园艺学报 ›› 2022, Vol. 49 ›› Issue (10): 2249-2262.doi: 10.16420/j.issn.0513-353x.2022-0585
杨博1, 魏佳1, 李坤峰2, 王程亮3, 倪隽蓓1, 滕元文1,4, 白松龄1,*()
收稿日期:
2022-06-08
修回日期:
2022-08-22
出版日期:
2022-10-25
发布日期:
2022-10-31
通讯作者:
白松龄
E-mail:songlingbai@zju.edu.cn
基金资助:
YANG Bo1, WEI Jia1, LI Kunfeng2, WANG Chengliang3, NI Junbei1, TENG Yuanwen1,4, and BAI Songling1,*()
Received:
2022-06-08
Revised:
2022-08-22
Online:
2022-10-25
Published:
2022-10-31
Contact:
and BAI Songling
E-mail:songlingbai@zju.edu.cn
摘要:
为明确DAM(Dormancy-Associated MADS-box)基因参与休眠过程调控的分子机制,以'砀山酥梨'花芽为研究材料,对前期鉴定出的梨DAM基因PpyMADS71的上游调控因子开展挖掘与初步分析。结果表明:(1)芽休眠过程中乙烯响应基因PpyERF060(ethylene responsive factor 060)与PpyMADS71共表达,酵母点突变实验及双荧光素酶实验确定PpyERF060结合在PpyMADS71启动子的DRE1元件处并激活其表达;过表达PpyERF060的'茄梨'愈伤组织中PpyMADS71表达上调,进一步证明转录激活作用。(2)对PpyERF060的上游基因展开探索,发现可对其转录产生激活作用的ABA响应因子PpyABF3(ABRE BINDING FACTOR 3),并初步确定PpyABF3在PpyERF060启动子上的结合位点。(3)外源乙烯可诱导'砀山酥梨'芽中PpyERF060表达,同时抑制PpyABF3转录;且在'茄梨'愈伤组织中过表达PpyERF060对PpyABF3的转录起到抑制作用。通过上述结果,初步发现由PpyERF060、PpyABF3和PpyMADS71构成的互作网络可整合乙烯与脱落酸的信号通路进而调控梨芽休眠进程。
中图分类号:
杨博, 魏佳, 李坤峰, 王程亮, 倪隽蓓, 滕元文, 白松龄. PpyERF060-PpyABF3-PpyMADS71调控乙烯信号通路介导的梨芽休眠进程[J]. 园艺学报, 2022, 49(10): 2249-2262.
YANG Bo, WEI Jia, LI Kunfeng, WANG Chengliang, NI Junbei, TENG Yuanwen, and BAI Songling. PpyERF060-PpyABF3-PpyMADS71 Regulates Ethylene Signaling Pathway- Mediated Pear Bud Dormancy Process[J]. Acta Horticulturae Sinica, 2022, 49(10): 2249-2262.
