园艺学报 ›› 2022, Vol. 49 ›› Issue (6): 1382-1394.doi: 10.16420/j.issn.0513-353x.2021-0575
李琼1, 李丽丽1, 侯娟1, 罗忍忍1, 王瑞丹1, 胡建斌1,**(), 黄松2,**()
收稿日期:
2022-01-18
修回日期:
2022-03-15
出版日期:
2022-06-25
发布日期:
2022-07-05
通讯作者:
胡建斌,黄松
E-mail:jianbinhu@henau.edu.cn;13803862987@126.com
基金资助:
LI Qiong1, LI Lili1, HOU Juan1, LUO Renren1, WANG Ruidan1, HU Jianbin1,**(), HUANG Song2,**()
Received:
2022-01-18
Revised:
2022-03-15
Online:
2022-06-25
Published:
2022-07-05
Contact:
HU Jianbin,HUANG Song
E-mail:jianbinhu@henau.edu.cn;13803862987@126.com
摘要:
从生理生化、组学、反向遗传学的角度详细阐述了黄瓜、甜瓜、西瓜等主要瓜类作物冷胁迫响应基因及其作用机制的研究进展,并分析了此领域研究中存在的问题及今后研究的方向,以期为进一步解析瓜类作物响应低温胁迫的分子机制和耐冷性遗传改良提供参考。
中图分类号:
李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 瓜类作物响应低温胁迫机制的研究进展[J]. 园艺学报, 2022, 49(6): 1382-1394.
LI Qiong, LI Lili, HOU Juan, LUO Renren, WANG Ruidan, HU Jianbin, HUANG Song. Advances on Mechanism of Cucurbit Crops in Response to Low- temperature Stress[J]. Acta Horticulturae Sinica, 2022, 49(6): 1382-1394.
[1] | Asao T, Tomita K, Taniguchi K, Ushio K, Ban T, Hosoki T, Kamuro Y. 2002. Occurrence of deformed leaves in cucumber plants treated with cold water and its reduction in seedlings derived from TNZ303-(mixture of jasmonic acid and brassinosteroids derivative)treated seeds. Journal of the Japanese Society for Horticultural Science, 71 (2):297-299. |
[2] | Barrero-Gil J, Salinas J. 2018. Gene regulatory networks mediating cold acclimation:the CBF pathway//Iwaya-Inoue M.,Sakurai M.,Uemura M. survival strategies in extreme cold and desiccation. Advances in Experimental Medicine and Biology, Singapore:Springer:3-22. |
[3] |
Borecky J, Nogueira F T S, de Oliveira K A P, Maia I G, Vercesi A E, Arruda P. 2006. The plant energy-dissipating mitochondrial systems:depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. Journal of Experimental Botany, 57 (4):849-864.
pmid: 16473895 |
[4] |
Bustamante A, Marques M C, Sanz-Carbonell A, Mulet J M, Gomez G. 2018. Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Scientific Reports, 8 (1):15538.
doi: 10.1038/s41598-018-34012-7 pmid: 30341377 |
[5] | Cao Chenxing. 2009. Effect of cold inducement on chilling tolerance in cucumber seedlings and the cloning and transforming of CBF1 gene[Ph. D. Dissertation]. Tai’an: Shandong Agricultural Unviersity. (in Chinese) |
曹辰兴. 2009. 低温锻炼对黄瓜幼苗抗冷效应的影响及转录因子CBF1的克隆与转化[博士论文]. 泰安: 山东农业大学. | |
[6] | Cao Lei. 2017. Funclional identificaon and regulation analysis of low temperature responsive ClMYB46 in watermelon[M. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
曹蕾. 2017. 西瓜ClMYB46基因的耐低温功能鉴定及调控作用分析[硕士论文]. 武汉: 华中农业大学. | |
[7] | Cao Ning, Dong Chunjuan, Shang Qingmao. 2016. Effects of exogenous salicylic acid on the expression of CsFAD genes in cucumber seedlings under low temperature. Acta Horticulturae Sinica, 43 (10):1941-1952. (in Chinese) |
曹宁, 董春娟, 尚庆茂. 2016. 外源水杨酸对低温下黄瓜幼苗CsFAD的表达调控. 园艺学报, 43 (10):1941-1952. | |
[8] | Cao Wenhua. 2015. RFOs metabolism during cold stress and recovery of cucumber leaves[M. D. Dissertation]. Yangzhou: Yangzhou University. (in Chinese) |
曹文华. 2015. 低温胁迫与温度恢复过程中黄瓜叶片RFOs代谢研究[硕士论文]. 扬州: 扬州大学. | |
[9] |
Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A. 2015. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance:Solanum lycopersicum and Solanum habrochaites. BMC Plant Biology, 15:132.
doi: 10.1186/s12870-015-0521-6 URL |
[10] |
Chen J X, Zhao Y Y, Chen X H, Peng Y, Hurr B M, Mao L C. 2014. The role of ethylene and calcium in programmed cell death of cold-stored cucumber fruit. Journal of Food Biochemistry, 38 (3):337-344.
doi: 10.1111/jfbc.12058 URL |
[11] |
Clifton R, Lister R, Parker K L, Sappl P G, Elhafez D, Millar A H, Day D A, Whelan J. 2005. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Molecular Biology, 58 (2):193-212.
pmid: 16027974 |
[12] | Ding Changqing. 2016. The functional analysis of watermelon ClAOX and its related gene ClCASPL under cold stress[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
丁长庆. 2016. 西瓜交替氧化酶ClAOX及其相关基因ClCASPL在低温胁迫下的功能研究[博士论文]. 杭州: 浙江大学. | |
[13] |
Dong C J, Cao N, Zhang Z G, Shang Q M. 2016. Characterization of the fatty acid desaturase genes in cucumber:structure,phylogeny,and expression patterns. PLoS ONE, 11 (3):e0149917.
doi: 10.1371/journal.pone.0149917 URL |
[14] | Dong Chunjuan, Cao Ning, Shang Qingmao. 2017. Effects of salicylic acid on fatty acid compositions in the roots of cucumber seedlings under low temperature. Acta Horticulturae Sinica, 44 (7):1319-1326. (in Chinese) |
董春娟, 曹宁, 尚庆茂. 2017. 外源水杨酸对低温胁迫下黄瓜幼苗根系脂肪酸不饱和度的影响. 园艺学报, 44 (7):1319-1326. | |
[15] | Dong Hongxia. 2017. Mining genes with cold tolerance of elitie germplasm in cucumber[M. D. Dissertation]. Beijing: Chinese Academy of Agricultural Science. (in Chinese) |
董洪霞. 2017. 黄瓜优异种质资源耐冷相关基因挖掘[硕士论文]. 北京: 中国农业科学院. | |
[16] |
Dong S, Wang W, Bo K, Miao H, Song Z, Wei S, Zhang S, Gu X. 2019. Quantitative trait loci mapping and candidate gene analysis of low temperature tolerance in cucumber seedlings. Frontiers in Plant Science, 10:1620.
doi: 10.3389/fpls.2019.01620 URL |
[17] |
Feng H Q, Wang Y F, Li H Y, Wang R F, Sun K, Jia L Y. 2010. Salt stress-induced expression of rice AOX1a is mediated through an accumulation of hydrogen peroxide. Biologia, 65 (5):868-873.
doi: 10.2478/s11756-010-0100-0 URL |
[18] | Gao Lingyun. 2016. Functional identification and interacting proteins analysis of a low temperature responsive MYB transcription factor Cla007586 from watermelon[M. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
高凌云. 2016. 西瓜低温响应 MYB(Cla007586)转录因子的功能鉴定及互作蛋白分析[硕士论文]. 武汉: 华中农业大学. | |
[19] | Gao Min. 2016. The roles of salicaylic acid in response to low temperature stress in watermelon seedlings[M. D. Dissertation]. Wuhan: Huazhong Agricutural University. (in Chinese) |
高敏. 2016. 水杨酸在西瓜幼苗响应低温胁迫中的作用研究[硕士论文]. 武汉: 华中农业大学. | |
[20] | Gordon V S, Staub J E. 2011. Comparative analysis of chilling response in cucumber through plastidic and nuclear genetic effects component analysis. Journal of the American Society for Horticultural Science, 36 (4):256-264. |
[21] | Gu H, Lu M, Zhang Z, Xu J, Cao W, Miao M. 2018. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves. Journal of Plant Physiology, 224:112-120. |
[22] |
Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 51 (11):1616-1623.
doi: 10.1038/s41588-019-0518-4 URL |
[23] |
Guo X, Liu D, Chong K. 2018. Cold signaling in plants:Insights into mechanisms and regulation. Journal of Integrative Plant Biology, 60 (9):745-756.
doi: 10.1111/jipb.12706 URL |
[24] |
Hannah M A, Heyer A G, Hincha D K. 2005. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genetics, 1 (2):e26.
