园艺学报 ›› 2023, Vol. 50 ›› Issue (4): 697-712.doi: 10.16420/j.issn.0513-353x.2022-0011
• 研究论文 • 下一篇
刘柚藓, 李国防, 檀鸣, 杨志昌, 周世伟, 霍文静, 张鹤, 孙建设, 邵建柱()
收稿日期:
2022-06-20
修回日期:
2022-12-07
出版日期:
2023-04-25
发布日期:
2023-04-27
通讯作者:
*(E-mail:yysjz@hebau.edu.cn)
E-mail:yysjz@hebau.edu.cn
基金资助:
LIU Youxian, LI Guofang, TAN Ming, YANG Zhichang, ZHOU Shiwei, HUO Wenjing, ZHANG He, SUN Jianshe, SHAO Jianzhu()
Received:
2022-06-20
Revised:
2022-12-07
Online:
2023-04-25
Published:
2023-04-27
Contact:
*(E-mail:yysjz@hebau.edu.cn)
E-mail:yysjz@hebau.edu.cn
摘要:
利用苹果全基因组数据,对苹果TOPP基因家族进行鉴定和生物学分析。结果表明:苹果TOPP基因家族共44个成员,分布于15条染色体上;系统进化树分析表明,苹果、桃和拟南芥TOPP高度同源;苹果TOPP基因结构中含1 ~ 2个外显子和0 ~ 20个内含子,以及10个保守基序;启动子顺式作用元件分析表明,苹果TOPP基因家族成员不仅受到光、热等环境影响,还受多种激素综合调控;基因芯片表达谱分析结果表明该基因家族在不同组织中均有表达。分析外源细胞分裂素(6-BA和TDZ)诱导苹果腋芽萌发的转录组数据,锁定了与其相关的候选基因MdTOPP13和MdTOPP28;克隆其序列并进行比对,两者表现出高同源性。以苹果砧木品种‘SH40’腋芽为材料,实时定量PCR分析表明,外源6-BA和TDZ处理后上调了MdTOPP13和MdTOPP28在腋芽中的表达量。综上可知,MdTOPP13和MdTOPP28在介导细胞分裂素调控腋芽萌发过程中可能发挥着重要作用。
中图分类号:
刘柚藓, 李国防, 檀鸣, 杨志昌, 周世伟, 霍文静, 张鹤, 孙建设, 邵建柱. 苹果MdTOPP13/28在腋芽萌发中的表达分析[J]. 园艺学报, 2023, 50(4): 697-712.
LIU Youxian, LI Guofang, TAN Ming, YANG Zhichang, ZHOU Shiwei, HUO Wenjing, ZHANG He, SUN Jianshe, SHAO Jianzhu. Expression Analysis of MdTOPP13/28 During Axillary Bud Outgrowth in Malus[J]. Acta Horticulturae Sinica, 2023, 50(4): 697-712.
用途 Use | 基因名称 Gene name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
克隆Clone | MdTOPP13 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCAGAGACTTGATTC |
MdTOPP28 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCATGGACCTGAT | |
qRT-PCR | MdTOPP13 | GACTGCCTCCTAATGCCAATT | ACTCTGTGAATGTCTTCCATAGC |
MdTOPP28 | GAGGCTATGGAAGACATTCACA | ACCAGAGAAGGTCACAGAGTAA |
表1 引物序列
Table 1 Primer sequence
用途 Use | 基因名称 Gene name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
克隆Clone | MdTOPP13 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCAGAGACTTGATTC |
MdTOPP28 | ATGGACCAATCGGTTCTGGAC | CCTGTGCATCATGGACCTGAT | |
qRT-PCR | MdTOPP13 | GACTGCCTCCTAATGCCAATT | ACTCTGTGAATGTCTTCCATAGC |
MdTOPP28 | GAGGCTATGGAAGACATTCACA | ACCAGAGAAGGTCACAGAGTAA |
基因名称 Gene name | 基因登录号 Gene locus | 染色体位置 Location | 基因链 Strand | 编码区长/bp CDS | 氨基酸数/aa Protein | 蛋白分子量 KDMW | 亲水指数 GRA | 等电点 pI | 不稳定系数 Ⅱ |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | MD01G1140800 | Chr01:24992947..24997431 | - | 726 | 241 | 26.83 | -0.182 | 4.88 | 35.20 |
MdTOPP2 | MD01G1140900 | Chr01:24999027..25001036 | - | 1059 | 352 | 39.40 | -0.131 | 7.96 | 46.55 |
MdTOPP3 | MD01G1141200 | Chr01:25025190..25027819 | - | 258 | 85 | 9.86 | -0.192 | 4.99 | 41.56 |
MdTOPP4 | MD02G1108000 | Chr02:8722439..8725518 | - | 1377 | 458 | 50.62 | -0.340 | 5.16 | 44.73 |
MdTOPP5 | MD03G1007300 | Chr03:580509..585577 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP6 | MD03G1156600 | Chr03:18384616..18392711 | - | 2229 | 742 | 80.25 | -0.129 | 5.78 | 37.73 |
MdTOPP7 | MD03G1192600 | Chr03:26421006..26425412 | + | 918 | 305 | 34.73 | -0.202 | 5.24 | 41.77 |
MdTOPP8 | MD03G1274100 | Chr03:35710860..35716942 | + | 2655 | 884 | 96.77 | -0.295 | 6.08 | 37.83 |
MdTOPP9 | MD04G1083500 | Chr04:11955473..11956621 | - | 336 | 111 | 12.33 | -0.047 | 6.10 | 43.08 |
MdTOPP10 | MD04G1083600 | Chr04:11956624..11958010 | - | 591 | 196 | 22.49 | -0.156 | 9.07 | 46.88 |
MdTOPP11 | MD04G1179900 | Chr04:27091697..27093197 | - | 906 | 301 | 34.34 | -0.136 | 5.04 | 36.91 |
MdTOPP12 | MD04G1198300 | Chr04:28585017..28587856 | - | 969 | 322 | 36.48 | -0.237 | 5.54 | 42.12 |
MdTOPP13 | MD04G1229100 | Chr04:30925518..30929906 | + | 1029 | 342 | 38.38 | -0.184 | 5.67 | 41.09 |
MdTOPP14 | MD05G1232900 | Chr05:36572845..36576146 | + | 432 | 143 | 16.01 | -0.133 | 4.82 | 31.79 |
MdTOPP15 | MD06G1183800 | Chr06:32220590..32223741 | - | 921 | 306 | 35.01 | -0.320 | 4.96 | 34.94 |
MdTOPP16 | MD06G1202700 | Chr06:33587486..33592104 | - | 2115 | 704 | 78.87 | -0.347 | 5.59 | 47.92 |
MdTOPP17 | MD07G1205100 | Chr07:28233219..28237816 | - | 951 | 316 | 35.76 | -0.176 | 5.25 | 43.02 |
MdTOPP18 | MD09G1156000 | Chr09:12430531..12438867 | + | 1449 | 482 | 54.22 | -0.316 | 5.86 | 35.61 |
MdTOPP19 | MD09G1191500 | Chr09:17014278..17019396 | + | 2487 | 828 | 91.16 | -0.385 | 4.98 | 45.41 |
MdTOPP20 | MD11G1010600 | Chr11:795712..801172 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP21 | MD11G1174100 | Chr11:20340736..20354133 | - | 3009 | 1002 | 106.68 | -0.199 | 5.72 | 40.47 |
MdTOPP22 | MD11G1209100 | Chr11:30467821..30476248 | + | 918 | 305 | 34.76 | -0.204 | 5.24 | 41.36 |
MdTOPP23 | MD11G1296400 | Chr11:41407336..41413456 | + | 2661 | 886 | 96.76 | -0.310 | 6.13 | 39.57 |
MdTOPP24 | MD12G1049700 | Chr12:5646206..5647318 | - | 1113 | 370 | 41.01 | -0.099 | 5.24 | 32.51 |
MdTOPP25 | MD12G1052900 | Chr12:5923211..5929636 | - | 942 | 313 | 35.76 | -0.369 | 5.13 | 35.32 |
MdTOPP26 | MD12G1195100 | Chr12:27647081..27649008 | - | 906 | 301 | 34.40 | -0.111 | 5.17 | 36.04 |
MdTOPP27 | MD12G1210900 | Chr12:28940837..28943702 | - | 975 | 324 | 36.67 | -0.239 | 5.69 | 41.20 |
MdTOPP28 | MD12G1246200 | Chr12:31638713..31643111 | + | 1029 | 342 | 38.56 | -0.228 | 5.85 | 41.23 |
MdTOPP29 | MD13G1001400 | Chr13:102885..107604 | + | 768 | 255 | 29.15 | -0.195 | 4.85 | 39.20 |
MdTOPP30 | MD13G1054400 | Chr13:3810784..3816831 | - | 2583 | 860 | 97.00 | -0.281 | 5.88 | 47.84 |
MdTOPP31 | MD13G1083600 | Chr13:5864560..5867786 | + | 921 | 306 | 35.05 | -0.304 | 4.85 | 38.94 |
MdTOPP32 | MD13G1213200 | Chr13:20015224..20016220 | + | 666 | 221 | 25.16 | -0.219 | 5.08 | 41.16 |
MdTOPP33 | MD13G1216200 | Chr13:20567021..20567531 | - | 399 | 132 | 14.93 | -0.561 | 5.88 | 33.32 |
MdTOPP34 | MD14G1051300 | Chr14:4891465..4897083 | - | 942 | 313 | 35.77 | -0.378 | 5.13 | 34.84 |
MdTOPP35 | MD14G1112500 | Chr14:18172736..18176908 | - | 960 | 319 | 36.09 | -0.273 | 5.72 | 34.33 |
MdTOPP36 | MD14G1112700 | Chr14:18199211..18201364 | - | 231 | 76 | 8.61 | -0.092 | 5.52 | 8.40 |
MdTOPP37 | MD14G1112800 | Chr14:18201367..18205580 | - | 906 | 301 | 34.34 | -0.281 | 5.67 | 36.20 |
MdTOPP38 | MD14G1112900 | Chr14:18226998..18231411 | - | 960 | 319 | 36.09 | -0.273 | 5.60 | 34.93 |
MdTOPP39 | MD14G1189900 | Chr14:28117305..28120399 | - | 921 | 306 | 35.02 | -0.286 | 4.90 | 33.44 |
MdTOPP40 | MD15G1227500 | Chr15:18487996..18491614 | - | 1383 | 460 | 50.58 | -0.336 | 5.17 | 46.63 |
MdTOPP41 | MD16G1004700 | Chr16:353770..361929 | - | 912 | 303 | 34.87 | -0.271 | 4.88 | 38.04 |
MdTOPP42 | MD16G1083000 | Chr16:5813202..5816273 | + | 921 | 306 | 35.05 | -0.308 | 4.86 | 39.57 |
MdTOPP43 | MD16G1217200 | Chr16:21423719..21427410 | + | 975 | 324 | 36.70 | -0.183 | 6.88 | 41.38 |
MdTOPP44 | MD17G1142100 | Chr17:12801908..12811146 | + | 1449 | 482 | 54.25 | -0.306 | 5.74 | 35.79 |
表2 苹果TOPP基因家族
Table 2 The TOPP gene family in apple