用途 Use | 引物 Primer | 序列 Sequence |
---|---|---|
定量表达 | Q-PpyERF060-F | TCGGATTCTCAGTGGGACGA |
qRT-PCR | Q-PpyERF060-R | TTACAGCATCACCACGCCTT |
Q-PpyMADS71-F | AACAACCAGCTAAGCCAGAAG | |
Q-PpyMADS71-R | TCAAGGGTTGGAGAAGGTGG | |
Q-PpyABF3-F | CCGGTTCGAATTTGCCACAG | |
Q-PpyABF3-R | CGGTTGTTGAAAGCCGGAAG | |
亚细胞定位 | PpyERF060-GFP-F | AGCTCGGTACCCGGGATGGCAACATCCATAGATCTTTAC |
Subcellular localization | PpyERF060-GFP-R | CATGTCGACTCTAGAGATAGCAGACCAATCAATCTCCA |
酵母单杂 | pMADS71-pAbAi-F | GAAAAGCTTGAATTCGAGCTCGGGTGACTGGTTGCTGGTTGTT |
Y1H assay | pMADS71-mutDRE1-pAbAi-R | ACGTGGAGTTTTTCACACCT |
pMADS71-mutDRE1-pAbAi-F | AGGTGTGAAAAACTCCACGT | |
pMADS71-mutDRE2-pAbAi-R | GTTTATTGTTTTTTTAGCCT | |
pMADS71-mutDRE2-pAbAi-F | AGGCTAAAAAAACAATAAAC | |
pMADS71-pAbAi-R | AGCACATGCCTCGAGGTCGACCAACGGTGATCGATGCGGTTGG | |
双荧光素酶 | pMADS71-all-LUC-F | TCGAGGTCGACGGTATCGATACCTAAAGCGCAACCGTAACTG |
Dual-Luciferase assay | pMADS71-all-LUC-R | CCGCTCTAGAACTAGTGGATCCTTCTCTTTCTTCCTACCCCCT |
PpyERF060-SK-F | GCGGCCGCTCTAGAACTAGTGATGGCAACATCCATAGATCTTTAC | |
PpyERF060-SK-R | GGTCGACGGTATCGATAAGCTTTAGATAGCAGACCAATCAATCTC | |
pMADS71-delDRE1-LUC-F | TCGAGGTCGACGGTATCGATATCCACGTGAACTCGGATAAACACC | |
pMADS71-mutDRE1-LUC-R | ACGTGGAGTTTTTCACACCT | |
pMADS71-mutDRE1-LUC-F | AGGTGTGAAAAACTCCACGT | |
pERF060-LUC-F | TCGAGGTCGACGGTATCGATATAAAAAAGTTAGGGCTAAAATTGT | |
pERF060-LUC-R | CCGCTCTAGAACTAGTGGATCTTAGATTTAGTCACAAAAGATAAA | |
PpyABF3-SK-F | GCGGCCGCTCTAGAACTAGTGATGGGGTCTAATTTCAACTTCAA | |
PpyABF3-SK-R | GGTCGACGGTATCGATAAGCTTTACCAAGGGCCTGTCAATGT | |
PpyERF060过表达 | PpyERF060-1301-F | AGAACACGGGGGACTCTTGACATGGCAACATCCATAGATCTTTAC |
PpyERF060 overexpression | PpyERF060-1301-R | GGGGAAATTCGAGCTGGTCACTTAGATAGCAGACCAATCAATCTC |
表1 本研究中所用的引物序列
Table 1 Primer sequences
用途 Use | 引物 Primer | 序列 Sequence |
---|---|---|
定量表达 | Q-PpyERF060-F | TCGGATTCTCAGTGGGACGA |
qRT-PCR | Q-PpyERF060-R | TTACAGCATCACCACGCCTT |
Q-PpyMADS71-F | AACAACCAGCTAAGCCAGAAG | |
Q-PpyMADS71-R | TCAAGGGTTGGAGAAGGTGG | |
Q-PpyABF3-F | CCGGTTCGAATTTGCCACAG | |
Q-PpyABF3-R | CGGTTGTTGAAAGCCGGAAG | |
亚细胞定位 | PpyERF060-GFP-F | AGCTCGGTACCCGGGATGGCAACATCCATAGATCTTTAC |
Subcellular localization | PpyERF060-GFP-R | CATGTCGACTCTAGAGATAGCAGACCAATCAATCTCCA |
酵母单杂 | pMADS71-pAbAi-F | GAAAAGCTTGAATTCGAGCTCGGGTGACTGGTTGCTGGTTGTT |
Y1H assay | pMADS71-mutDRE1-pAbAi-R | ACGTGGAGTTTTTCACACCT |
pMADS71-mutDRE1-pAbAi-F | AGGTGTGAAAAACTCCACGT | |
pMADS71-mutDRE2-pAbAi-R | GTTTATTGTTTTTTTAGCCT | |