doi: 10.1371/journal.pgen.0010026 URL |
[25] | Hashim N F A, Ahmad A, Bordoh P K. 2018. Effect of chitosan coating on chilling injury,antioxidant status and postharvest quality of Japanese cucumber during cold storage. Sains Malaysiana, 47 (2):287-294. |
[26] | He Jie, Gu Xiurong, Wei Chunhua, Yang Xiaozhen, Li Hao, Ma Jianxiang, Zhang Yong, Yang Jianqiang, Zhang Xian. 2016. Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermlon. Acta Horticulturae Sinica, 43 (2):281-294. (in Chinese) |
何洁, 顾秀容, 魏春华, 杨小振, 李好, 马建祥, 张勇, 杨建强, 张显. 2016. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析. 园艺学报, 43 (2):281-294. | |
[27] |
Hou J, Zhou Y F, Gao L Y, Wang Y L, Yang L M, Zhu H Y, Wang J M, Zhao S J, Ma C S, Sun S R, Hu J B. 2018. Dissecting the genetic architecture of melon chilling tolerance at the seedling stage by association mapping and identification of the elite alleles. Frontiers in Plant Science, 9:1577.
doi: 10.3389/fpls.2018.01577 URL |
[28] |
Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, Huang S, Sun J, Yang L. 2017. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Molecular Plant, 10 (12):1575-1578.
doi: 10.1016/j.molp.2017.09.005 URL |
[29] | Huang Chao. 2018. Transcriptome analysis of responding to low temperature in melon (Cucumis melo L.)[M. D. Dissertation]. Harbin: Northeast Agricultural University. (in Chinese) |
黄超. 2018. 不同甜瓜品种在低温胁迫下转录组分析[硕士论文]. 哈尔滨: 东北农业大学. | |
[30] | Im Y J, Han O, Chung G C, Cho B H. 2002. Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Molecules and Cells, 13 (2):264-271. |
[31] |
Jiang Y P, Huang L F, Cheng F, Zhou Y H, Xia X J, Mao W H, Shi K, Yu J Q. 2013. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning,carboxylation and redox homeostasis in cucumber. Physiologia Plantarum, 148 (1):133-145.
doi: 10.1111/j.1399-3054.2012.01696.x URL |
[32] | Khan M I R, Fatma M, Per T S, Anjum N A, Khan N A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontier in Plant Sciences, 30 (6):462. |
[33] |
Koroban N V, Kudryavtseva A V, Krasnov G S, Sadritdinova A F, Fedorova M S, Snezhkina A V, Bolsheva N L, Muravenko O V, Dmitriev A A, Melnikova N V. 2016. The role of microRNA in abiotic stress response in plants. Molecular Biology, 50 (3):337-343.
doi: 10.1134/S0026893316020102 URL |
[34] |
Kuk Y I, Lee J H, Kim H Y, Chung S J, Chung G C, Guh J O, Lee H J, Burgos N R. 2003. Relationships of cold acclimation and antioxidative enzymes with chilling tolerance in cucumber(Cucumis sativus L.). Journal of the American Society for Horticultural Science, 128 (5):661-666.
doi: 10.21273/JASHS.128.5.0661 URL |
[35] | Li Jia, Li Chuanyou. 2019. Seventy-year major research progress in plant hormones by Chinese scholars. Scientia Sinica Vitae, 49:1227-1281. (in Chinese) |
黎家, 李传友. 2019. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 49:1227-1281. | |
[36] | Li Liang. 2013. Roles of salicylic acid in response to low temperature stress in cucumber(Cucumis sativus L.)seedlings[M. D. Dissertation]. Beijing: Chinese Academy of Agricultural Science. (in Chinese) |
李亮. 2013. 水杨酸在黄瓜(Cucumis sativus L.)幼苗应答低温胁迫中的作用机制[硕士论文]. 北京: 中国农业科学院. | |
[37] | Li Meng, Lü Tinghui, Xing Qiaojuan, Qi Hongyan. 2018. Research progress on evaluation and regulation of chilling tolerance in Cucurbitaceous vegetables. Acta Horticulturae Sinica, 45 (9):1761-1777. (in Chinese) |
李猛, 吕亭辉, 邢巧娟, 齐红岩. 2018. 瓜类蔬菜耐低温性评价与调控研究进展. 园艺学报, 45 (9):1761-1777. | |
[38] |
Li Y, Wu X, Xu W, Sun Y, Wang Y, Li G, Xu P. 2021. High-throughput physiology-based stress response phenotyping:advantages,applications and prospective in horticultural plants. Horticultural Plant Journal, 7 (8):181-187.
doi: 10.1016/j.hpj.2020.09.004 URL |
[39] |
Li Y M, Zhu L, Zhu H Y, Song P Y, Guo L Q, Yang L M. 2018. Genome-wide analysis of the WRKY family genes and their responses to cold stress in watermelon. Czech Journal of Genetics and Plant Breeding, 54 (4):168-176.
