https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2021, Vol. 48 ›› Issue (8): 1565-1578.doi: 10.16420/j.issn.0513-353x.2020-0660

• 研究论文 • 上一篇    下一篇

百子莲脱水素基因ApSK3对逆境与激素信号的应答模式与调控机制

杨天宸, 陈晓童, 吕可, 张荻()   

  1. 上海交通大学设计学院风景园林系,上海 200240
  • 收稿日期:2021-02-09 修回日期:2021-06-03 出版日期:2021-08-25 发布日期:2021-09-06
  • 通讯作者: 张荻 E-mail:zhangdi2013@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31670693);国家自然科学基金项目(31870686);上海市自然科学基金项目(21ZR1434200)

Expression Pattern and Regulation Mechanism of ApSK3 Dehydrin (Agapanthus praecox)Response to Abiotic Stress and Hormone Signals

YANG Tianchen, CHEN Xiaotong, LÜ Ke, ZHANG Di()   

  1. School of Design,Shanghai Jiao Tong University,Shanghai 200240,China
  • Received:2021-02-09 Revised:2021-06-03 Online:2021-08-25 Published:2021-09-06
  • Contact: ZHANG Di E-mail:zhangdi2013@sjtu.edu.cn

摘要:

克隆了百子莲(Agapanthus praecox)脱水素基因ApSK3上游2 195 bp的启动子序列,对百子莲不同组织和多种非生物胁迫与ABA处理的样品进行基因定量分析,构建多个ApSK3不同长度缺失的启动子片段与GUS基因融合的表达载体并转化拟南芥,以揭示ApSK3基因对不同逆境与激素信号的应答模式及顺式作用元件的调控功能。结果表明:ApSK3启动子序列包含多个与植物逆境、激素应答及生长发育相关的顺式作用元件,且ApSK3的表达具有组织特异性,果实中表达量最高,叶、根次之,花中最低;ApSK3对ABA信号与盐胁迫最敏感,其次为干旱、高渗和低温胁迫,对高温胁迫响应不明显。ApSK3-P::GUS 融合表达载体转化拟南芥,ApSK3启动子在拟南芥的整个生长发育过程中均具有较强的表达活性,幼苗根部的表达活性强于叶片,且随着果实的发育成熟启动子的活性明显增强。ApSK3不同长度缺失的启动子片段分析结果表明-2 175 ~-950 bp片段对启动子的活性起到重要的调控作用;多个顺式作用元件响应干旱胁迫;ApSK3-P通过两个ABRE元件共同响应ABA信号;-526 ~-533 bp的 ERE元件参与响应乙烯信号;-561 ~-567 bp的P-box元件响应了赤霉素信号,-2 175 ~-1 167 bp区域可以增强对GA的响应。研究结果证明ApSK3启动子可积极响应干旱、渗透、盐、低温、ABA、GA和乙烯信号;启动子上存在多个顺式作用元件响应干旱胁迫,ApSK3-P通过两个ABRE、ERE与P-box元件分别响应ABA、乙烯与赤霉素信号。

关键词: 百子莲, 脱水素, 启动子, 非生物胁迫, 顺式作用元件

Abstract:

This study cloned the dehydrin ApSK3Agapanthus praecox)2 195 bp promoter sequence of ApSK3-P using real-time PCR technology to analyze tissue specificity of ApSK3 gene,and gene expression pattern response to various abiotic stress and ABA signal. Expression vectors with five promoter deletion fragments of ApSK3-P were constructed and transformed into Arabidopsis thaliana,in order to reveal the response pattern of ApSK3 gene to different stress and hormone signals and the regulatory function of cis-acting elements. Bio-informatic analysis showed that the ApSK3-P contained many typical cis-acting elements related to plant stress,hormone response and plant development. ApSK3 gene was tissue-specific expression,the highest expression was found in fruits,followed by leaves and roots,and the lowest value was shown in flowers. ApSK3 is more sensitive to ABA and salt signals,followed by drought and low temperature,and no obvious response to high temperature. ApSK3-P::GUS were transformed into A. thaliana and it showed that ApSK3-P presented strong activity in seedlings of A. thaliana,GUS activity of roots was stronger than that of leaves,and the activity gradually increased in the developing fruits. Different promoter deletion fragments of ApSK3-P test results showed that-2 175 to-950 bp fragment played an important role in the regulation of promoter activity,multiple cis-acting elements responsed to drought stress,two tandem ABRE elements participated in response to ABA signals,and ApSK3-P can be activated by ERE(-526 to-533 bp)and P-box(-561 to-567 bp)under ethylene and gibberellin signal,respectively. These results indicated that ApSK3-P can be activated by drought,cold,salt,ABA,GA and ethylene,and ABRE,ERE and P-box elements of ApSK3-P play important roles in response to abiotic stress and hormone signals.

Key words: Agapanthus praecox, dehydrin, promoter, abiotic stress, cis-acting element

中图分类号: