园艺学报 ›› 2021, Vol. 48 ›› Issue (8): 1517-1530.doi: 10.16420/j.issn.0513-353x.2021-2002
冯倩1,2, 董灵迪3, 尹义蕾4, 焦永刚3, 郭敬华3, 李青云2, 刘丙伟5, 于贤昌1, 孙敏涛1, 贺超兴1, 李衍素1, 王君1, 闫妍1,**()
收稿日期:
2021-02-05
修回日期:
2021-07-26
出版日期:
2021-08-25
发布日期:
2021-09-06
通讯作者:
闫妍
E-mail:yanyan101@163.com
基金资助:
FENG Qian1,2, DONG Lingdi3, YIN Yilei4, JIAO Yonggang3, GUO Jinghua3, LI Qingyun2, LIU Bingwei5, YU Xianchang1, SUN Mintao1, HE Chaoxing1, LI Yansu1, WANG Jun1, YAN Yan1,**()
Received:
2021-02-05
Revised:
2021-07-26
Online:
2021-08-25
Published:
2021-09-06
Contact:
YAN Yan
E-mail:yanyan101@163.com
摘要:
以番茄‘金鹏8号’为材料,在普通EVA(乙烯—乙酸乙烯酯共聚物膜)中添加不同转光剂形成的转光棚膜,覆盖日光温室中比较不同棚膜对番茄植株生长、叶片光合能力以及果实产量和品质的影响。采用荧光光度计、红外光谱仪和双光束紫外可见光分光光度计对EVA膜(对照)、EVA膜加转光剂VTB470的转光膜C-RBI-2和EVA加转光剂VTB450的转光膜C-RBI-3的光学特性和力学特性(厚度、拉伸强度、断裂伸长率和直角撕裂强度)进行了测定。结果表明:C-RBI-2膜将紫外光转为蓝光,发射光谱在470 nm,覆盖C-RBI-2膜能够通过提高番茄叶片内Rubisco小亚基基因(RbcS)的表达、提高叶片的组织结构紧密度(CTR)和叶片组织疏松度(SR)、增加栅栏细胞、海绵细胞和叶片的厚度进而提高净光合速率(Pn)。覆盖C-RBI-2膜能够增加根系对全氮(N)、全磷(P)和全钾(K)的吸收,提高番茄产量,增加成熟期果实八氢番茄红素合成酶1基因(PSY1)、八氢番茄红素脱氢酶基因(PDS)和ζ-胡萝卜素脱氢酶基因(ZDS)的表达量,进而增加番茄红素含量;而C-RBI-3膜将紫外光转为蓝光,发射光谱在450 nm,抑制了RbcS和RbcL基因的表达,降低了番茄叶片中Pn和Rubisco活性,降低了番茄红素含量。明确了紫外光转蓝光,发射光谱在470 nm具有提高番茄叶片光合能力和番茄红素含量的作用。由此可知,覆盖C-RBI-2转光膜可有效促进秋冬茬日光温室内番茄叶片光合能力,提高番茄品质。
中图分类号:
冯倩, 董灵迪, 尹义蕾, 焦永刚, 郭敬华, 李青云, 刘丙伟, 于贤昌, 孙敏涛, 贺超兴, 李衍素, 王君, 闫妍. 转光棚膜对番茄叶片光合能力和番茄红素含量的影响[J]. 园艺学报, 2021, 48(8): 1517-1530.
FENG Qian, DONG Lingdi, YIN Yilei, JIAO Yonggang, GUO Jinghua, LI Qingyun, LIU Bingwei, YU Xianchang, SUN Mintao, HE Chaoxing, LI Yansu, WANG Jun, YAN Yan. Improvement of Photosynthetic Capacity and Lycopene Content of Tomatoes by Covering with Light Conversion Plastic Films[J]. Acta Horticulturae Sinica, 2021, 48(8): 1517-1530.
基因 Gene | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|
RbcL | AATTGTTGGTGATGGTAGT | CCTTCTCGTAGTCTTGT |
RbcS | GCAATGGTGGAAGAGTTA | AGGAAGGTATGAGAGTGT |
Actin | TTCCGTTGCCCAGAGGTCCT | TCGCCCTTTGAAATCCACATC |
PSY1 | TGGCCCAAACGCATCATATA | CACCATCGAGCATGTCAAATG |
PDS | CTGGAGGCAAGGGATGTT | TAAAGGAGCGGGTAAAGC |
ZDS | GGAGTGCCTGTTGTTACCG | CTCAGACCTTGGGACGA |
Actin | TGTCCCTATTTACGAGGGTTATGC | AGTTAAATCACGACCAGCAAGAT |
表1 RT-PCR 引物序列
Table 1 Real-time PCR primer sequence
基因 Gene | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|
RbcL | AATTGTTGGTGATGGTAGT | CCTTCTCGTAGTCTTGT |
RbcS | GCAATGGTGGAAGAGTTA | AGGAAGGTATGAGAGTGT |
Actin | TTCCGTTGCCCAGAGGTCCT | TCGCCCTTTGAAATCCACATC |
PSY1 | TGGCCCAAACGCATCATATA | CACCATCGAGCATGTCAAATG |
PDS | CTGGAGGCAAGGGATGTT | TAAAGGAGCGGGTAAAGC |
ZDS | GGAGTGCCTGTTGTTACCG | CTCAGACCTTGGGACGA |
Actin | TGTCCCTATTTACGAGGGTTATGC | AGTTAAATCACGACCAGCAAGAT |
棚膜 Sample | 厚度值/mm Thickness | 拉伸强度/MPa Tensile strength | 断裂伸长率/% Elongation at break | 直角撕裂强度/(N · mm-1) Right angle tear resistance | |||
---|---|---|---|---|---|---|---|
纵向 Vertical | 横向 Horizontal | 纵向 Vertical | 横向 Horizontal | 纵向 Vertical | 横向 Horizontal | ||
EVA (对照 Control) | 0.12 a | 24.9 ± 0.46 b | 26.9 ± 0.40 c | 465.4 ± 8.06 c | 683.9 ± 7.41 b | 116.6 ± 5.42 a | 109.9 ± 1.55 b |
C-RBI-2 | 0.12 a | 28.7 ± 0.40 a | 30.2 ± 0.50 a | 573.9 ± 6.44 a | 702.8 ± 4.02 a | 112.4 ± 3.40 b | 113.8 ± 1.17 a |
C-RBI-3 | 0.12 a | 28.8 ± 0.36 a | 29.1 ± 0.35 b | 522.9 ± 3.45 b | 689.6 ± 7.50 ab | 110.4 ± 3.58 b | 106.3 ± 1.16 c |
表2 试样棚膜机械性能
Table 2 Mechanical properties of sample films
棚膜 Sample | 厚度值/mm Thickness | 拉伸强度/MPa Tensile strength | 断裂伸长率/% Elongation at break | 直角撕裂强度/(N · mm-1) Right angle tear resistance | |||
---|---|---|---|---|---|---|---|
纵向 Vertical | 横向 Horizontal | 纵向 Vertical | 横向 Horizontal | 纵向 Vertical | 横向 Horizontal | ||
EVA (对照 Control) | 0.12 a | 24.9 ± 0.46 b | 26.9 ± 0.40 c | 465.4 ± 8.06 c | 683.9 ± 7.41 b | 116.6 ± 5.42 a | 109.9 ± 1.55 b |
C-RBI-2 | 0.12 a | 28.7 ± 0.40 a | 30.2 ± 0.50 a | 573.9 ± 6.44 a | 702.8 ± 4.02 a | 112.4 ± 3.40 b | 113.8 ± 1.17 a |
C-RBI-3 | 0.12 a | 28.8 ± 0.36 a | 29.1 ± 0.35 b | 522.9 ± 3.45 b | 689.6 ± 7.50 ab | 110.4 ± 3.58 b | 106.3 ± 1.16 c |
图1 转光膜 C-RBI-2(A)和C-RBI-3(B)的发射光谱 λex和λem分别是激发波长和发射波长。
Fig. 1 Emission spectra of the C-RBI-2(A)and C-RBI-3(B) λex and λem are excitation wavelength and emission wavelength,respectively.
图2 与对照(EVA)相比转光棚膜C-RBI-2和C-RBI-2对番茄叶片净光合速率(Pn)和Rubisco活性的影响 不同小写字母表示处理间差异显著(n = 3,P < 0.05)。
Fig. 2 Effects of conversion light plastic films on the net photosynthetic rate and the activity of Rubisco in tomato leaves Different small letters mean significant difference among treatments at 0.05 level(n = 3,P < 0.05).
图3 转光棚膜对番茄叶片RbcL和RbcS基因表达的影响 不同小写字母表示处理间差异显著(n = 3,P < 0.05)。
Fig. 3 Effects of conversion light plastic films on the expression of RbcL and RbcS genes of tomato leaves Different small letters mean significant difference among treatments at 0.05 level(n = 3,P < 0.05).
图4 转光棚膜对成熟番茄植株叶片解剖结构的影响 SPT:海绵组织;PT:栅栏组织。
Fig. 4 Effects of conversion light plastic films on the anatomical structure of mature tomato plant leaves SPT:Spongy parenchyma;PT:Palisade parenchyma.
处理 Treatment | 上表皮 Upper epidermal | 下表皮 Lower epidermal | 栅栏细胞 Palisade parenchyma cells | 海绵细胞 Spongy parenchyma cells |
---|---|---|---|---|
EVA(对照 Control) | 15.174 ± 2.536 b | 8.702 ± 1.654 b | 9.280 ± 1.732 ab | 7.543 ± 1.544 b |
C-RBI-2 | 19.963 ± 2.821 a | 12.989 ± 2.797 a | 9.710 ± 1.934 a | 8.461 ± 1.354 a |
C-RBI-3 | 14.165 ± 2.496 b | 10.823 ± 2.407 b | 8.772 ± 1.303 b | 6.890 ± 1.092 c |
处理 Treatment | 叶片厚度 Thickness of leaves | CTR | SR | |
EVA(对照 Control) | 154.346 ± 12.276 b | 5.023 ± 0.427 c | 3.943 ± 0.368 c | |
C-RBI-2 | 165.876 ± 13.727 a | 6.002 ± 0.757 a | 4.880 ± 0.671 b | |
C-RBI-3 | 173.719 ± 12.176 b | 5.800 ± 0.719 b | 5.073 ± 0.400 a |
表3 转光棚膜对番茄叶片组织厚度的影响
Table 3 Effects of conversion light plastic films on the structure of mature tomato plant leaves
处理 Treatment | 上表皮 Upper epidermal | 下表皮 Lower epidermal | 栅栏细胞 Palisade parenchyma cells | 海绵细胞 Spongy parenchyma cells |
---|---|---|---|---|
EVA(对照 Control) | 15.174 ± 2.536 b | 8.702 ± 1.654 b | 9.280 ± 1.732 ab | 7.543 ± 1.544 b |
C-RBI-2 | 19.963 ± 2.821 a | 12.989 ± 2.797 a | 9.710 ± 1.934 a | 8.461 ± 1.354 a |
C-RBI-3 | 14.165 ± 2.496 b | 10.823 ± 2.407 b | 8.772 ± 1.303 b | 6.890 ± 1.092 c |
处理 Treatment | 叶片厚度 Thickness of leaves | CTR | SR | |
EVA(对照 Control) | 154.346 ± 12.276 b | 5.023 ± 0.427 c | 3.943 ± 0.368 c | |
C-RBI-2 | 165.876 ± 13.727 a | 6.002 ± 0.757 a | 4.880 ± 0.671 b | |
C-RBI-3 | 173.719 ± 12.176 b | 5.800 ± 0.719 b | 5.073 ± 0.400 a |
图5 转光棚膜对番茄叶片细胞形态和超微结构的影响 Ch:叶绿体;S:淀粉粒;GL:基质片层。
Fig. 5 Effect of conversion light plastic films on cell morphology and ultrastructure of tomato leaf Ch:Chlorophyll;S:Starch granule;GL:Grana lamella.
处理 Treatment | 总氮含量 Total N content | 总磷含量 Total P content | ||||
---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶Leaf | |
EVA(对照 Control) | 1.982 ± 0.046 b | 2.099 ± 0.092 ab | 3.153 ± 0.030 b | 0.321 ± 0.049 b | 0.648 ± 0.029 b | 0.627 ± 0.026 ab |
C-RBI-2 | 2.141 ± 0.005 a | 1.919 ± 0.074 b | 3.400 ± 0.062 a | 0.423 ± 0.028 a | 0.695 ± 0.022 a | 0.697 ± 0.056 a |
C-RBI-3 | 1.864 ± 0.025 c | 2.319 ± 0.093 a | 3.139 ± 0.052 b | 0.297 ± 0.081 b | 0.729 ± 0.022 a | 0.598 ± 0.016 a |
处理 Treatment | 总钾含量 Total K content | |||||
根 Root | 茎 Stem | 叶Leaf | ||||
EVA(对照 Control) | 3.103 ± 0.289 b | 4.577 ± 0.323 a | 2.716 ± 0.028 b | |||
C-RBI-2 | 4.309 ± 0.577 a | 4.429 ± 0.220 a | 2.922 ± 0.090 a | |||
C-RBI-3 | 2.831 ± 0.314 b | 4.593 ± 0.507 a | 2.411 ± 0.031 c |
表4 转光棚膜对番茄植株根茎叶全氮磷钾含量的影响
Table 4 Effects of conversion light plastic films on the contents of total nitrogen,total phosphorus and total potassium in leaves of tomato seedlings
处理 Treatment | 总氮含量 Total N content | 总磷含量 Total P content | ||||
---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶Leaf | |
EVA(对照 Control) | 1.982 ± 0.046 b | 2.099 ± 0.092 ab | 3.153 ± 0.030 b | 0.321 ± 0.049 b | 0.648 ± 0.029 b | 0.627 ± 0.026 ab |
C-RBI-2 | 2.141 ± 0.005 a | 1.919 ± 0.074 b | 3.400 ± 0.062 a | 0.423 ± 0.028 a | 0.695 ± 0.022 a | 0.697 ± 0.056 a |
C-RBI-3 | 1.864 ± 0.025 c | 2.319 ± 0.093 a | 3.139 ± 0.052 b | 0.297 ± 0.081 b | 0.729 ± 0.022 a | 0.598 ± 0.016 a |
处理 Treatment | 总钾含量 Total K content | |||||
根 Root | 茎 Stem | 叶Leaf | ||||
EVA(对照 Control) | 3.103 ± 0.289 b | 4.577 ± 0.323 a | 2.716 ± 0.028 b | |||
C-RBI-2 | 4.309 ± 0.577 a | 4.429 ± 0.220 a | 2.922 ± 0.090 a | |||
C-RBI-3 | 2.831 ± 0.314 b | 4.593 ± 0.507 a | 2.411 ± 0.031 c |
图6 转光棚膜覆盖下的番茄果实及成熟期番茄红素含量 不同小写字母表示处理间差异显著(n = 3,P < 0.05)。
Fig. 6 Tomato fruit at different maturity stages under conversion light plastic films Different small letters meant significant difference among treatments at 0.05 level(n = 3,P < 0.05).
图7 转光棚膜对番茄不同成熟期PDS、PSY1和ZDS基因表达的影响 同一成熟期不同小写字母表示处理间差异显著(n = 3,P < 0.05)。
Fig. 7 Effects of conversion light plastic films on the gene expression of PDS,PSY1 and ZDS at different maturity stages of tomatoes Different small letters at same maturity stage mean significant difference among treatments at 0.05 level(n = 3,P < 0.05).
处理 Treatments | 产量/(t • hm-2) Yield | 维生素C/(mg • kg-1) Vitamin C | 番茄红素/(μg • g-1) Lycopene |
---|---|---|---|
EVA(对照 Control) | 84.040 ± 1.647 ab | 147.500 ± 0.200 a | 2.505 ± 0.005 b |
C-RBI-2 | 87.049 ± 1.024 a | 147.400 ±0.300 a | 3.347 ± 0.021 a |
C-RBI-3 | 80.725 ± 1.522 b | 138.850 ±0.350 b | 2.274 ± 0.015 c |
表5 转光棚膜对番茄产量和果实品质的影响
Table 5 Effect of conversion light plastic films on tomato yield and fruit quality
处理 Treatments | 产量/(t • hm-2) Yield | 维生素C/(mg • kg-1) Vitamin C | 番茄红素/(μg • g-1) Lycopene |
---|---|---|---|
EVA(对照 Control) | 84.040 ± 1.647 ab | 147.500 ± 0.200 a | 2.505 ± 0.005 b |
C-RBI-2 | 87.049 ± 1.024 a | 147.400 ±0.300 a | 3.347 ± 0.021 a |
C-RBI-3 | 80.725 ± 1.522 b | 138.850 ±0.350 b | 2.274 ± 0.015 c |
[1] | Anonymous. 1980. Methods of analysis of association of official analytical chemists. Washington D.C.,U.S.A. |
[2] | Atakl S B, Ahin S. 2019. Development of lettuce plant in spring and autumn period,effects of led lightening on the quantity of mineral substrates and leaf nitrate. Asian Journal of Soil Science and Plant Nutrition, 5 (3):1-9. |
[3] | Crafts-Brandner S B, Salvucci M E. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America, 97 (24):13430-13435. |
[4] | Dong Fei, Wang Chuanzeng, Sun Xiudong, Zhang Qing, Dong Yuhui, Wang Lixia, Liu Shiqi. 2019. Volatile compounds in tomato fruits under different light qualities revealed by proteomic analyses. Acta Horticulturae Sinica, 46 (2):280-294. (in Chinese) |
董飞, 王传增, 孙秀东, 张庆, 董玉惠, 王立霞, 刘世琦. 2019. 基于蛋白质组学研究光质对番茄果实挥发性物质的影响机理. 园艺学报, 46 (2):280-294. | |
[5] |
Fraser P D, Kiano J W, Truesdale M R, Schuch W, Bramley P M. 1999. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Molecular Biology, 40 (4):687-698.
pmid: 10480392 |
[6] |
Fu Z Z, Shang H Q, Jiang H, Gao J, Dong X Y, Wang H J, Li Y M, Wang L M, Zhang J, Shu Q Y, Chao Y C, Xu M L, Wang R, Wang L S, Zhang H C. 2020. Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in Petunia petals. Horticultural Plant Journal, 6 (6):428-438.
doi: 10.1016/j.hpj.2020.11.006 URL |
[7] | Gul A, Sen F, Bonakdarzedeh M. 2015. Does greenhouse covering material affect fruit quality of hydroponic tomatoes? Acta horticulturae, 1107:237-244. |
[8] |
Heo J W, Lee C W, Paek K Y. 2006. Influence of mixed LED radiation on the growth of annual plants. Journal of Plant Biology, 49 (4):286-290.
doi: 10.1007/BF03031157 URL |
[9] |
Ilić Z S, Fallik E. 2017. Light quality manipulation improves vegetable quality at harvest and postharvest:a review. Environmental and Experimental Botany, 139:79-90.
doi: 10.1016/j.envexpbot.2017.04.006 URL |
[10] |
Ilić Z S, Milenković L, Stanojević L, Cvetković D, Fallik E. 2012. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Scientia Horticulturae, 139 (2):90-95.
doi: 10.1016/j.scienta.2012.03.009 URL |
[11] |
Jarquín-Enríquez L, Mercado-Silva E M, Maldonado J L, Lopez-Baltazar J. 2013. Lycopene content and color index of tomatoes are affected by the greenhouse cover. Scientia Horticulturae, 155:43-48.
doi: 10.1016/j.scienta.2013.03.004 URL |
[12] |
Jiao Y, Lau O S, Deng X W. 2007. Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 8 (3):217-230.
doi: 10.1038/nrg2049 URL |
[13] |
Kittas C, Tchamitchian M, Katsoulas N, Karaiskou P, Papaioannou C. 2006. Effect of two UV-absorbing greenhouse-covering films on growth and yield of an eggplant soilless crop. Scientia Horticulturae, 110 (1):30-37.
doi: 10.1016/j.scienta.2006.06.018 URL |
[14] |
Kong L, Wen Y, Jiao X, Liu X, Xu Z. 2021. Interactive regulation of light quality and temperature on cherry tomato growth and photosynthesis. Environmental and Experimental Botany, 182 (5):104326.
doi: 10.1016/j.envexpbot.2020.104326 URL |
[15] | Li Shao-shan, Pan Rui-chi. 1994. Effect of blue light on the development of chloroplasts in rice seedlings. Chinese Journal of Rice Science, 8 (3):185-188. (in Chinese) |
李韶山, 潘瑞炽. 1994. 蓝光对水稻幼苗叶绿体发育的影响. 中国水稻科学, 8 (3):185-188. | |
[16] | Li Xiang, Sang Qin-qin, Shu Sheng, Sun Jin, Guo Shi-rong. 2016. Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light. Acta Horticulturae Sinica, 43 (10):2012-2020. (in Chinese) |
李翔, 桑勤勤, 束胜, 孙锦, 郭世荣. 2016. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响. 园艺学报, 43 (10):2012-2020. | |
[17] | Li Yan, Wang Li-wei, Wen Lian-lian, Wei Min, Shi Qing-hua, Yang Feng-juan, Wang Xiu-feng. 2017. Effects of red and blue light qualities on main fruit quality of tomato during color-turning period. Acta Horticulturae Sinica, 44 (12): 2372-2382. (in Chinese) |
李岩, 王丽伟, 文莲莲, 魏珉, 史庆华, 杨凤娟, 王秀峰. 2017. 红蓝光质对转色期间番茄果实主要品质的影响. 园艺学报, 44 (12):2372-2382. | |
[18] | Liu Shuang-qing, Yi Tu-yong, Ma Jun, Gao Bi-da. 2011. Effect of light conversion shed film on growth of lettuce and occurrence of downy mildew. Hunan Agricultural Sciences,(7):73-75. (in Chinese) |
刘双清, 易图永, 马骏, 高必达. 2011. 转光农膜对莴苣生长和霜霉病发生的影响. 湖南农业科学,(7):73-75. | |
[19] |
Liu X, Guo S, Xu Z, Jiao X, Takafumi T. 2011. Regulation of chloroplast ultrastructure,cross-section anatomy of leaves and morphology of stomata of cherry tomato by different light irradiations of LEDs. Hortscience, 46:217-221.
doi: 10.21273/HORTSCI.46.2.217 URL |
[20] | Lu Fu-shun. 2013. Effect of Drought Stress on physiological indexes and structure in leaves of potato(Solanum tuberosum L.)[M. D. Dissertation]. Harbin:Northeast Agricultural University. (in Chinese) |
卢福顺. 2013. 水分胁迫对马铃薯生理指标和叶片结构的影响[硕士论文]. 哈尔滨:东北农业大学. | |
[21] | Luo Gui-lin, Zhang Lin, Xiao Zun-hong. 2011. Influence on growth and nutritional quality of pakchoi of blue light-conversion agent. Hubei Agricultural Science, 50 (4):749-750. (in Chinese) |
罗桂林, 张林, 肖尊宏. 2011. 蓝光转光剂对小白菜产量和营养品质的影响. 湖北农业科学, 50 (4):749-750. | |
[22] |
Macedo A F, Leal-Costa M V, Tavares E S, Lage C L S, Esquibel M A. 2011. The effect of light quality on leaf production and development of in vitro-cultured plants of Alternanthera brasiliana Kuntze. Environmental and Experimental Botany, 70 (1):43-50.
doi: 10.1016/j.envexpbot.2010.05.012 URL |
[23] | Miao Yanxiu, Chen Qingyun, Qu Mei, Gao Lihong, Hou Leiping, Li Bin. 2019. Effects of red and blue lights on growth,photosynthetic characteristics and yield of cucumber plants. Acta Horticulturae Sinica, 46 (7):1388-1398. (in Chinese) |
苗妍秀, 陈青云, 曲梅, 高丽红, 侯雷平, 李斌. 2019. 黄瓜红蓝光质育苗对其定植后生长、光合特性以及产量的影响. 园艺学报, 46 (7):1388-1398. | |
[24] |
Murakami K, Fukuoka N, Noto S. 2017. Improvement of greenhouse microenvironment and sweetness of melon(Cucumis melo L.)fruits by greenhouse shading with a new kind of near-infrared ray-cutting net in mid-summer. Scientia Horticulturae, 218:1-7.
doi: 10.1016/j.scienta.2017.02.011 URL |
[25] | Ning Yu, Ai Xi-zhen, Li Qing-ming, Bi Huan-gai. 2019. Effects of light quality on carbon-nitrogen metabolism,growth,and quality of Chinese chives. Chinese Journal of Applied Ecology, 30 (1):254-261. (in Chinese) |
宁宇, 艾希珍, 李清明, 毕焕改. 2019. 光质对韭菜碳氮代谢、生长和品质的影响. 应用生态学报, 30 (1):254-261. | |
[26] |
Papaioannou C, Katsoulas N, Maletsika P, Siomos A, Kittas C. 2012. Effects of a UV-absorbing greenhouse covering film on tomato yield and quality. Spanish Journal of Agricultural Research, 10 (4):959-966.
doi: 10.5424/sjar/2012104-2899 URL |
[27] | Pék Z, Szuvandzsiev P, Nemenyi A, Helyes L, Lugasi A. 2011. The effect of natural light on changes in antioxidant content and color parameters of vine-ripened tomato(Solanum lycopersicum L.)fruits. Hortscience A Publication of the American Society for Horticultural Science, 46 (4):583-585. |
[28] |
Sb A, Krekling T, Appelgren M. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult, 41 (2):177-185.