doi: 10.17221/72/2017-CJGPB |
[40] | Lin Ping, Qi Liwang, Wang Yangdong, Zhang Shougong. 2006. A review of advances in fatty acid desaturase on cold-resistance in plants. Molecular Plant Breeding, 4 (3):404-410. (in Chinese) |
林萍, 齐力旺, 汪阳东, 张守攻. 2006. 植物抗寒工程中脂肪酸去饱和酶研究进展. 分子植物育种, 4 (3):404-410. | |
[41] | Liu Fengjiao, Zhang Xiaowei, Li Fude, Zhai Jiang, Bi Huangai, Ai Xizhen. 2020. Effect of exogenous hydrogen on photosynthetic carbon assimilation and nitrogen metabolism of cucumber seedlings under low temperature. Acta Horticulturae Sinica, 47 (2):287-300. (in Chinese) |
刘丰娇, 张晓伟, 李福德, 翟江, 毕焕改, 艾希珍. 2020. 黄瓜富氢水浸种对低温下幼苗光合碳同化及氮代谢的影响. 园艺学报, 47 (2):287-300. | |
[42] | Liu Hui, Li Dejun, Deng Zhi. 2014. Advances in research of transcriptional regulatory network in response to cold stress in plants. Scientia Agricultura Sinica, 47 (18):3523-3533. (in Chinese) |
刘辉, 李德军, 邓治. 2014. 植物应答低温胁迫的转录调控网络研究进展. 中国农业科学, 47 (18):3523-3533. | |
[43] |
Liu L Y, Duan L S, Zhang J C, Zhang Z X, Mi G Q, Ren H Z. 2010. Cucumber(Cucumis sativus L.)over-expressing cold-induced transcriptome regulator ICE 1 exhibits changed morphological characters and enhances chilling tolerance. Scientia Horticulturae, 124 (1):29-33.
doi: 10.1016/j.scienta.2009.11.018 URL |
[44] |
Liu J, Shi Y, Yang S. 2018. Insights into the regulation of CBF cold signaling in plants. Journal of Integrative Plant Biology, 60 (9):780-795.
doi: 10.1111/jipb.12657 URL |
[45] |
Liu J Y, Zhang C, Shao Q, Tang Y F, Cao S X, Guo X O, Jin Y Z, Qi H Y. 2016. Effects of abiotic stress and hormones on the expressions of five 13-CmLOXs and enzyme activity in oriental melon(Cucumis melo var. makuwa Makino). Journal of Integrative Agriculture, 15 (2):326-338.
doi: 10.1016/S2095-3119(15)61135-2 URL |
[46] | Lu Cairui, Zou Changsong, Song Guoli. 2015. Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches. Hereditas, 37 (8):765-776. (in Chinese) |
陆才瑞, 邹长松, 宋国立. 2015. 高通量测序技术结合正向遗传学手段在基因定位研究中的应用. 遗传, 37 (8):765-776. | |
[47] | Lu Junyang. 2021. The mechanism of pumpkin rootstock grafting improve watermelon chilling tolerance[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
鲁军阳. 2021. 南瓜砧木嫁接提高西瓜耐冷性的机制研究[博士论文]. 武汉: 华中农业大学. | |
[48] | Lü Jianguo. 2017. Supperssion of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance [Ph. D. Dissertation]. Beijing: China Agricultural University. (in Chinese) |
吕建国. 2017. 抑制黄瓜水苏糖合成酶基因CsSTS降低韧皮部装载和低温胁迫耐受性[博士论文]. 北京: 中国农业大学. | |
[49] |
Ma J, Janouskova M, Ye L, Bai L Q, Dong R R, Yan Y, Yu X C, Zou Z R, Li Y S, He C X. 2019. Role of arbuscular mycorrhiza in alleviating the effect of cold on the photosynthesis of cucumber seedlings. Photosynthetica, 57 (1):86-95.
doi: 10.32615/ps.2019.001 URL |
[50] | Maleki M, Ghorbanpour M. 2018. Cold tolerance in plants:molecular machinery deciphered// Wani S H. Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Cambridge: Academic Press:57-71. |
[51] |
Meyer R S, Purugganan M D. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 14 (12):840-852.
doi: 10.1038/nrg3605 URL |
[52] | Miao Yongmei, Wang Wanyang, Yang Hailin, Ju Wenjun, Ge Yingxiang, Gao Qinghai, Jia Shuangshuang. 2013. Phsiological effects of exogenous Ca2+,SA and ABA in alleviating low temperature stress of melon seedlngs. Journal of Nanjing Agricultural University, 36 (4):25-29. (in Chinese) |
苗永美, 王万洋, 杨海林, 居文军, 戈应祥, 高青海, 贾双双. 2013. 外源Ca2+、SA和ABA缓解甜瓜低温胁迫伤害的生理作用. 南京农业大学学报, 36 (4):25-29. | |
[53] |
Mroz T, Havey M J, Bartoszewski G. 2015. Cucumber possesses a single terminal alternative oxidase gene that is upregulated by cold stress and in the mosaic (MSC) mitochondrial mutants. Plant Molecular Biology Reporter, 33 (6):1893-1906.
doi: 10.1007/s11105-015-0883-9 URL |
[54] | Nada K, Shen W, Tachibana S. 2004. Polyamines are not indispensable for the cold-acclimatory increase of chilling tolerance in cucumber during exposure to moderately low temperature. Journal of the Japanese Society for Horticultural Science, 73 (4):343-345. |
[55] |
Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Stäedler T, Renner S S, Kamoun S, Lucas W J, Zhang Z, Huang S. 2013. A Genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45 (12):1510-1515.
doi: 10.1038/ng.2801 URL |
[56] |
Rivero R M, Ruiz J M, Garcia P C, Lopez-Lefebre L R, Sanchez E, Romero L. 2002. Response of oxidative metabolism in watermelon plants subjected to cold stress. Functional Plant Biology, 29 (5):643-648.
doi: 10.1071/PP01013 pmid: 32689509 |
[57] |
Sanz-Carbonell A, Marques M C, Bustamante A, Fares M A, Rodrigo G, Gomez G. 2019. Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biology, 19 (1):78.
doi: 10.1186/s12870-019-1679-0 pmid: 30777009 |
[58] |
Sanz-Carbonell A, Marques M C, Martinez G, Gomez G. 2020. Dynamic architecture and regulatory implications of the miRNA network underlying the response to stress in melon. RNA Biology, 17 (2):292-308.
doi: 10.1080/15476286.2019.1697487 pmid: 31766933 |
[59] |
Shi X, Wang X, Cheng F, Cao H, Liang H, Lu J, Kong Q, Bie Z. 2019. iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. Journal of Proteomics, 192:311-320.
doi: 10.1016/j.jprot.2018.09.012 URL |
[60] |
Shi Y, Ding Y, Yang S. 2018. Molecular Regulation of CBF Signaling in cold acclimation. Trends in Plant Science, 23 (7):623-637.
doi: 10.1016/j.tplants.2018.04.002 URL |
[61] | Su Liyao, Wang Peiyu, Jiang Mengqi, Huang Shuqi, Xue Xiaodong, Liu Mengyu, Xiao Xuechen, Lai Chunwang, Zhang Zihao, Chen Yukun, Lai Zhongxiong, Lin Yuling. 2021. The activity verification of pri-miR319a encode regulatory peptide in Dimocarpus longan. Acta Horticulturae Sinica, 48 (5):908-920. (in Chinese) |
苏立遥, 王培育, 蒋梦琦, 黄倏祺, 薛晓东, 刘梦雨, 肖学宸, 赖春旺, 张梓浩, 陈裕坤, 赖钟雄, 林玉玲. 2021. 龙眼pri-miR319a 编码短肽活性的研究. 园艺学报, 48 (5):908-920. | |
[62] |
Sunkar R, Zhu J K. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16 (8):2001-2019.
doi: 10.1105/tpc.104.022830 URL |
[63] |
Theocharis A, Clement C, Barka E A. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta, 235 (6):1091-1105.
doi: 10.1007/s00425-012-1641-y pmid: 22526498 |
[64] |
Thomashow M F. 1999. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50:571-599.
pmid: 15012220 |
[65] |
Walters T W. 1989. Historical overview on domesticated plants in China with special emphasis on the Cucurbitaceae. Economic Botany, 43 (3):297-313.
doi: 10.1007/BF02858729 URL |
[66] |
Wang B, Shen F, Zhu S. 2018. Proteomic analysis of differentially accumulated proteins in cucumber(Cucumis sativus)fruit peel in response to pre-storage cold acclimation. Frontiers in Plant Science, 8:2167.
doi: 10.3389/fpls.2017.02167 URL |
[67] |
Wang B, Zhu S J. 2017. Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers. Postharvest Biology and Technology, 129:1-8.
