 北京: 中国林业出版社:1-5. | |
[113] | Yang Hui-ting. 2019. Induced ploidy variations in vitro of cutting white chrysanthemum and rapid propagation in vitro of yellow chrysanthemum 'Jinshan'[M. D. Dissertation]. Fuzhou: Fujian Agriculture and Forestry University. (in Chinese) |
杨惠婷. 2019. 单头切花白菊的离体倍性诱变与'金扇'的组培快繁[硕士论文]. 福州: 福建农林大学. | |
[114] | Yang Xin-cheng, Su Jiang-shuo, Sun Wei, Wu Yang-yang, Zhang Fei, Guan Zhi-yong, Chen Fa-di, Yao Jian-jun, Fang Wei-min. 2018. Combining ability analysis of the major branching traits in spray cut chrysanthemum. Acta Horticulturae Sinica, 45 (10):1952-1960. (in Chinese) |
杨信程, 苏江硕, 孙炜, 吴洋洋, 张飞, 管志勇, 陈发棣, 姚建军, 房伟民. 2018. 切花小菊主要分枝性状的配合力与遗传力分析. 园艺学报, 45 (10):1952-1960. | |
[115] |
Yang X D, Fang X Q, Su J S, Ding L, Guan Z Y, Jiang J F, Chen S M, Chen F D, Fang W M, Zhang F. 2019a. Genetic dissection of floral traits in anemone-type chrysanthemum by QTL mapping. Molecular Breeding, 39:1-11.
doi: 10.1007/s11032-018-0907-x URL |
[116] |
Yang X D, Wu Y Y, Su J S, Ao N, Guan Z Y, Jiang J F, Chen S M, Fang W M, Chen F D, Zhang F. 2019b. Genetic variation and development of a SCAR marker of anemone-type flower in chrysanthemum. Molecular Breeding, 39:1-12.
doi: 10.1007/s11032-018-0907-x URL |
[117] |
Yang Y J, Ma C, Xu Y J, Wei Q, Imtiaz M, Lan H B, Gao S, Cheng L N, Wang M Y, Fei Z J, Hong B, Gao J P. 2014. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. The Plant Cell, 26:2038-2054.
doi: 10.1105/tpc.114.124867 pmid: 24858937 |
[118] | Yang Yi-ru. 2020. Cloning and expression analysis of CgDREB22 gene from Chrysanthemum × grandiflora[M. D. Dissertation]. Harbin: Northeast Forestry University. (in Chinese) |
杨伊如. 2020. 露地菊CgDREB22基因克隆与表达分析[硕士论文]. 哈尔滨: 东北林业大学. | |
[119] |
Yuan C Q, Ahmad S, Cheng T R, Wang J, Pan H T, Zhao L J, Zhang Q X. 2018. Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in Chrysanthemum(Dendranthema grandiflorum'Jinba'). International Journal of Molecular Sciences, 19:1590.
doi: 10.3390/ijms19061590 URL |
[120] |
Yuan C Q, Huang D, Yang Y, Sun M, Cheng T R, Wang J, Pan H, Zhang Q X. 2020. CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium'. Plant Molecular Biology, 103:159-171.
doi: 10.1007/s11103-020-00981-5 URL |
[121] |
Yuan P S, Qian S Y, Zhai Z, FernánMartínez J, Xu H L. 2022. Study of chrysanthemum image phenotype on-line classification based on transfer learning and bilinear convolutional neural network. Computers and Electronics in Agriculture, 194:106679.
doi: 10.1016/j.compag.2021.106679 URL |
[122] | Yuan Pei-sen, Li Wei, Ren Shou-gang, Xu Huan-liang. 2018. Recognition for flower type and variety of chrysanthemum with convolutional neural network. Transactions of the Chinese Society of Agricultural Engineering, 34 (5):152-158. (in Chinese) |
袁培森, 黎薇, 任守纲, 徐焕良. 2018. 基于卷积神经网络的菊花花型和品种识别. 农业工程学报, 34 (5):152-158. | |
[123] | Zhai Guo, Li Zhi-min, Lu Wen-chao, Zhao Yong, Wang Cheng. 2016. Study on varieties identification of ornamental chrysanthemum based on image processing. Journal of Chinese Agricultural Mechanization, 37:105-110. (in Chinese) |
翟果, 李志敏, 路文超, 赵勇, 王成. 2016. 基于图像处理技术的观赏菊品种识别方法研究. 中国农机化学报, 37:105-110. | |
[124] |
Zhang L L, Xu Y J, Liu X N, Qin M Z, Li S L, Jiang T H, Yang Y J, Jiang C Z, Gao J P, Hong B, Ma C. 2022. The chrysanthemum DEAD-box RNA helicase CmRH 56 regulates rhizome outgrowth in response to drought stress. Journal of Experimental Botany,erac213. doi: https://doi.org/10.1093/jxb/erac213.
doi: https://doi.org/10.1093/jxb/erac213 URL |
[125] | Zhang Fei, Chen Fa-di, Fang Wei-min, Chen Su-mei, Li Feng-tong. 2010a. Heterosis and mixed genetic analysis of inflorescence traits of chrysanthemum. Scientia Agricultura Sinica, 43:2953-2961. (in Chinese) |
张飞, 陈发棣, 房伟民, 陈素梅, 李风童. 2010a. 菊花花器性状杂种优势与混合遗传分析. 中国农业科学, 43:2953-2961. | |
[126] | Zhang Fei, Fang Wei-min, Chen Fa-di, Chen Su-mei. 2010b. Combining ability analysis on ornamental characters of chrysanthemum. Acta Horticulturae Sinica, 37 (4):589-596. (in Chinese) |
张飞, 房伟民, 陈发棣, 陈素梅. 2010b. 菊花观赏性状的配合力分析. 园艺学报, 37 (4):589-596. | |
[127] |
Zhang F, Chen S M, Chen F D, Fang W M, Chen Y, Li F T. 2011. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum(Dendranthema morifolium). Molecular Breeding, 27:11-23.
doi: 10.1007/s11032-010-9409-1 URL |
[128] |
Zhang F, Chen S M, Chen F D, Fang W M, Li F T. 2010. A preliminary genetic linkage map of chrysanthemum(Chrysanthemum morifolium) cultivars using RAPD,ISSR and AFLP markers. Scientia Horticulturae, 125:422-428.
doi: 10.1016/j.scienta.2010.03.028 URL |
[129] | Zhang F, Chen S M, Jiang J F, Guan Z Y, Fang W M, Chen F D. 2013. Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum(Chrysanthemum morifolium). PLoS ONE, 8:e83023. |
[130] | Zhang Hong-wei. 2015. Chrysanthemum coloratlas. Zhengzhou: Zhongzhou Ancient Books Press:1-20. (in Chinese) |
章宏伟. 2015. 菊谱. 郑州: 中州古籍出版社:1-20. | |
[131] | Zhang Shu-lin, Dai Si-lan. 2013. The book of chrysanthemum in China. Beijing: China Forestry Publishing House. (in Chinese) |
张树林, 戴思兰. 2013. 中国菊花全书. 北京: 中国林业出版社. | |
[132] |
Zhang Z H, Zhu L, Song A P, Wang H B, Chen S M, Jiang J F, Chen F D. 2020. Chrysanthemum (Chrysanthemum morifolium)CmICE2conferred freezing tolerance in Arabidopsis. Plant Physiology and Biochemistry, 146:31-41.
doi: 10.1016/j.plaphy.2019.10.041 URL |
[133] |
Zhang Z X, Hu Q, Cheng H, Cheng P L, Liu Y N, Liu W X, Xing X J, Chen S M, Chen F D, Jiang J F. 2019. A single residue change in the product of the chrysanthemum gene TPL1-2 leads to a failure in its repression of flowering. Plant Science, 285:165-174.
doi: 10.1016/j.plantsci.2019.04.027 URL |
[134] |
Zhao K K, Ding L, Xia W K, Zhao W Q, Zhang X, Jiang J F, Chen S M, Chen F D. 2020. Characterization of an APETALA1 and a FRUITFUL-like homolog in chrysanthemum. Scientia Horticulturae, 272:109518.
doi: 10.1016/j.scienta.2020.109518 URL |
[135] |
Zhao Q, He L, Wang B, Liu Q L, Pan Y Z, Zhang F, Jiang B B, Zhang L. 2019. Overexpression of a multiprotein bridging factor 1 gene DgMBF1 improves the salinity tolerance of chrysanthemum. International Journal of Molecular Sciences, 20:2453.
doi: 10.3390/ijms20102453 URL |
[136] | Zhao Q, Zhong M, He L, Wang B, Liu Q L, Pan Y Z, Jiang B B, Zhang L. 2018. Overexpression of a chrysanthemum transcription factor gene DgNAC1 improves drought tolerance in chrysanthemum. Plant Cell,Tissue and Organ Culture(PCTOC), 135:119-132. |
[137] |
Zhao W Q, Ding L, Liu J Y, Zhang X, Li S, Zhao K K, Guan Y X, Song A P, Wang H B, Chen S M, Jiang J F, Chen F D. 2022. Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in Chrysanthemum. Journal of Experimental Botany, 73 (8):2403-2419.