doi: 10.1007/BF00051588 URL |
[29] | Tang Hao, Liu Xiao-tang, Chen Zhen-dong, Tang Jing-chi, Li Jian-long. 2014. Comprehensive effect of greenhouse tea garden covered with light conversion film during low temperature period in winter and spring. Guangdong Agricultural Science, 41 (10):18-22. (in Chinese) |
唐颢, 刘晓瑭, 陈震东, 唐劲驰, 黎健龙. 2014. 冬春季低温期大棚茶园覆盖转光膜的综合效应. 广东农业科学, 41 (10):18-22. | |
[30] |
Terashima I, Fujita T, Inoue T, Chow W S, Oguchi R. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light:revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology, 50 (4):684-697.
doi: 10.1093/pcp/pcp034 pmid: 19246458 |
[31] |
Wan Y, Wu Y, Zhang M, Hong A, Liu Y. 2020. Effects of photoperiod extension via red-blue light-emitting diodes and high-pressure sodium lamps on the growth and photosynthetic characteristics in Paeonia lactiflora. Acta Physiologiae Plantarum, 42:174.
doi: 10.1007/s11738-020-03157-2 URL |
[32] | Wang Jiaqi, He Yingyu, Wei Xiaotong, Li Yongqiang, Yang Li, Chen Wenrong, Liao Fanglei, Guo Weidong. 2020. Effects of LED complementary light combination on the growth and development of blueberry in greenhouse. Acta Horticulturae Sinica, 47 (6):1183-1193 |
王佳淇, 何莹钰, 韦晓桐, 李永强, 杨莉, 陈文荣, 廖芳蕾, 郭卫东. 2020. LED补光组合对大棚越橘生长发育的影响. 园艺学报, 47 (6):1183-1193. | |
[33] |
Xie B, Wei J, Zhang Y, Song S, Wei S, Sun G, Hao Y, Liu H. 2019. Supplemental blue and red light promote lycopene synthesis in tomato fruits. Journal of Integrative Agriculture, 18 (3):590-598.
doi: 10.1016/S2095-3119(18)62062-3 URL |
[34] | Yu Xian-chang, Lian Shi-xun, Li Yan-su, He Chao-xing, Sun Tian-zhi, Wang Xiao-bin, Liu Hong, Wang Hui-jun. 2018. Mechanical and optical properties of broadband UV-to-red conversion plastic films and improving tomato yield and quality. Transactions of the Chinese Society of Agricultural Engineering, 34 (13):255-262. (in Chinese) |
闫妍, 于贤昌, 廉世勋, 李衍素, 贺超兴, 孙天智, 王晓斌, 刘宏, 王惠军. 2018. 宽谱带转光棚膜力学与光学特性及其提高番茄产量和品质. 农业工程学报, 34 (13):255-262. | |
[35] | Yang Jun-wei, Bao En-cai, Zhang Ke-jia, Pan Tong-hua, Cao Yan-fei, Zhang Jing, Zou Zhi-rong. 2018. Effects of different ratios of red and blue light anatomic structure and photosynthetic characteristics of tomato leaf. Acta Agriculturae Boreali-occidentalis Sinica, 27 (5):716-726. (in Chinese) |
杨俊伟, 鲍恩财, 张珂嘉, 潘铜华, 曹晏飞, 张静, 邹志荣. 2018. 不同红蓝光比例对番茄幼苗叶片结构及光合特性的影响. 西北农业学报, 27 (5):716-726. | |
[36] | Zhang De-zhi, Huang Deng-tao, Zhou Qing-ming. 2012. Effects on growth of tobacco seedlings with different color film. Anhui Agricultural Science Bulletin, (21):108-111,184. (in Chinese) |
张得智, 黄登涛, 周清明. 2012. 不用颜色棚膜覆盖对烟苗生长的影响. 安徽农学通报, (21):108-111,184. | |
[37] | Zhang Han, Zhong Jun, Xiong Xing-yao. 2013. Effects of different light qualities on growth and physiological characteristics of Houttuynia cordata thunb seedlings. Hunan Agricultural Sciences,(3):23-26. (in Chinese) |
张寒, 钟军, 熊兴耀. 2013. 不同光质对鱼腥草幼苗生长及生理特性的影响. 湖南农业科学,(3):23-26. | |
[38] | Zhang Huan, Xu Zhi-gang, Cui Jin, Gu Ai-su, Guo Yin-sheng. 2010. Effects of light quality on the growth and chloroplast ultrastructure of tomato and lettuce seedlings. Chinese Journal of Applied Ecology, 21 (4):959-965. (in Chinese) |
张欢, 徐志刚, 崔瑾, 谷艾素, 郭银生. 2010. 光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响. 应用生态学报, 21 (4):959-965. | |
[39] | Zhang N, Kallis R P, Ewy R G, Portis A R. 2002. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proceedings of the National Academy of Sciences of the United States of America, 99 (5):3330-3334. |
[40] |
ŽIvanoviĆ B, VidoviĆ M, MiliĆ KomiĆ S, JovanoviĆ L, KolarŽ P, Morina F, VeljoviĆ JovanoviĆ S. 2017. Contents of phenolics and carotenoids in tomato grown underpolytunnels with different UV-transmission rates. Turkish Journal of Agriculture and Forestry, 41:113-120.
doi: 10.3906/tar-1612-56 URL |
[1] | 史洪丽, 李腊, 郭翠梅, 余婷婷, 简伟, 杨星勇. 番茄灰霉病生防菌株TL1的分离、鉴定及其生防能力分析[J]. 园艺学报, 2023, 50(1): 79-90. |
[2] | 忽靖宇, 阙开娟, 缪田丽, 吴少政, 王田田, 张磊, 董鲜, 季鹏章, 董家红. 侵染鸢尾的番茄斑萎病毒鉴定[J]. 园艺学报, 2023, 50(1): 170-176. |
[3] | 黄 鹂, 陈财志, 余小林, 姚祥坦, 曹家树, . 早中熟普通白菜新品种‘浙大青’[J]. 园艺学报, 2022, 49(S2): 93-94. |
[4] | 郑积荣, 王同林, 胡松申. 高品质番茄新品种‘杭杂603’[J]. 园艺学报, 2022, 49(S2): 103-104. |
[5] | 郑积荣, 王同林. 番茄新品种‘杭杂601’[J]. 园艺学报, 2022, 49(S2): 105-106. |
[6] | 郑积荣, 王同林. 樱桃番茄新品种‘杭杂503’[J]. 园艺学报, 2022, 49(S2): 107-108. |
[7] | 黄婷婷, 刘淑芹, 张永志, 李 平, 张志焕, 宋立波. 樱桃番茄新品种‘樱莎红4号’[J]. 园艺学报, 2022, 49(S2): 109-110. |
[8] | 张前荣, 李大忠, 裘波音, 林 珲, 马慧斐, 叶新如, 刘建汀, 朱海生, 温庆放. 设施番茄新品种‘闽农科2号’[J]. 园艺学报, 2022, 49(S1): 73-74. |
[9] | 韩帅, 吴婕, 张河庆, 席亚东. 四川莴笋上番茄斑萎病毒的电镜观察与小RNA测序鉴定[J]. 园艺学报, 2022, 49(9): 2007-2016. |
[10] | 薛维文, 周显芳, 张昭其, 方方. 果蔬采后木质素积累及其调控对品质的影响研究进展[J]. 园艺学报, 2022, 49(9): 2023-2036. |
[11] | 陈礼浪, 杨天章, 蔡儒平, 林小漫, 邓南康, 车海彦, 林雅婷, 孔祥义. 海南西番莲主要病毒种类的分子检测与鉴定[J]. 园艺学报, 2022, 49(8): 1785-1794. |
[12] | 刘照霞, 张鑫, 王璐, 马玉婷, 陈倩, 朱占玲, 葛顺峰, 姜远茂. 肥料穴施位点对苹果细根生长、15N吸收利用及产量品质的影响[J]. 园艺学报, 2022, 49(7): 1545-1556. |
[13] | 路涛, 余宏军, 李强, 蒋卫杰. 叶果量调控对番茄生长发育、果实品质和产量的影响[J]. 园艺学报, 2022, 49(6): 1261-1274. |
[14] | 孟宪敏, 崔青青, 段韫丹, 庄团结, 濮丹, 董春娟, 杨文才, 尚庆茂. 烯效唑对番茄幼苗嫁接愈合的促进作用及其机理研究[J]. 园艺学报, 2022, 49(6): 1275-1289. |
[15] | 刘尚佳, 吕尧, 曹逼力, 陈子敬, 高松, 徐坤. 高温渍涝胁迫对姜叶片光合作用和氮代谢的影响[J]. 园艺学报, 2022, 49(5): 1073-1080. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司