pMADS71-mutDRE2-pAbAi-F | AGGCTAAAAAAACAATAAAC | |
pMADS71-pAbAi-R | AGCACATGCCTCGAGGTCGACCAACGGTGATCGATGCGGTTGG | |
双荧光素酶 | pMADS71-all-LUC-F | TCGAGGTCGACGGTATCGATACCTAAAGCGCAACCGTAACTG |
Dual-Luciferase assay | pMADS71-all-LUC-R | CCGCTCTAGAACTAGTGGATCCTTCTCTTTCTTCCTACCCCCT |
PpyERF060-SK-F | GCGGCCGCTCTAGAACTAGTGATGGCAACATCCATAGATCTTTAC | |
PpyERF060-SK-R | GGTCGACGGTATCGATAAGCTTTAGATAGCAGACCAATCAATCTC | |
pMADS71-delDRE1-LUC-F | TCGAGGTCGACGGTATCGATATCCACGTGAACTCGGATAAACACC | |
pMADS71-mutDRE1-LUC-R | ACGTGGAGTTTTTCACACCT | |
pMADS71-mutDRE1-LUC-F | AGGTGTGAAAAACTCCACGT | |
pERF060-LUC-F | TCGAGGTCGACGGTATCGATATAAAAAAGTTAGGGCTAAAATTGT | |
pERF060-LUC-R | CCGCTCTAGAACTAGTGGATCTTAGATTTAGTCACAAAAGATAAA | |
PpyABF3-SK-F | GCGGCCGCTCTAGAACTAGTGATGGGGTCTAATTTCAACTTCAA | |
PpyABF3-SK-R | GGTCGACGGTATCGATAAGCTTTACCAAGGGCCTGTCAATGT | |
PpyERF060过表达 | PpyERF060-1301-F | AGAACACGGGGGACTCTTGACATGGCAACATCCATAGATCTTTAC |
PpyERF060 overexpression | PpyERF060-1301-R | GGGGAAATTCGAGCTGGTCACTTAGATAGCAGACCAATCAATCTC |
图1 PpyERF060在休眠期间的表达模式(a)及其亚细胞定位(b) Free GFP蛋白作为对照。红色荧光表示细胞核所在位置,绿色荧光表示融合蛋白的位置,若两种荧光信号在同一处,叠加后荧光信号变为黄色。
Fig. 1 The expression patterns of PpyERF060 during dormancy cycle(a)and subcellular localization of PpyERF060(b) Free GFP is used as the control. The red fluorescence indicates the location of the nucleus,and the green fluorescence indicates the location of the fusion protein. If the two fluorescence signals are in the same place,the fluorescence signal will be yellow after superposition.
图2 PpyERF060对PpyMADS71表达的调控(a)及其转录激活活性验证(b)
Fig. 2 The regulation pattern of PpyERF060 to PpyMADS71 expression(a)and yeast transcriptional activation assay of PpyERF060(b) Student's t-test,**P < 0.01.
图5 双荧光素酶试验验证PpyEFR060与PpyMADS71启动子结合
Fig. 5 Dual luciferase assay confirmed the interaction between PpyERF060 and the promoter of PpyMADS71 Student's t-test,**P < 0.01.
图8 PpyABF3在PpyERF060启动子上的潜在结合位点(a)及酵母单杂交确认其结合(b)
Fig. 8 The potential binding site of PpyABF3 on the promoter of PpyERF060(a)and Y1H confirmed the interaction between PpyABF3 and the promoter of PpyERF060(b)
图9 '砀山酥梨'芽乙烯处理后PpyERF060和PpyABF3的表达情况
Fig. 9 The expression patterns of PpyERF060 and PpyABF3 in'Dangshan Suli'pear buds after ethylene treatment Student's t-test,**P < 0.01,***P < 0.001.
图10 '茄梨'PpyERF060转基因愈伤组织中PpyERF060和PpyABF3的表达情况
Fig. 10 Expression of PpyERF060 and PpyABF3 in PpyERF060 transgenic callus of'Qieli'pear Student's t-test,**P < 0.01.
[1] | Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science, 3 (4):63. |
[2] |
Arora R, Rowland L J, Tanino K. 2003. Induction and release of bud dormancy in woody perennials:a science comes of age. HortScience, 38 (5):911-921.
doi: 10.21273/HORTSCI.38.5.911 URL |
[3] |
Baldocchi D, Wong S. 2008. Accumulated winter chill is decreasing in the fruit growing regions of California. Climatic Change, 87 (1S):153-166.
doi: 10.1007/s10584-007-9367-8 URL |
[4] | Bielenberg D G, Wang Y E, Li Z, Zhebentyayeva T, Fan S, Reighard G L, Scorza R, Abbott A G. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica(L.)Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes, 4 (3):495-507. |
[5] | Campoy J A, Ruiz D, Egea J. 2011. Dormancy in temperate fruit trees in a global warming context:a review. Scientia Horticulturae(Amsterdam), 130 (2):357-372. |
[6] |
Cooke J E, Eriksson M E, Junttila O. 2012. The dynamic nature of bud dormancy in trees:environmental control and molecular mechanisms. Plant,Cell and Environment, 35 (10):1707-1728.
doi: 10.1111/j.1365-3040.2012.02552.x URL |
[7] | Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. 2014. Ethylene,a key factor in the regulation of seed dormancy. Frontiers in Plant Science, 5:539. |
[8] |
El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu S M, Balzergue S, Baudouin E, Bailly C. 2015. Reactive oxygen species,abscisic acid and ethylene interact to regulate sunflower seed germination. Plant,Cell and Environment, 38:364-374.
doi: 10.1111/pce.12371 URL |
[9] |
Feehan J, Harley M, Minnen J V. 2009. Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agronomy for Sustainable Development, 29 (3):409-421.
doi: 10.1051/agro:2008066 URL |
[10] |
Fu J R, Yang S F. 1983. Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1-carboxylic acid during germination. Journal of Plant Growth Regulation, 2 (1-4):185.
doi: 10.1007/BF02042229 URL |
[11] |
Horvath D P, Anderson J V, Chao W S, Foley M E. 2003. Knowing when to grow:signals regulating bud dormancy. Trends in Plant Science, 8 (11):534-540.
pmid: 14607098 |
[12] |
Horvath D P, Sung S, Kim D, Chao W, Anderson J. 2010. Characterization,expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology, 73 (1-2):169-179.
doi: 10.1007/s11103-009-9596-5 pmid: 20066557 |
[13] | Howe G T, Horvath D P, Dharmawardhana P, Priest H D, Mockler T C, Strauss S H. 2015. Extensive Transcriptome changes during natural onset and release of vegetative bud dormancy in Populus. Frontiers in Plant Science, 6:989. |
[14] |
Irena Sińska. 1989. Interaction of ethephon with cytokinin and gibberellin during the removal of apple seed dormancy and germination of embryos. Plant Science, 64 (1):39-44.
doi: 10.1016/0168-9452(89)90149-0 URL |
[15] | Kilany A E, Hegazi E S, Kilany O A. 1990. Ethylene evolution,CO2 product-ion and some endogenous compounds in relation to bud dormancy of pear trees. Bulletin of Faculty of Agriculture, 38 (2):357-367. |
[16] |
Kucera B, Cohn M A, Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15 (4):281-307.
doi: 10.1079/SSR2005218 URL |
[17] |
Lang G A, Early J D, Martin G C, Daenell R L. 1987. Endo-,para-,and ecodormancy:physiological terminology and classification for dormancy research. HortScience, 22 (3):371-377.
doi: 10.21273/HORTSCI.22.3.371 URL |
[18] |
Li J, Xu Y, Niu Q, He L, Teng Y, Bai S. 2018. Abscisic acid(ABA)promotes the induction and maintenance of pear(Pyrus pyrifolia white pear group)flower bud endodormancy. International Journal of Molecular Sciences, 19 (1):310.
doi: 10.3390/ijms19010310 URL |
[19] | Li Jian-zhao. 2019. Studies on the molecular mechanism of ABA and related phytohormones-regulated pear bud dormancy[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
李建召. 2019. 脱落酸及相关激素调控梨芽休眠的分子机制研究[博士论文]. 杭州: 浙江大学. | |
[20] |
Li P, Zheng T, Zhuo X, Zhang M, Yong X, Li L, Wang J, Cheng T, Zhang Q. 2021. Photoperiod- and temperature-mediated control of the ethylene response and winter dormancy induction in Prunus mume. Horticultural Plant Journal, 7 (3):232-242.
doi: 10.1016/j.hpj.2021.03.005 URL |
[21] |
Linkies A, Muller K, Morris K, Turečková V, Wenk M, Cadman C S C, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G. 2009. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination:a comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell, 21 (12):3803-3822.
doi: 10.1105/tpc.109.070201 pmid: 20023197 |
[22] | Niu Qing-feng. 2016. The molecular mechanism and molecular network of pear flower bud dormancy transition[Ph. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
牛庆丰. 2016. 梨花芽休眠转换的分子网络及调控机制[博士论文]. 杭州: 浙江大学. | |
[23] |
Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E. 2009. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity,hypoxia,ethylene-ABA interplay and cell enlargement. Plant Molecular Biology, 71 (4-5):403-423.
doi: 10.1007/s11103-009-9531-9 pmid: 19653104 |
[24] |
Porto D D, Falavigna V d S, Arenhart R A, Perini P, Buffon V, Anzanello R, dos Santos H P, Fialho F B, Dias de Oliveira P R, Revers L F. 2016. Structural genomics and transcriptional characterization of the Dormancy-Associated MADS-box genes during bud dormancy progression in apple. Tree Genetics & Genomes, 12 (3). Doi: 10.1007/s11295-016-1001-3.
doi: 10.1007/s11295-016-1001-3 URL |
[25] | Qin Li-jin, Xu Zhen-jun, Yuan Shu-xiang. 2007. Effects of seed soaking with ethephon on seed germination and seedling growth of cucumber in greenhouse in winter. Journal of Anhui Agricultural Sciences,(33):10601-10602. (in Chinese) |
秦立金, 徐振军, 袁树祥. 2007. 乙烯利浸种对冬季日光温室黄瓜种子萌发与幼苗生长的影响. 安徽农业科学,(33):10601-10602. | |
[26] |
Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W. 2007. Gene expression during the induction,maintenance,and release of dormancy in apical buds of poplar. Journal of Experimental Botany, 58 (15-16):4047-4060.
doi: 10.1093/jxb/erm261 URL |
[27] |
Ruonala R, Rinne P L H, Baghour M, Moritz T, Tuominen H, Kangasjarvi J. 2006. Transitions in the functioning of the shoot apical meristem in birch(Betula pendula)involve ethylene. Plant Journal, 46 (4):628-640.
pmid: 16640599 |
[28] |
Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao R P, Boerjan W, Rohde A. 2007. A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell Online, 19 (8):2370-2390.
doi: 10.1105/tpc.107.052811 URL |
[29] |
Samish M R. 1954. Dormancy in woody plants. Annual Review of Plant Physiology, 5 (1):183-204.
doi: 10.1146/annurev.pp.05.060154.001151 URL |
[30] |
Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R. 2011. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiology, 157 (1):485-497.
doi: 10.1104/pp.111.181982 pmid: 21795580 |
[31] | Shao Xu. 2016. Cloning and functional analysis of dormancy-associated transcription factor(MADS-box)from Chinese cherry flower buds[M. D. Dissertation]. Hangzhou: Zhejiang Normal University. (in Chinese) |
邵姁. 2016. 中国樱桃花芽休眠相关MADS-box转录因子克隆与功能分析[硕士论文]. 杭州: 浙江师范大学. | |
[32] |
Shi Z, Halaly-Basha T, Zheng C, Weissberg M, Ophir R, Galbraith D W, Pang X, Or E. 2018. Transient induction of a subset of ethylene biosynthesis genes is potentially involved in regulation of grapevine bud dormancy release. Plant Molecular Biology, 98 (6):507-523.