基因名称 Gene name | 基因登录号 Gene locus | 染色体位置 Location | 基因链 Strand | 编码区长/bp CDS | 氨基酸数/aa Protein | 蛋白分子量 KDMW | 亲水指数 GRA | 等电点 pI | 不稳定系数 Ⅱ |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | MD01G1140800 | Chr01:24992947..24997431 | - | 726 | 241 | 26.83 | -0.182 | 4.88 | 35.20 |
MdTOPP2 | MD01G1140900 | Chr01:24999027..25001036 | - | 1059 | 352 | 39.40 | -0.131 | 7.96 | 46.55 |
MdTOPP3 | MD01G1141200 | Chr01:25025190..25027819 | - | 258 | 85 | 9.86 | -0.192 | 4.99 | 41.56 |
MdTOPP4 | MD02G1108000 | Chr02:8722439..8725518 | - | 1377 | 458 | 50.62 | -0.340 | 5.16 | 44.73 |
MdTOPP5 | MD03G1007300 | Chr03:580509..585577 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP6 | MD03G1156600 | Chr03:18384616..18392711 | - | 2229 | 742 | 80.25 | -0.129 | 5.78 | 37.73 |
MdTOPP7 | MD03G1192600 | Chr03:26421006..26425412 | + | 918 | 305 | 34.73 | -0.202 | 5.24 | 41.77 |
MdTOPP8 | MD03G1274100 | Chr03:35710860..35716942 | + | 2655 | 884 | 96.77 | -0.295 | 6.08 | 37.83 |
MdTOPP9 | MD04G1083500 | Chr04:11955473..11956621 | - | 336 | 111 | 12.33 | -0.047 | 6.10 | 43.08 |
MdTOPP10 | MD04G1083600 | Chr04:11956624..11958010 | - | 591 | 196 | 22.49 | -0.156 | 9.07 | 46.88 |
MdTOPP11 | MD04G1179900 | Chr04:27091697..27093197 | - | 906 | 301 | 34.34 | -0.136 | 5.04 | 36.91 |
MdTOPP12 | MD04G1198300 | Chr04:28585017..28587856 | - | 969 | 322 | 36.48 | -0.237 | 5.54 | 42.12 |
MdTOPP13 | MD04G1229100 | Chr04:30925518..30929906 | + | 1029 | 342 | 38.38 | -0.184 | 5.67 | 41.09 |
MdTOPP14 | MD05G1232900 | Chr05:36572845..36576146 | + | 432 | 143 | 16.01 | -0.133 | 4.82 | 31.79 |
MdTOPP15 | MD06G1183800 | Chr06:32220590..32223741 | - | 921 | 306 | 35.01 | -0.320 | 4.96 | 34.94 |
MdTOPP16 | MD06G1202700 | Chr06:33587486..33592104 | - | 2115 | 704 | 78.87 | -0.347 | 5.59 | 47.92 |
MdTOPP17 | MD07G1205100 | Chr07:28233219..28237816 | - | 951 | 316 | 35.76 | -0.176 | 5.25 | 43.02 |
MdTOPP18 | MD09G1156000 | Chr09:12430531..12438867 | + | 1449 | 482 | 54.22 | -0.316 | 5.86 | 35.61 |
MdTOPP19 | MD09G1191500 | Chr09:17014278..17019396 | + | 2487 | 828 | 91.16 | -0.385 | 4.98 | 45.41 |
MdTOPP20 | MD11G1010600 | Chr11:795712..801172 | - | 936 | 311 | 35.62 | -0.393 | 5.21 | 36.25 |
MdTOPP21 | MD11G1174100 | Chr11:20340736..20354133 | - | 3009 | 1002 | 106.68 | -0.199 | 5.72 | 40.47 |
MdTOPP22 | MD11G1209100 | Chr11:30467821..30476248 | + | 918 | 305 | 34.76 | -0.204 | 5.24 | 41.36 |
MdTOPP23 | MD11G1296400 | Chr11:41407336..41413456 | + | 2661 | 886 | 96.76 | -0.310 | 6.13 | 39.57 |
MdTOPP24 | MD12G1049700 | Chr12:5646206..5647318 | - | 1113 | 370 | 41.01 | -0.099 | 5.24 | 32.51 |
MdTOPP25 | MD12G1052900 | Chr12:5923211..5929636 | - | 942 | 313 | 35.76 | -0.369 | 5.13 | 35.32 |
MdTOPP26 | MD12G1195100 | Chr12:27647081..27649008 | - | 906 | 301 | 34.40 | -0.111 | 5.17 | 36.04 |
MdTOPP27 | MD12G1210900 | Chr12:28940837..28943702 | - | 975 | 324 | 36.67 | -0.239 | 5.69 | 41.20 |
MdTOPP28 | MD12G1246200 | Chr12:31638713..31643111 | + | 1029 | 342 | 38.56 | -0.228 | 5.85 | 41.23 |
MdTOPP29 | MD13G1001400 | Chr13:102885..107604 | + | 768 | 255 | 29.15 | -0.195 | 4.85 | 39.20 |
MdTOPP30 | MD13G1054400 | Chr13:3810784..3816831 | - | 2583 | 860 | 97.00 | -0.281 | 5.88 | 47.84 |
MdTOPP31 | MD13G1083600 | Chr13:5864560..5867786 | + | 921 | 306 | 35.05 | -0.304 | 4.85 | 38.94 |
MdTOPP32 | MD13G1213200 | Chr13:20015224..20016220 | + | 666 | 221 | 25.16 | -0.219 | 5.08 | 41.16 |