doi: 10.1016/j.postharvbio.2017.03.001 URL |
[68] | Wang D Z, Jin Y N, Ding X H, Wang W J, Zhai S S, Bai L P, Guo Z F. 2017. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry(Mosc), 82 (10):1103-1117. |
[69] | Wang Hongfei. 2014. Germplasm identification of tolerance to low temperature and QTL mapping for low temperature adapbility in cucumber. [M. D. Dissertation]. Beijing: Chinese Academy of Agricultural Science. (in Chinese) |
王红飞. 2014. 黄瓜种质资源低温耐受性的鉴定评价及QTL初步定位研究[硕士论文]. 北京: 中国农业科学院. | |
[70] |
Wang L J, Jiang W B, Huang B J. 2004. Promotion of 5-aminolevulinic acid on photosynthesis of melon(Cucumis melo)seedlings under low light and chilling stress conditions. Physiol Plant, 121 (2):258-264.
doi: 10.1111/j.0031-9317.2004.00319.x URL |
[71] |
Wang S T, Sun X L, Hoshino Y, Yu Y, Jia B, Sun Z W, Sun M Z, Duan X B, Zhu Y M. 2014. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L.). PLoS ONE, 9 (3):e91357.
doi: 10.1371/journal.pone.0091357 URL |
[72] |
Xu J, Zhang M, Liu G, Yang X, Hou X. 2016. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. Plant Physiology and Biochemistry, 109:561-570.
doi: 10.1016/j.plaphy.2016.11.002 URL |
[73] | Xu Xiaojun, Liu Haiying, Liang Changzhi, Wang Jiming, Zhang Guilan, Yang Luming, Hu Jianbin. 2020. Genetic diversity analysis of melon germplasms using SSR markers and tests for chilling tolerance. Journal of Plant Genetic Resources, 21 (3):568-578. (in Chinese) |
徐小军, 刘海英, 梁长志, 王吉明, 张桂兰, 杨路明, 胡建斌. 2020. 不同类型甜瓜种质 SSR 遗传多样性及耐冷性评价. 植物遗传资源学报, 21 (3):568-578. | |
[74] | Xue Xin, Zhang Qian, Wu Jinxia. 2013. Research of reactive exygen species in plants and its application on stress tolerance. Biotechnology Bulletin,(10):6-10. (in Chinese) |
薛鑫, 张芊, 吴金霞. 2013. 植物体内活性氧的研究及其在植物抗逆方面的应用. 生物技术通报,(10):6-10. | |
[75] | Xu Xiaoyun. 2016. Study on the physiological response and molecular mechanism of grafted cucumber seedlings under low temperature stress[Ph. D. Dissertation]. Lanzhou: Gansu Agricultural University. (in Chinese) |
徐晓昀. 2016. 黄瓜嫁接苗对低温胁迫的生理响应及分子机制研究[博士论文]. 兰州: 甘肃农业大学. | |
[76] |
Yagcioglu M, Jiang B, Wang P, Wang Y H, Ellialtioglu S S, Weng Y Q. 2019. QTL mapping of low temperature germination ability in cucumber. Euphytica, 215 (4):84.
doi: 10.1007/s10681-019-2408-3 URL |
[77] | Yang Nan, Liu Peipei, Bai Xiaomei, Xu Kunfan, Ai Xizhen. 2012. Inductive effect of abscisic acid,salicylic acid,and calcium on cold resistance of cucumber seedlings. Acta Agriculturae Boreali-occidentalis Sinica, 21 (8):164-170. (in Chinese) |
杨楠, 刘培培, 白小梅, 徐坤范, 艾希珍. 2012. 脱落酸、水杨酸和钙对黄瓜幼苗抗冷性的诱导效应. 西北农业学报, 21 (8):164-170. | |
[78] |
Yang Y, Li J, Li H, Yang Y, Guang Y, Zhou Y. 2019. The bZIP gene family in watermelon: genome-wide identification and expression analysis under cold stress and root-knot nematode infection. PeerJ, 7:e7878.
doi: 10.7717/peerj.7878 URL |
[79] |
Yin Z M, Rorat T, Szabala B M, Ziolkowska A, Malepszy S. 2006. Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Science, 170 (6):1164-1172.
doi: 10.1016/j.plantsci.2006.02.002 URL |
[80] |
Zhang G Y, Wei B Q. 2019. Characterization of VQ motif-containing protein family and their expression patterns under phytohormones and abiotic stresses in melon(Cucumis melo L.). Plant Growth Regulation, 89 (3):273-285.
doi: 10.1007/s10725-019-00534-x URL |
[81] |
Zhang H, Wei C, Yang X, Chen H, Yang Y, Mo Y, Li H, Zhang Y, Ma J, Yang J, Zhang X. 2017a. Genome-wide identification and expression analysis of calcium dependent protein kinase and its related kinase gene families in melon(Cucumis melo L.). PLoS ONE, 12 (4):e0176352.