doi: 10.1007/s11103-018-0793-y pmid: 30392158 |
[33] |
Singh R K, Maurya J P, Azeez A, Miskolczi P, Tylewicz S, Stojkovič K, Delhomme N, Busov V, Bhalerao R P. 2018. A genetic network mediating the control of bud break in hybrid aspen. Nature Communications, 9:4173.
doi: 10.1038/s41467-018-06696-y pmid: 30301891 |
[34] | Subbiah V, Reddy K J. 2010. Interactions between ethylene,abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. Journal of Bioscience and Bioengineering, 35 (3):451-458. |
[35] |
Song Song-quan, Liu Jun, Xu Heng-heng, Zhang Qi, Huang Hui, Wu Xian-jin. 2019. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy. Acta Agronomica Sinica, 45 (7):969-981. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84175 |
宋松泉, 刘军, 徐恒恒, 张琪, 黄荟, 伍贤进. 2019. 乙烯的生物合成与信号及其对种子萌发和休眠的调控. 作物学报, 45 (7):969-981.
doi: 10.3724/SP.J.1006.2019.84175 |
|
[36] | Tian Wen-jie. 2018. Effect of ethephon soaking on seed germination of maize. Modern Agricultural Science and Technology,(15):1-2. (in Chinese) |
田文杰. 2018. 乙烯利浸种对玉米种子萌发的影响. 现代农业科技,(15):1-2. | |
[37] |
Ubi B E, Sakamoto D, Ban Y, Shimada T, Ito A, Nakajima I, Takemura Y, Tamura F, Saito T, Moriguchi T. 2010. Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. Journal of the American Society for Horticultural Science, 135 (2):174-182.
doi: 10.21273/JASHS.135.2.174 URL |
[38] |
Wu R M, Walton E F, Richardson A C, Wood M, Hellens R P, Varkonyi-Gasic E. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany, 63 (2):797-807.
doi: 10.1093/jxb/err304 URL |
[39] |
Wu R, Wang T, McGie T, Voogd C, Allan A C, Hellens R P, Varkonyi-Gasic E. 2014. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals,but has no effect on vegetative growth,dormancy,or flowering time. Journal of Experimental Botany, 65 (17):4985-4995.
doi: 10.1093/jxb/eru264 URL |
[40] |
Wu R, Wang T, Warren B A W, Allan A C, Macknight R C, Varkonyi-Gasic E. 2017. Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 68 (5):1071-1082.
doi: 10.1093/jxb/erx014 URL |
[41] |
Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K. 2008. Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. Journal of the American Society for Horticultural Science, 133 (5):708-716.
doi: 10.21273/JASHS.133.5.708 URL |
[42] | Yan Xin-hui. Identification and functional analysis of pear dormancy associated DAM genes[M. D. Dissertation]. Hangzhou: Zhejiang University. (in Chinese) |
鄢馨卉. 2019. 梨休眠相关DAM基因的鉴定及功能分析[硕士论文]. 杭州: 浙江大学. | |
[43] |
Yang Q, Niu Q, Li J, Zheng X, Ma Y, Bai S, Teng Y. 2018. PpHB22,a member of HD-Zip proteins,activates,PpDAM1,to regulate bud dormancy transition in'Suli'pear(Pyrus pyrifolia white pear group). Plant Physiology and Biochemistry, 127:355-365.
doi: 10.1016/j.plaphy.2018.04.002 URL |
[44] |
Yang Q, Yang B, Li J, Wang Y, Tao R, Yang F, Wu X, Yan X, Ahmad M, Shen J, Bai S, Teng Y. 2020. ABA-responsive ABRE-BINDING FACTOR3 activates DAM3 expression to promote bud dormancy in Asian pear. Plant,Cell and Environment, 43 (6):1360-1375.