MdTOPP33 | MD13G1216200 | Chr13:20567021..20567531 | - | 399 | 132 | 14.93 | -0.561 | 5.88 | 33.32 |
MdTOPP34 | MD14G1051300 | Chr14:4891465..4897083 | - | 942 | 313 | 35.77 | -0.378 | 5.13 | 34.84 |
MdTOPP35 | MD14G1112500 | Chr14:18172736..18176908 | - | 960 | 319 | 36.09 | -0.273 | 5.72 | 34.33 |
MdTOPP36 | MD14G1112700 | Chr14:18199211..18201364 | - | 231 | 76 | 8.61 | -0.092 | 5.52 | 8.40 |
MdTOPP37 | MD14G1112800 | Chr14:18201367..18205580 | - | 906 | 301 | 34.34 | -0.281 | 5.67 | 36.20 |
MdTOPP38 | MD14G1112900 | Chr14:18226998..18231411 | - | 960 | 319 | 36.09 | -0.273 | 5.60 | 34.93 |
MdTOPP39 | MD14G1189900 | Chr14:28117305..28120399 | - | 921 | 306 | 35.02 | -0.286 | 4.90 | 33.44 |
MdTOPP40 | MD15G1227500 | Chr15:18487996..18491614 | - | 1383 | 460 | 50.58 | -0.336 | 5.17 | 46.63 |
MdTOPP41 | MD16G1004700 | Chr16:353770..361929 | - | 912 | 303 | 34.87 | -0.271 | 4.88 | 38.04 |
MdTOPP42 | MD16G1083000 | Chr16:5813202..5816273 | + | 921 | 306 | 35.05 | -0.308 | 4.86 | 39.57 |
MdTOPP43 | MD16G1217200 | Chr16:21423719..21427410 | + | 975 | 324 | 36.70 | -0.183 | 6.88 | 41.38 |
MdTOPP44 | MD17G1142100 | Chr17:12801908..12811146 | + | 1449 | 482 | 54.25 | -0.306 | 5.74 | 35.79 |
图2 苹果(Md)、桃(Pp)和拟南芥(At)TOPP基因系统进化树分析
Fig. 2 Phylogenetic analysis of TOPP genes in Malus × domestica(Md),Prunus persica(Pp)and Arabidopsis thaliana(At)
基因 Gene | 脱落酸 Abscisic acid | 光信号Circadian | 分生组织Meristem | 茉莉酸甲酯MeJA | 赤霉素 Gibberellin | 胁迫 Stress | 生长素 Auxin | 水杨酸 Salicylic acid | 栅栏状叶肉细胞分化Differentiation of the palisade mesophyll cells |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | 1 | 11 | 1 | 6 | — | 1 | 1 | 1 | — |
MdTOPP2 | 3 | 9 | — | 10 | 2 | — | — | 1 | — |
MdTOPP3 | — | 14 | 2 | — | 1 | — | 1 | 1 | — |
MdTOPP4 | 3 | 14 | — | 4 | 2 | 1 | 1 | 1 | — |
MdTOPP5 | 3 | 13 | 1 | 2 | 1 | 2 | 3 | 2 | — |
MdTOPP6 | 1 | 5 | — | — | — | — | 1 | 1 | 1 |
MdTOPP7 | 3 | 8 | — | — | — | 1 | 6 | 1 | — |
MdTOPP8 | 1 | 5 | 1 | 2 | — | 3 | — | — | — |
MdTOPP9 | 3 | 10 | — | 4 | 2 | 2 | 1 | 1 | — |
MdTOPP10 | 7 | 10 | — | — | 1 | — | — | 1 | — |
MdTOPP11 | 2 | 12 | 1 | 2 | — | 1 | — | 1 | — |
MdTOPP12 | 9 | 7 | 1 | — | 1 | — | 1 | — | — |
MdTOPP13 | 3 | 17 | — | 4 | 1 | 4 | — | 3 | — |
MdTOPP14 | 1 | 14 | 3 | 8 | 1 | 1 | 2 | 1 | — |
MdTOPP15 | 1 | 12 | 1 | 10 | — | — | 1 | — | — |
MdTOPP16 | 3 | 14 | 1 | — | 1 | 1 | 2 | 1 | — |
MdTOPP17 | 4 | 7 | — | 6 | — | 3 | — | 1 | — |
MdTOPP18 | 3 | 16 | — | 2 | — | — | — | — | — |
MdTOPP19 | 2 | 16 | 1 | 8 | 2 | — | 3 | — | — |
MdTOPP20 | — | 11 | — | 2 | 1 | — | 2 | 1 | 1 |
MdTOPP21 | 5 | 14 | 1 | 2 | 1 | — | — | — | — |
MdTOPP22 | — | 10 | — | 4 | — | 3 | 2 | 1 | — |
MdTOPP23 | 2 | 10 | 1 | 10 | — | 5 | — | — | — |
MdTOPP24 | — | 10 | — | 4 | 1 | 16 | 2 | 1 | — |
MdTOPP25 | 3 | 13 | — | — | — | 1 | — | — | — |
MdTOPP26 | 4 | 11 | 2 | 4 | — | 6 | 3 | 1 | — |
MdTOPP27 | 4 | 5 | 2 | 6 | — | 1 | 2 | — | 2 |
MdTOPP28 | 2 | 9 | — | — | 3 | 5 | 3 | 1 | — |
MdTOPP29 | — | 8 | — | — | — | 1 | 1 | — | — |
MdTOPP30 | — | 17 | — | — | 1 | 2 | 2 | — | — |
MdTOPP31 | 7 | 18 | — | 4 | 3 | — | 2 | 1 | — |
MdTOPP32 | 1 | 5 | — | 2 | — | — | 1 | 2 | — |
MdTOPP33 | 1 | 17 | 1 | 4 | 2 | — | — | 1 | — |
MdTOPP34 | — | 13 | — | 2 | 2 | 1 | 1 | — | — |
MdTOPP35 | 4 | 11 | 2 | 4 | 1 | — | — | 1 | 1 |
MdTOPP36 | 2 | 9 | 1 | 4 | 1 | 1 | — | 1 | — |
MdTOPP37 | 6 | 9 | — | 2 | 2 | 2 | — | — | — |
MdTOPP38 | 2 | 13 | 1 | 4 | 2 | — | — | 1 | 1 |