doi: 10.1093/jxb/erac015 URL |
[138] |
Zhou L J, Geng Z Q, Wang Y X, Wang Y G, Liu S H, Chen C W, Song A P, Jiang J F, Chen S M, Chen F D. 2021. A novel transcription factor CmMYB 012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum. Horticulture Research, 8:248.
doi: 10.1038/s41438-021-00675-z pmid: 34848687 |
[139] |
Zhou L J, Wang Y X, Wang Y G, Song A P, Jiang J F, Chen S M, Ding B Q, Chen F D. 2022. Transcription factor CmbHLH 16 regulates petal anthocyanin homeostasis under different lights in Chrysanthemum. Plant Physiology,doi: https://doi.org/10.1093/plphys/kiac342.
doi: https://doi.org/10.1093/plphys/kiac342 URL |
[140] | Zhu Kai, Wu Jian, Yang Yan-fang, Chen Fa-di, Yu De-yue. 2017. Overexpression of DlNAC1 gene isolated from Dendranthema lavandulifolium in enhancing heat stress tolerance in transgenic tobacco. Bulletin of Botanical Research, 37:432-439. (in Chinese) |
朱凯, 武剑, 杨艳芳, 陈发棣, 喻德跃. 2017. 甘菊DlNAC1转录因子基因提高烟草耐高温能力. 植物研究, 37:432-439. |
[1] | 叶志琴, 杨 娟. 菊花新品种‘紫鬓云’[J]. 园艺学报, 2022, 49(S2): 173-174. |
[2] | 赵艳莉, 李战鸿, 曹 琴, 戴妙飞, 高萌萌, 孙珍珠, 李会宽, 李永华, 卞书迅, 黄 淦. 菊花新品种‘汴京庆典黄’[J]. 园艺学报, 2022, 49(S2): 175-176. |
[3] | 曹 琴, 赵艳莉, 李战鸿, 高萌萌, 戴妙飞, 李永华, 李会宽, 孙珍珠, 卞书迅, 李 菲. 小菊新品种‘汴京紫精灵’[J]. 园艺学报, 2022, 49(S2): 177-178. |
[4] | 吴凡, 江俊浩, 卢山, 张楠, 邱帅, 魏建芬, 沈柏春. 中国绣球属种质资源及其利用研究进展[J]. 园艺学报, 2022, 49(9): 2037-2050. |
[5] | 吕正鑫, 贺艳群, 贾东峰, 黄春辉, 钟敏, 廖光联, 朱壹, 袁开昌, 刘传浩, 徐小彪. 猕猴桃种质资源表型性状遗传多样性分析[J]. 园艺学报, 2022, 49(7): 1571-1581. |
[6] | 李平平, 张祥, 刘雨婷, 谢志和, 张芮豪, 赵凯, 吕俊恒, 王梓然, 文锦芬, 邹学校, 邓明华. 辣椒63份种质果皮颜色与呈色物质的关系[J]. 园艺学报, 2022, 49(7): 1589-1601. |
[7] | 李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 瓜类作物响应低温胁迫机制的研究进展[J]. 园艺学报, 2022, 49(6): 1382-1394. |
[8] | 蔡志翔, 严娟, 宿子文, 徐子媛, 张明昊, 沈志军, 杨军, 马瑞娟, 俞明亮. 不同类型桃种质资源主要酚类物质含量评价[J]. 园艺学报, 2022, 49(5): 1008-1022. |
[9] | 王莹, 艾鹏慧, 李帅磊, 康冬茹, 李忠爱, 王子成. 菊花和菊花脑DNA甲基化相关酶基因鉴定及表达分析[J]. 园艺学报, 2022, 49(4): 827-840. |
[10] | 张世才, 李怡斐, 王春萍, 杨小苗, 黄启中, 黄任中. 辣椒种质尖孢炭疽菌抗性鉴定与评价[J]. 园艺学报, 2022, 49(4): 885-892. |
[11] | 李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610. |
[12] | 徐婉, 林雅君, 赵荘, 周庄. 兰属植物资源与育种研究进展[J]. 园艺学报, 2022, 49(12): 2722-2742. |
[13] | 陈思嘉, 王焕, 李蕊蕊, 王卓异, 罗靖, 王彩云. 菊花CmMYC2在舌状花绿色性状形成过程中的功能研究[J]. 园艺学报, 2022, 49(11): 2377-2387. |
[14] | 邓秀新. 中国柑橘育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2063-2074. |
[15] | 杨丽梅, 方智远. 中国甘蓝遗传育种研究60年[J]. 园艺学报, 2022, 49(10): 2075-2098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司