[1] |
Chen L, Xiang S, Chen Y, Li D, Yu D. 2017. Arabidopsis WRKY 45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Molecular Plant, 10 (9):1174-1189.
doi: 10.1016/j.molp.2017.07.008
URL
|
[2] |
Dong W, Li M, Li Z, Li S, Zhu Y, Wang Z. 2020. Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods. Plant Physiology and Biochemistry, 146:315-328.
doi: S0981-9428(19)30492-9
pmid: 31785518
|
[3] |
Fan Z Q, Tan X L, Shan W, Kuang J F, Lu W J, Chen J Y. 2017. BrWRKY65,a WRKY transcription factor,is involved in regulating three leaf senescence-associated genes in Chinese flowering cabbage. International Journal of Molecular Sciences, 18 (6):1228.
doi: 10.3390/ijms18061228
URL
|
[4] |
Fu H, Zeng T, Zhao Y, Luo T, Deng H, Meng C, Luo J, Wang C. 2021. Identification of chlorophyll metabolism- and photosynthesis-related genes regulating green flower color in chrysanthemum by integrative transcriptome and weighted correlation network analyses. Genes, 12 (3):449.
doi: 10.3390/genes12030449
URL
|
[5] |
Hong Yan, Bai Xinxiang, Sun Wei, Jia Fengwei,Dai Silan. 2012. Quantitative classification of flower color phenotypes of chrysanthemum cultivars. Acta horticulturae Sinica, 39 (7):1330-1340. (in Chinese)
|
|
洪艳, 白新祥, 孙卫, 贾锋炜, 戴思兰. 2012. 菊花品种花色表型数量分类研究. 园艺学报, 39 (7):1330-1340.
|
[6] |
Hu B, Lai B, Wang D, Li J Q, Chen L H, Qin Y Q, Wang H C, Qin Y H, Hu G B, Zhao J T. 2019. Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis. Plant and Cell Physiology, 60 (2):448-461.
doi: 10.1093/pcp/pcy219
URL
|
[7] |
Job N, Datta S. 2021. PIF3/HY 5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. New Phytologist, 230 (1):190-204.
doi: 10.1111/nph.17149
URL
|
[8] |
Kalaji H M, Dąbrowski P, Cetner M D, Samborska I A, Łukasik I, Brestic M, Zivcak M, Tomasz H, Mojski J, Kociel H, Panchal B M. 2017. A comparison between different chlorophyll content meters under nutrient deficiency conditions. Journal of Plant Nutrition, 40 (7):1024-1034.
doi: 10.1080/01904167.2016.1263323
URL
|
[9] |
Kazan K, Manners J M. 2013. MYC2:the master in action. Molecular Plant, 6 (3):686-703.
doi: 10.1093/mp/sss128
URL
|
[10] |
Kishimoto S, Maoka T, Nakayama M, Ohmiya A. 2004. Carotenoid composition in petals of chrysanthemum[Dendranthema grandiflorum (Ramat.)Kitamura]. Phytochemistry, 65 (20):2781-2787.
pmid: 15474564
|
[11] |
Li he-sheng. 2000. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press. (in Chinese)
|
|
李合生. 2000. 植物生理生化实验原理和技术. 北京: 高等教育出版社.
|
[12] |
Li S, Xie X, Liu S, Chen K, Yin X. 2019. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chemistry, 299:125163.
doi: 10.1016/j.foodchem.2019.125163
URL
|
[13] |
Li W, Wang L, He Z, Lu Z, Cui J, Xu N, Jin B, Wang L. 2020. Physiological and transcriptomic changes during autumn coloration and senescence in Ginkgo biloba leaves. Horticultural Plant Journal, 6 (6):396-408.
doi: 10.1016/j.hpj.2020.11.002
URL
|
[14] |
Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D. 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology, 141:1167-1184.
doi: 10.1104/pp.106.080580
URL
|
[15] |
Liu X, Li Y, Zhong S. 2017. Interplay between light and plant hormones in the control of Arabidopsis seedling chlorophyll biosynthesis. Frontiers in Plant Science, 8:1433.
doi: 10.3389/fpls.2017.01433
URL
|
[16] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[17] |
Luo J, Wang H, Chen S, Ren S, Fu H, Li R, Wang C. 2021. CmNAC 73 mediates the formation of green color in chrysanthemum flowers by directly activating the expression of chlorophyll biosynthesis genes HEMA1 and CRD1. Genes, 12 (5):704.
doi: 10.3390/genes12050704
URL
|
[18] |
Mathew I E, Agarwal P. 2018. May the fittest protein evolve:favoring the plant-specific origin and expansion of NAC transcription factors. BioEssays, 40 (8):1800018.
doi: 10.1002/bies.201800018
URL
|
[19] |
Ohmiya A, Hirashima M, Yagi M, Tanase K, Yamamizo C. 2014. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS ONE, 9:e113738.
doi: 10.1371/journal.pone.0113738
URL
|
[20] |
Ohmiya A, Oda-Yamamizo C, Kishimoto S. 2019. Overexpression of CONSTANS-like 16 enhances chlorophyll accumulation in petunia corollas. Plant Science, 280:90-96.
doi: S0168-9452(18)30932-4
pmid: 30824032
|
[21] |
Ohmiya A, Sasaki K, Nashima K, Oda-Yamamizo C, Hirashima M, Sumitomo K. 2017. Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels. BMC Plant Biology, 17 (1):1-15.