MdTOPP39 | 6 | 17 | 1 | 4 | — | 3 | — | 1 | — |
MdTOPP40 | 1 | 12 | — | 18 | — | 2 | 1 | — | — |
MdTOPP41 | 5 | 16 | 1 | 6 | — | — | — | 1 | — |
MdTOPP42 | 4 | 10 | — | 2 | — | — | 3 | — | — |
MdTOPP43 | — | 16 | — | 2 | 1 | 1 | — | — | — |
MdTOPP44 | 3 | 13 | — | — | 2 | 2 | — | — | — |
表3 MdTOPP启动子的相关顺式作用元件
Table 3 Predicted cis-elements in the promoter of the MdTOPP genes
基因 Gene | 脱落酸 Abscisic acid | 光信号Circadian | 分生组织Meristem | 茉莉酸甲酯MeJA | 赤霉素 Gibberellin | 胁迫 Stress | 生长素 Auxin | 水杨酸 Salicylic acid | 栅栏状叶肉细胞分化Differentiation of the palisade mesophyll cells |
---|---|---|---|---|---|---|---|---|---|
MdTOPP1 | 1 | 11 | 1 | 6 | — | 1 | 1 | 1 | — |
MdTOPP2 | 3 | 9 | — | 10 | 2 | — | — | 1 | — |
MdTOPP3 | — | 14 | 2 | — | 1 | — | 1 | 1 | — |
MdTOPP4 | 3 | 14 | — | 4 | 2 | 1 | 1 | 1 | — |
MdTOPP5 | 3 | 13 | 1 | 2 | 1 | 2 | 3 | 2 | — |
MdTOPP6 | 1 | 5 | — | — | — | — | 1 | 1 | 1 |
MdTOPP7 | 3 | 8 | — | — | — | 1 | 6 | 1 | — |
MdTOPP8 | 1 | 5 | 1 | 2 | — | 3 | — | — | — |
MdTOPP9 | 3 | 10 | — | 4 | 2 | 2 | 1 | 1 | — |
MdTOPP10 | 7 | 10 | — | — | 1 | — | — | 1 | — |
MdTOPP11 | 2 | 12 | 1 | 2 | — | 1 | — | 1 | — |
MdTOPP12 | 9 | 7 | 1 | — | 1 | — | 1 | — | — |
MdTOPP13 | 3 | 17 | — | 4 | 1 | 4 | — | 3 | — |
MdTOPP14 | 1 | 14 | 3 | 8 | 1 | 1 | 2 | 1 | — |
MdTOPP15 | 1 | 12 | 1 | 10 | — | — | 1 | — | — |
MdTOPP16 | 3 | 14 | 1 | — | 1 | 1 | 2 | 1 | — |
MdTOPP17 | 4 | 7 | — | 6 | — | 3 | — | 1 | — |
MdTOPP18 | 3 | 16 | — | 2 | — | — | — | — | — |
MdTOPP19 | 2 | 16 | 1 | 8 | 2 | — | 3 | — | — |
MdTOPP20 | — | 11 | — | 2 | 1 | — | 2 | 1 | 1 |
MdTOPP21 | 5 | 14 | 1 | 2 | 1 | — | — | — | — |
MdTOPP22 | — | 10 | — | 4 | — | 3 | 2 | 1 | — |
MdTOPP23 | 2 | 10 | 1 | 10 | — | 5 | — | — | — |
MdTOPP24 | — | 10 | — | 4 | 1 | 16 | 2 | 1 | — |
MdTOPP25 | 3 | 13 | — | — | — | 1 | — | — | — |
MdTOPP26 | 4 | 11 | 2 | 4 | — | 6 | 3 | 1 | — |
MdTOPP27 | 4 | 5 | 2 | 6 | — | 1 | 2 | — | 2 |
MdTOPP28 | 2 | 9 | — | — | 3 | 5 | 3 | 1 | — |
MdTOPP29 | — | 8 | — | — | — | 1 | 1 | — | — |
MdTOPP30 | — | 17 | — | — | 1 | 2 | 2 | — | — |
MdTOPP31 | 7 | 18 | — | 4 | 3 | — | 2 | 1 | — |
MdTOPP32 | 1 | 5 | — | 2 | — | — | 1 | 2 | — |
MdTOPP33 | 1 | 17 | 1 | 4 | 2 | — | — | 1 | — |
MdTOPP34 | — | 13 | — | 2 | 2 | 1 | 1 | — | — |
MdTOPP35 | 4 | 11 | 2 | 4 | 1 | — | — | 1 | 1 |
MdTOPP36 | 2 | 9 | 1 | 4 | 1 | 1 | — | 1 | — |
MdTOPP37 | 6 | 9 | — | 2 | 2 | 2 | — | — | — |
MdTOPP38 | 2 | 13 | 1 | 4 | 2 | — | — | 1 | 1 |
MdTOPP39 | 6 | 17 | 1 | 4 | — | 3 | — | 1 | — |
MdTOPP40 | 1 | 12 | — | 18 | — | 2 | 1 | — | — |
MdTOPP41 | 5 | 16 | 1 | 6 | — | — | — | 1 | — |
MdTOPP42 | 4 | 10 | — | 2 | — | — | 3 | — | — |
MdTOPP43 | — | 16 | — | 2 | 1 | 1 | — | — | — |
MdTOPP44 | 3 | 13 | — | — | 2 | 2 | — | — | — |
图3 MdTOPP在苹果M67、M74、M20、金冠(GD)、X8877、M14和M49的不同器官中的表达量
Fig. 3 The expression levels of MdTOPP genes in the different organs of different genotypes(M67,M74,M20,Gold Delicious,X8877,M14 and M49)in apple
处理 Treatment | 处理后时间/d Days after treatment | 腋芽长度/mm Axillary bud length | 腋芽宽度/mm Axillary bud width |
---|---|---|---|
对照Control | 3 | 4.47 ± 0.35 c | 3.37 ± 0.23 c |
7 | 4.43 ± 0.43 c | 3.39 ± 0.32 c | |
6-BA | 3 | 6.33 ± 0.87 b | 3.35 ± 0.24 c |
7 | 13.28 ± 0.66 a | 4.84 ± 0.63 a | |
TDZ | 3 | 6.23 ± 0.69 b | 3.74 ± 0.71 b |
7 | 14.51 ± 0.92 a | 5.25 ± 0.58 a |
表4 6-BA和TDZ处理对苹果腋芽长度和宽度的影响
Table 4 The influence of different treatments on the axillary buds length and width
处理 Treatment | 处理后时间/d Days after treatment | 腋芽长度/mm Axillary bud length | 腋芽宽度/mm Axillary bud width |
---|---|---|---|
对照Control | 3 | 4.47 ± 0.35 c | 3.37 ± 0.23 c |
7 | 4.43 ± 0.43 c | 3.39 ± 0.32 c | |
6-BA | 3 | 6.33 ± 0.87 b | 3.35 ± 0.24 c |
7 | 13.28 ± 0.66 a | 4.84 ± 0.63 a | |
TDZ | 3 | 6.23 ± 0.69 b | 3.74 ± 0.71 b |
7 | 14.51 ± 0.92 a | 5.25 ± 0.58 a |
图7 苹果MdTOPP13和MdTOPP28的蛋白序列比对 13-web/28-web代表参考基因组序列。
Fig. 7 Protein sequence alignment of apple MdTOPP13 and MdTOPP28 13-web/28-web indicate the sequence in reference genome.
图8 苹果腋芽经6-BA和TDZ处理后不同时间MdTOPP13的相对表达量 同时期处理与对照的差异显著性分析用t-test法统计。* α = 0.05,** α = 0.01。下同。
图9 Relative expression levels of MdTOPP13 in the axillary buds treated with 6-BA and TDZ at different times Signifcant difference between treatment and control at same time point were analyszed by using t-test.* α = 0.05,** α = 0.01. The same below.
[1] |
Aggen J B, Nairn A C, Chamberlin R. 2000. Regulation of protein phosphatase-1. Chemistry & Biology, 7 (1):R13-R23.
doi: 10.1016/S1074-5521(00)00069-7 URL |
[2] | Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk M G, Scarpella E, Ljung K, Leyser O. 2016. Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol, 14 (4):e1002446. |
[3] | Böhm S, Buchberger A. 2013. The budding yeast Cdc48(Shp1)complex promotes cell cycle progression by positive regulation of protein phosphatase 1(Glc7). PLoS ONE, 8 (2):276-276. |
[4] |
Chatfield S P, Stirnberg P, Forde B G, Leyser O. 2000. The hormonal regulation of axillary bud growth in Arabidopsis. Plant Journal, 24 (2):159-169.
doi: 10.1046/j.1365-313x.2000.00862.x pmid: 11069691 |
[5] |
Cline M G. 1991. Apical dominance. The Botanical Review, 57 (4):318-358.
doi: 10.1007/BF02858771 URL |
[6] |
Cohen P T. 2002. Protein phosphatase 1-targeted in many directions. J Cell Sci, 115:241-256.
doi: 10.1242/jcs.115.2.241 URL |
[7] |
Chen Hong-fei, Shao Hong-xia, Fan Sheng, Ma Juan-juan, Zhang Dong, Han Ming-yu. 2016. Identification and phylogenetic analysis of the polygalacturonase gene family in apple. Acta Horticulturae Sinica, 43 (10):1863-1877. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0224 URL |
陈鸿飞, 邵红霞, 樊胜, 马娟娟, 张东, 韩明玉. 2016. 苹果全基因组多聚半乳糖醛酸酶基因家族的鉴定及进化分析. 园艺学报, 43 (10):1863-1877.
doi: 10.16420/j.issn.0513-353x.2016-0224 URL |
|
[8] |
Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro E A, Gouzy J, Rees D J G, Guérif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, Weg E, Troggio M, Bucher E. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49:1099-1106.
doi: 10.1038/ng.3886 |
[9] |
Fan S, Zhang D, Xing L, Qi S, Du L, Wu H, Shao H, Li Y, Ma J, Han M. 2017. Phylogenetic analysis of IDD gene family and characterization of its expression in response to flower induction in Malus. Molecular Genetics and Genomics, 292 (4):755.
doi: 10.1007/s00438-017-1306-4 |
[10] | Fan Sheng, Zhang Lan-qing, Liu Ke, Lei Chao, Chen Xin, Yao Dian-cheng, Zhang Dong, Han Ming-yu. 2016. Cloning and expression of the flowering regulation transcription factor gene MdSPL6 in Malus × domestica. Acta Horticulturae Sinica, 43 (11):2089-2098. (in Chinese) |
樊胜, 张岚清, 刘柯, 雷超, 陈欣, 姚殿城, 张东, 韩明玉. 2016. 苹果‘长富2号’开花调控转录因子MdSPL6基因的克隆和表达分析. 园艺学报, 43 (11):2089-2098. | |
[11] |
Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. 2007. Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 12:169-181.