doi: 10.1371/journal.pone.0176352 URL |
[82] |
Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H. 2012. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE, 7 (1):e30355.
doi: 10.1371/journal.pone.0030355 URL |
[83] |
Zhang J T, Zhu J Q, Zhu Q, Liu H, Gao X S, Zhang H X. 2009. Fatty acid desaturase-6(Fad6)is required for salt tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 390 (3):469-474.
doi: 10.1016/j.bbrc.2009.09.095 URL |
[84] | Zhang Shengping, Gu Xingfang. 2020. Molecular biology of important agronomic traits in cucumber. Scientia Agricultura Sinica, 53 (1):117-121. (in Chinese) |
张圣平, 顾兴芳. 2020. 黄瓜重要农艺性状的分子生物学. 中国农业科学, 53 (1):117-121. | |
[85] |
Zhang X, Lai Y, Zhang W, Ahmad J, Qiu Y, Zhang X, Duan M, Liu T, Song J, Wang H, Li X. 2018. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod. BMC Genomics, 19:819.
doi: 10.1186/s12864-018-5204-x URL |
[86] |
Zhang T, Che F B, Zhang H, Pan Y, Xu M Q, Ban Q Y, Han Y, Rao J P. 2017b. Effect of nitric oxide treatment on chilling injury,antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon(Cucumis melo L.)fruit. Postharvest Biology and Technology, 127:88-98.
doi: 10.1016/j.postharvbio.2017.01.005 URL |
[87] | Zhang Ting, Che Fengbin, Pan Yan, Liu Hejiang, Rao Jingping. 2015. Relationship between chilling tolerance and membrane fatty acids of Hami melon. Acta Horticulturae Sinica, 42 (12):2421-2428. (in Chinese) |
张婷, 车凤斌, 潘俨, 刘河疆, 饶景萍. 2015. 哈密瓜果实耐冷性与细胞膜脂肪酸的关系. 园艺学报, 42 (12):2421-2428. | |
[88] |
Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W. 2016. CsWRKY46,a WRKY transcription factor from cucumber,confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiology and Biochemistry, 108:478-487.
doi: S0981-9428(16)30338-2 pmid: 27592172 |
[89] |
Zhang Y P, Xu S, Yang S J, Chen Y Y. 2017c. Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate-glutathione and proline metabolism in melon seedlings(Cucumis melo L.). Journal of Horticultural Science and Biotechnology, 92 (3):313-324.
doi: 10.1080/14620316.2016.1266915 URL |
[90] |
Zhang Y Z, Zhang M L, Yang H Q. 2015. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chemistry, 174:558-563.
doi: 10.1016/j.foodchem.2014.11.106 URL |
[91] | Zhang Ying. 2012. Experssion characteristics and functional analysis of CsWRKY46 and CsWRKY21 response to chilling in cucumber[Ph. D. Dissertation]. Beijing: Chinese Academy of Agricultural Science. (in Chinese) |
张颖. 2012. 黄瓜低温胁迫应答转录因子CsWRKY46和CsWRKY21的表达特征与功能分析[博士论文]. 北京: 中国农业科学院. | |
[92] | Zhou Ji, Francois T, Pridmore T, Doonan J, Reynolds D, Hall N, Griffiths S, Chen Tao, Zhu Yan, Wang Xiue, Jiang Dong, Ding Yanfeng. 2018. Plant phenomics:history,present status and challenges. Journal of Nanjing Agricultural University, 41 (4):580-588. (in Chinese) |
周济, Francois Tardieu, Tony Pridmore, John Doonan, Daniel Reynolds, Neil Hall, Simon Griffiths, 程涛, 朱艳, 王秀娥, 姜东, 丁艳锋. 2018. 植物表型组学:发展,现状与挑战. 南京农业大学学报, 41 (4):580-588. | |
[93] | Zhao Chunmei, Jin Rongrong, Guo Xuxin. 2014. Sdudy on content of ABA and activities of reactive-exygen-scavenging enzymes under low temperature stress in thin-skin melon. Journal of Anhui Agricultural Sciences, 42 (36):12816-12817. (in Chinese) |
赵春梅, 金荣荣, 郭旭欣. 2014. 低温胁迫下薄皮甜瓜ABA含量及活性氧清除酶活性研究. 安徽农业科学, 42 (36):12816-12817. | |
[94] | Zhao G, Lian Q, Zhang Z, Fu Q, He Y, Ma S, Ruggieri V, Monforte A J, Wang P, Julca I, Wang H, Liu J, Xu Y, Wang R, Ji J, Xu Z, Kong W, Zhong Y, Shang J, Pereira L, Argyris J, Zhang J, Mayobre C, Pujol M, Oren E, Ou D, Wang J, Sun D, Zhao S, Zhu Y, Li N, Katzir N, Gur A, Dogimont C, Schaefer H, Fan W, Bendahmane A, Fei Z, Pitrat M, Gabaldón T, Lin T, Garcia-Mas J, Xu Y, Huang S. 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 51 (11):607-1615. |
[95] | Zhao Shuang. 2014. Identification and characterization of R2R3MYB genes responding to abiotics stress in Citrullus lanatus[M. D. Dissertation]. Wuhan: Huazhong Agricultual University. (in Chinese) |
赵爽. 2014. 西瓜非生物胁迫响应R2R3MYB转录因子基因鉴定[硕士论文]. 武汉: 华中农业大学. | |
[96] | Zhou Shuang. 2015. Germplasm evaluation and molecular markers of chilling tolerance in cucumber[M. D. Dissertation]. Harbin: Northeast Agriculture University. (in Chinese) |
周双. 2015. 黄瓜种质资源耐低温性评价及分子标记[硕士论文]. 哈尔滨: 东北农业大学. | |
[97] |
Zhou Y, Tao J J, Ahammed G J, Li J W, Yang Y X. 2019. Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon. Genome, 62 (10):643-656.