doi: 10.1186/s12870-016-0951-9
URL
|
[22] |
Sakuraba Y, Han S H, Lee S H, Hörtensteiner S, Paek N C. 2016. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. Plant cell Report, 35 (1):155-166.
|
[23] |
Shi dianyi, Liu Zhongxiang, Jin Weiwei. 2009. Chlorophyll synthesis,catabolism and signal regulation in plants. Genetics, 31 (7):698-704. (in Chinese)
|
|
史典义, 刘忠香, 金危危. 2009. 植物叶绿素合成,分解代谢及信号调控. 遗传, 31 (7):698-704.
|
[24] |
Tanaka Y, Sasaki N. 2008. Plant pigments for coloration. Plant Journal, 135 (1):733-749.
|
[25] |
Toledo-Ortiz G, Huq E, Quail P H. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell, 15 (8):1749-1770.
doi: 10.1105/tpc.013839
URL
|
[26] |
Wang C, Dai S, Zhang Z L, Lao W, Wang R, Meng X, Zhou X. 2021a. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. Journal of Integrative Plant Biology, 63 (5):828-833.
doi: 10.1111/jipb.13075
URL
|
[27] |
Wang H L, Zhang Y, Wang T, Yang Q, Yang Y L, Li Z, Li B S, Wen X, Li W Y, Yin W L, Xia X, Guo H, Li Z. 2021b. An alternative splicing variant of PtRD 26 delays leaf senescence by regulating multiple NAC transcription factors in populus. The Plant Cell, 33 (5):1594-1614.
doi: 10.1093/plcell/koab046
URL
|
[28] |
Woo H R, Kim H J, Lim P O, Nam H G. 2019. Leaf senescence:Systems and dynamics aspects. Annual Review of Plant Biology, 70:347-376.
doi: 10.1146/annurev-arplant-050718-095859
URL
|
[29] |
Xu L F, Yang P P, Feng Y Y, Xu H, Cao Y W, Tang Y C, Yuan S X, Liu X Y, Ming J. 2017. Spatiotemporal transcriptome analysis provides insights into bicolor tepal development in Lilium“Tiny Padhye”. Frontiers in Plant Science, 8:398.
|
[30] |
Yan Y, Li C, Dong X, Li H, Zhang D, Zhou Y, Jiang B, Peng J, Qin X, Cheng J, Wang X, Song P, Qi L, Zheng Y, Li B, Terzaghi W, Yang S, Guo Y, Li J. 2020. MYB 30 is a key negative regulator of Arabidopsis photomorphogenic development that promotes PIF4 and PIF5 protein accumulation in the light. The Plant Cell, 32 (7):2196-2215.
doi: 10.1105/tpc.19.00645
pmid: 32371543
|
[31] |
Yu X, Xu Y, Yan S. 2021a. Salicylic acid and ethylene coordinately promote leaf senescence. Journal of Integrative Plant Biology, 63 (5):823-827.
doi: 10.1111/jipb.13074
URL
|
[32] |
Yu J Q, Gu K D, Sun C H, Zhang Q Y, Wang J H, Ma F F, You C X, Hu D G, Hao Y J. 2021b. The apple bHLH transcription factor MdbHLH 3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal, 19 (2):285-299.
doi: 10.1111/pbi.13461
URL
|
[33] |
Zhang Lijun, Dai Silan. 2009. Research Advance on Germplasm Resources of Chrysanthemum × morifolium. Bulletin of Botany, 44 (5):526-535. (in Chinese)
|
|
张莉俊, 戴思兰. 2009. 菊花种质资源研究进展. 植物学报, 44 (5):526-535.
|
[34] |
Zhang W, Peng K, Cui F, Wang D, Zhao J, Zhang Y, Yu N, Wang Y, Zeng D, Wang Y, Cheng Z, Zhang K. 2021. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant biotechnology journal, 19 (2):335-350.
doi: 10.1111/pbi.13467
pmid: 33448635
|
[35] |
Zhang Y, Li Y, Hassan M J, Li Z, Peng Y. 2020. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology, 20:1-12.
doi: 10.1186/s12870-019-2170-7
URL
|
[36] |
Zhao Li. 2011 Influence of bHLH homologous gene expression on flower coloration of chrysanthemum[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese)
|
|
赵莉. 2011. bHLH同源基因的表达对菊花花色的影响[硕士论文]. 北京: 北京林业大学.
|
[37] |
Zhu Anchao. 2014. Investigation on mechanism of green disk florets of spray cut chrysanthemum[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese)
|
|
朱安超. 2014. “绿心”切花小菊管状花绿色形成机理研究[硕士论文]. 南京: 南京农业大学.
|
[38] |
Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S, Zhou X, Kuai B. 2015. Jasmonic acid promotes degreening via MYC 2/3/4‐and ANAC 019/055/072‐mediated regulation of major chlorophyll catabolic genes. The Plant Journal, 84 (3):597-610.
doi: 10.1111/tpj.13030
URL
|
[39] |
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. 2019. DRL1,encoding a NAC transcription factor,is involved in leaf senescence in grapevine. International Journal of Molecular Sciences, 20 (11):2678.
doi: 10.3390/ijms20112678
URL
|