doi: 10.1016/j.tplants.2007.03.003 pmid: 17368080 |
[12] |
Foster T M, Ledger S E, Janssen B J, Luo Z W, Drummond Revel S M, Tomes S, Karunairetnam S, Waite C N, Funnell K A, van Hooijdonk B M, Saei A, Seleznyova A N, Snowden K C. 2018. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees. Journal of Experimental Botany, 69 (9):2379-2390.
doi: 10.1093/jxb/erx404 pmid: 29190381 |
[13] |
Gill S S, Tajrishi M, Madan M, Tuteja N. 2013. A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice(Oryza sativa). Plant Molecular Biology, 82:1-22.
doi: 10.1007/s11103-013-0031-6 URL |
[14] |
Heisler M G, Ohno C, Das P, Sieber P, Reddy G V, Long J A, Meyerowitz E M. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology, 15 (21):1899-1911.
doi: 10.1016/j.cub.2005.09.052 pmid: 16271866 |
[15] | Hou Y J, Zhu Y, Wang P, Zhao Y, Xie S, Giorgia B, Wang B, Duan C G, Wang X, Xing L. 2016. Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genetics, 12:583-595. |
[16] |
Lesage B, Qian J, Bollen M. 2011. Spindle checkpoint silencing:PP1 tips the balance. Current Biology, 21:898-903.
doi: 10.1016/j.cub.2011.08.063 pmid: 22075433 |
[17] | Li Guo-fang. 2018. Functional study of MAX2 gene on the regulation of axillary bud outgrowth by mediating strigolactone signaling in Malus[Ph. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
李国防. 2018. 苹果MAX2基因介导独脚金内酯信号调控腋芽萌发的功能研究[博士论文]. 杨凌: 西北农林科技大学. | |
[18] |
Li G F, Tan M, Cheng F, Liu X J, Qi S Y, Chen H F, Zhang D, Zhao C P, Han M Y, Ma J J. 2018. Molecular role of cytokinin in bud activation and outgrowth in apple branching based on transcriptomic analysis. Plant Molecular Biology, 98:261-274.
doi: 10.1007/s11103-018-0781-2 pmid: 30311175 |
[19] |
Li G F, Tan M, Ma J J, Cheng F, Li K, Liu X J, Zhao C P, Zhang D, Xing L B, Ren X L, Han M Y, An N. 2021. Molecular mechanism of MdWUS2-MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. Journal of Experimental Botany, 72:4822-4838.
doi: 10.1093/jxb/erab163 pmid: 34113976 |
[20] | Liao Bao-peng, Wang Song-man, Du Ming-wei, Li Fang-jun, Tian Xiao-li, Li Zhao-hu. 2020. Responses and underlying mechanisms of different mainstem leaves on cotton to defoliant thidiazuron. Cotton Science, 32 (5):418-424. (in Chinese) |
廖宝鹏, 王崧嫚, 杜明伟, 李芳军, 田晓莉, 李召虎. 2020. 棉花不同部位主茎叶对脱叶剂噻苯隆的响应及机理. 棉花学报, 32 (5):418-424. | |
[21] |
Lin Q, Li J, Smith1 R D, Walker J C. 1998. Molecular cloning and chromosomal mapping of type one serine/threonine protein phosphatases in Arabidopsis thaliana. Plant Molecular Biology, 37:471-481.
pmid: 9617814 |
[22] | Liu Xiao-jie, Fan Sheng, Li Guo-fang, Tan Ming, Mo Ning, Ma Juan-juan, Zhang Dong, Han Ming-yu. 2017. Genome-wide identification of PIN gene family,cloning and expression analysis of MdPIN15 during axillary bud burst in Malus. Acta Horticulturae Sinica, 44 (11):2041-2054. (in Chinese) |
刘小杰, 樊胜, 李国防, 檀鸣, 默宁, 马娟娟, 张东, 韩明玉. 2017. 苹果全基因组PIN成员鉴定及MdPIN15的克隆和在腋芽萌发中的表达分析. 园艺学报, 44 (11):2041-2054.
doi: 10.16420/j.issn.0513-353x.2017-0219 |
|
[23] |
Lo S F, Yang S Y, Chen K T, Hsing Y L, Zeevaart J A D, Chen L J, Yu S M. 2008. A novel class of gibberellin 2-oxidases control semidwarfism,tillering,and root development in rice. The Plant Cell, 20 (10):2603-2618.
doi: 10.1105/tpc.108.060913 URL |
[24] |
Luan S. 2003. Protein phosphatase in plans. Annu Rev Plant Biol, 54:63-92.
doi: 10.1146/arplant.2003.54.issue-1 URL |
[25] | Meng Yun, Ma Shao-feng, Shao Jian-zhu, Sun Jian-she, Ma Bao-kun, Wang Hong-ning. 2012. Effects of spraying 6-BA on axillary bud growth and the dynamic changes of endogenous hormones in‘Tianhong 2’Fuji nursery apple trees. Acta Horticulturae Sinica, 39 (5):837-844. (in Chinese) |
孟云, 马少锋, 邵建柱, 孙建设, 马宝焜, 王红宁. 2012. 喷施6-BA对‘天红2号’苹果苗腋芽萌发及其内源激素的影响. 园艺学报, 39 (5):837-844. | |
[26] | Qin Qianqian. 2014. Molecular mechanism on protein phosphatase TOPP 4 regulating gibberellin signaling in Arabidopsis[Ph. D. Dissertation]. Lanzhou: Lanzhou University. (in Chinese) |
秦倩倩. 2014. 拟南芥磷酸酶TOPP4调控赤霉素信号通路的分子机理[博士论文]. 兰州: 兰州大学. | |
[27] | Qin Q Q, Wang W, Guo X L, Yue J, Huang Y, Xu X F, Li J, Hou S W. 2014. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase,TOPP4. PLoS Genetics, 10 (7):e1004464. |
[28] |
Shen Y, Khanna R, Carle C M, Quail P H. 2007. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology, 145:1043-1051.