doi: 10.1111/pce.13744 URL |
[45] |
Zheng C, Acheampong A K, Shi Z, Mugzech A, Halaly-Basha T, Shaya F, Sun Y, Colova V, Mosquna A, Ophir R, Galbraith D W, Or E. 2018. Abscisic acid catabolism enhances dormancy release of grapevine buds. Plant,Cell and Environment, 41 (10):2490-2503.
doi: 10.1111/pce.13371 URL |
[1] | 史洪丽, 李腊, 郭翠梅, 余婷婷, 简伟, 杨星勇. 番茄灰霉病生防菌株TL1的分离、鉴定及其生防能力分析[J]. 园艺学报, 2023, 50(1): 79-90. |
[2] | 宋健坤, 杨英杰, 李鼎立, 马春晖, 王彩虹, 王 然. 梨新品种‘鲁秀’[J]. 园艺学报, 2022, 49(S2): 3-4. |
[3] | 董星光, 曹玉芬, 张 莹, 田路明, 霍宏亮, 齐 丹, 徐家玉, 刘 超, 王立东. 抗寒脆肉梨新品种‘玉翠香’[J]. 园艺学报, 2022, 49(S2): 5-6. |
[4] | 欧春青, 姜淑苓, 王 斐, 马 力, 张艳杰, 刘振杰. 早熟梨新品种‘兴梨蜜水’[J]. 园艺学报, 2022, 49(S2): 7-8. |
[5] | 张艳杰, 王 斐, 欧春青, 马 力, 姜淑苓, 刘振杰. 梨新品种‘中梨玉脆3’[J]. 园艺学报, 2022, 49(S2): 9-10. |
[6] | 范 净, 陈启亮, 张靖国, 杨晓平, 杜 威, 田 瑞, 周德平, 胡红菊, . 中熟红皮砂梨新品种‘金彤’[J]. 园艺学报, 2022, 49(S2): 11-12. |
[7] | 王苏珂, 李秀根, 杨 健, 王 龙, 苏艳丽, 张向展, 薛华柏. 红皮梨新品种‘丹霞红’[J]. 园艺学报, 2022, 49(S2): 13-14. |
[8] | 吕 毅, 隋 静, 薛玉平, 黄海静, 孟艳玲, 王同勇, 杨 鹤, . 无花果新品种‘锦青’[J]. 园艺学报, 2022, 49(S2): 45-46. |
[9] | 王 斐, 欧春青, 张艳杰, 马 力, 姜淑苓. 晚熟耐贮梨新品种‘华秋’[J]. 园艺学报, 2022, 49(S1): 9-10. |
[10] | 宋健坤, 李鼎立, 杨英杰, 马春晖, 王彩虹, 王 然. 梨新品种‘琴岛红’[J]. 园艺学报, 2022, 49(S1): 11-12. |
[11] | 马 锞, 胡 珊, 王 燕, 李加强, 赖永超, 马会勤, . 无花果新品种‘彩毅’[J]. 园艺学报, 2022, 49(S1): 31-32. |
[12] | 朱世平, 文荣中, 王媛媛, 曾 杨. 特晚熟柑橘新品种‘金乐柑’[J]. 园艺学报, 2022, 49(S1): 43-44. |
[13] | 金建鹏, 高 洁, 谢 琦, 魏永路, 陆楚桥, 杨凤玺, 朱根发. 墨兰新品种‘四季花’[J]. 园艺学报, 2022, 49(S1): 127-128. |
[14] | 李冬梅, 詹启成, 黄 丹, 蒋雄辉, 于 波, 黎东均, 张 花, 王 真, 蔡桂奇, 朱根发, . 粗肋草属花卉新品种‘红剑’[J]. 园艺学报, 2022, 49(S1): 155-156. |
[15] | 李冬梅, 詹启成, 黄 丹, 蒋雄辉, 于 波, 黎东均, 蔡桂奇, 王 真, 张 花, 朱根发, . 粗肋草属花卉新品种‘白宝石’[J]. 园艺学报, 2022, 49(S1): 155-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司