doi: 10.1139/gen-2019-0061 URL |
[98] | Zhu X, Song F, Liu F. 2017. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants// Wu Q S. Arbuscular mycorrhizas and stress tolerance of plants. Singapore:Springer:163-194. |
[1] | 任 菲, 卢苗苗, 刘吉祥, 陈信立, 刘道凤, 眭顺照, 马 婧. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析[J]. 园艺学报, 2023, 50(2): 359-370. |
[2] | 蔺海娇, 梁雨晨, 李玲, 马军, 张璐, 兰振颖, 苑泽宁. 薰衣草CBF途径相关耐寒基因挖掘与调控网络分析[J]. 园艺学报, 2023, 50(1): 131-144. |
[3] | 张倩雯, 杨希航, 李峰, 邓颖天. miRNA调控园艺作物生长发育研究进展[J]. 园艺学报, 2022, 49(5): 1145-1161. |
[4] | 王光鹏, 刘同坤, 徐新凤, 李竹帛, 高瞻远, 侯喜林. 大白菜LEA家族基因的鉴定及其部分成员在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(2): 304-318. |
[5] | 吴婷, 贾瑞冬, 杨树华, 赵鑫, 于晓南, 国圆, 葛红. 蝴蝶兰多倍体育种研究进展与展望[J]. 园艺学报, 2022, 49(2): 448-462. |
[6] | 李俊璋, 秦源, 肖强, 安昌, 廖静怡, 郑平. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12): 2597-2610. |
[7] | 杨丽梅, 方智远. 中国甘蓝遗传育种研究60年[J]. 园艺学报, 2022, 49(10): 2075-2098. |
[8] | 周杰, 师恺, 夏晓剑, 周艳虹, 喻景权. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2131-2142. |
[9] | 苏江硕, 贾棣文, 王思悦, 张飞, 蒋甲福, 陈素梅, 房伟民, 陈发棣. 中国菊花遗传育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2143-2162. |
[10] | 张婷婷, 薛婉钰, 刘娜, 陈书霞. 几种主要果菜类蔬菜果形遗传及其调控机制研究进展[J]. 园艺学报, 2022, 49(10): 2189-2204. |
[11] | 王云, 张镇武, 孙逊, 张绍铃. 植物自噬与病原菌互作研究进展[J]. 园艺学报, 2022, 49(10): 2205-2222. |
[12] | 俞沁含, 焦淑珍, 吴楠, 张宁波, 徐伟荣. 葡萄E3泛素酶HOS1基因克隆、表达及抗血清制备[J]. 园艺学报, 2021, 48(6): 1173-1180. |
[13] | 黄彭, 丁捷, 胡晓敏, 陈怡, 刘亚飞, 秦文. 鲜切果蔬物理防褐保鲜的研究进展[J]. 园艺学报, 2021, 48(6): 1217-1232. |
[14] | 毛鹏鹏, 郑胤建, 杨其长, 许亚良, 王 芳, 廖秋红, 刘晓英. 光质对十字花科蔬菜硫代葡萄糖苷调控分子机制研究进展[J]. 园艺学报, 2020, 47(9): 1633-1647. |
[15] | 刘兴旺, 翟许玲, 张亚琦, 尹 帅, 冯钟萱, 任华中, . 黄瓜果实形态建成的遗传及分子基础研究进展[J]. 园艺学报, 2020, 47(9): 1793-1809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司