doi: 10.1104/pp.107.105601 pmid: 17827270 |
[29] |
Silverstone A L, Ciampaglio C N, Sun T. 1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. The Plant Cell, 10 (2):155-169.
doi: 10.1105/tpc.10.2.155 URL |
[30] |
Stubbs M D, Tran H T, Atwell A J, Smith C S, Olson D, Moorhead G B. 2001. Purification and properties of Arabidopsis thaliana type one protein phosphatase(PP1). Biochimica Et Biophysica Acta, 1550:52-63.
pmid: 11738087 |
[31] |
Tan M, Li G, Liu X, Cheng F, Ma J, Zhao C, Zhang D, Han M. 2018. Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple(Malus domestica Borkh.). Mol Genet Genomics, 293 (6):1547-1563.
doi: 10.1007/s00438-018-1481-y |
[32] |
Tanaka M, Takei K, Ojima M, Akakibara H, Mori H. 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal, 45:1028-1036.
doi: 10.1111/tpj.2006.45.issue-6 URL |
[33] |
Viaene T, Delwiche C F, Rensing S A, Friml J. 2013. Origin and evolution of PIN auxin transporters in the green lineage. Trends in Plant Science, 18 (1):5-10.
doi: 10.1016/j.tplants.2012.08.009 pmid: 22981345 |
[34] |
Wickson M, Thimann K V. 2010. The antagonism of auxin and kinetin in apical dominance. Physiologia Plantarum, 11 (1):62-74.
doi: 10.1111/ppl.1958.11.issue-1 URL |
[35] | Xiong Ting-ting. 2019. Identification and preliminary function prediction of PpTOPP4 gene family members[Ph. D. Dissertation]. Zhengzhou: Agricultural University of Henan. (in Chinese) |
熊婷婷. 2019. PpTOPP4基因家族成员鉴定及功能初探[博士论文]. 郑州: 河南农业大学. | |
[36] | Yan Jia, Bai Yu-e. 2020. Review on the phosphorylation of PIN protein in auxin transport. Molecular Plant Breeding, 18 (24):8138-8146. (in Chinese) |
闫佳, 白玉娥. 2020. 生长素极性运输中PIN蛋白磷酸化修饰研究进展. 分子植物育种, 18 (24):8138-8146. | |
[37] |
Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61:49-64.
doi: 10.1146/annurev-arplant-042809-112308 pmid: 20192736 |
[38] | Zhang Xiao-hong, Zhang Hong-yan, Wu Jun, Min Dong-hong, Kang Bing, Li Jun-chao. 2002. Effect of TDZ on the induction of callus and bud proliferation and growth of Chinese toon. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 30 (5):35-39. (in Chinese) |
张小红, 张红燕, 武军, 闵东红, 康冰, 李军超. 2002. TDZ对香椿愈伤组织诱导及芽增殖生长等的影响. 西北农林科技大学学报(自然科学版), 30 (5):35-39. |
[1] | 宁源生, 李欢, 宋建飞, 于婷婷, 韩梦圆, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果NCL家族基因与根系细胞钙离子浓度变化的关系[J]. 园艺学报, 2023, 50(3): 475-484. |
[2] | 于婷婷, 李欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[3] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[4] | 韩晓蕾, 张彩霞, 刘 锴, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘苹优2号’[J]. 园艺学报, 2022, 49(S1): 1-2. |
[5] | 王 强, 丛佩华, 刘肖烽. 晚熟苹果新品种‘华优甜娃’[J]. 园艺学报, 2022, 49(S1): 3-4. |
[6] | 王 强, 丛佩华, 刘肖烽. 中熟苹果新品种‘华优宝蜜’[J]. 园艺学报, 2022, 49(S1): 5-6. |
[7] | 杨 玲, 丛佩华, 王 强, 李武兴, 康立群. 中熟鲜食苹果新品种‘华丰’[J]. 园艺学报, 2022, 49(S1): 7-8. |
[8] | 谭杉杉, 仇亮, 段奥其, 束胜, 曾晓萍, 朱为民, 贾敏, 阎君, 刘燕花, 刘慧, 熊爱生. 不同浓度次氯酸钠处理芹菜种子对其萌发和幼苗质量的影响[J]. 园艺学报, 2022, 49(9): 1907-1921. |
[9] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[10] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[11] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[12] | 夏炎, 黄松, 武雪莉, 刘一琪, 王苗苗, 宋春晖, 白团辉, 宋尚伟, 庞宏光, 焦健, 郑先波. 基于宏病毒组测序技术的苹果病毒病鉴定与分析[J]. 园艺学报, 2022, 49(7): 1415-1428. |
[13] | 刘照霞, 张鑫, 王璐, 马玉婷, 陈倩, 朱占玲, 葛顺峰, 姜远茂. 肥料穴施位点对苹果细根生长、15N吸收利用及产量品质的影响[J]. 园艺学报, 2022, 49(7): 1545-1556. |
[14] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[15] | 冯琛, 黄学旺, 李兴亮, 周佳, 李天红. 不同苹果矮化砧穗组合的抗旱性比较研究[J]. 园艺学报, 2022, 49(5): 945-957. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司