园艺学报 ›› 2021, Vol. 48 ›› Issue (1): 1-14.doi: 10.16420/j.issn.0513-353x.2020-0276
• 研究论文 • 下一篇
李欣欣1, 侯鸿敏1, 徐吉花2, 孙晓红2, 张玉刚1,**()
收稿日期:
2020-05-23
修回日期:
2020-07-02
出版日期:
2021-01-25
发布日期:
2021-01-29
通讯作者:
张玉刚
E-mail:ygzhang@qau.edu.cn
基金资助:
LI Xinxin1, HOU Hongmin1, XU Jihua2, SUN Xiaohong2, ZHANG Yugang1,**()
Received:
2020-05-23
Revised:
2020-07-02
Online:
2021-01-25
Published:
2021-01-29
Contact:
ZHANG Yugang
E-mail:ygzhang@qau.edu.cn
摘要:
在苹果中鉴定了13个Major Latex Protein(MLP)家族基因MdMLP。序列比对及构建蛋白同源模型发现,MdMLP蛋白含有Bet_v_1典型的Gly-rich loop区域结构,且为MLP家族特有的GxxxxxG结构。经多物种MLP系统发育及共线性比较分析,MdMLP与其他蔷薇科物种MLP具有相似基因结构和蛋白质保守结构域。qRT-PCR分析表明,MdMLP 在‘新疆1号’苹果14个器官组织中均有不同程度的表达,对ABA、NaCl、PEG、低温(4 ℃)和高温(40 ℃)有一定响应,且同一亚族基因表达情况呈现相似趋势。String构建蛋白互作网络发现,MdMLP可能通过与PRSP、SNRK1/2、bHLH等应激、ABA相关转录蛋白互作,参与苹果对非生物胁迫的防御。
中图分类号:
李欣欣, 侯鸿敏, 徐吉花, 孙晓红, 张玉刚. 苹果MLP家族基因鉴定及非生物胁迫响应分析[J]. 园艺学报, 2021, 48(1): 1-14.
LI Xinxin, HOU Hongmin, XU Jihua, SUN Xiaohong, ZHANG Yugang. Genome-wide Identification and Abiotic Stress Response Analysis of MLP Family Genes in Apple[J]. Acta Horticulturae Sinica, 2021, 48(1): 1-14.
基因名称 Gene name | 正向引物序列(5′-3′) Forward primer sequence | 反向引物序列(5′-3′) Revers primer sequences |
---|---|---|
MdMLP1 | TAGCGATTGTGGTAAGCTGG | GGAGATGTGGTGTGGTTTGT |
MdMLP2 | ACGAGAAGTGGGAGGGTAAA | GGAGATGTGGTGTGGTTTGT |
MdMLP3 | TAGCGATTGTGGTAAGCTGG | GGAGATGTGGTGTGGTTTGT |
MdMLP4 | GCACGGGAACACAAATGATG | AGACCTCAACTGCAAACTGG |
MdMLP5/13 | GGCGGTTGCTTATAAGGTGA | AACCTGTTCGTGTGCTTTCT |
MdMLP6 | CCTTCAGGTCATCCAAGGTG | TTTGGTGTGACTTGAACCGT |
MdMLP7 | CGAAGGTGATTGGGAGACTG | CGCTTCAACCGTCTCCTTTA |
MdMLP810 | TTCTAGCAAGGTGGAGACGA | CCACAAGAAGACACAACCCA |
MdMLP9 | GGAAACACACGGCTCTGTTA | CCGACATGATCCCGATTGTT |
MdMLP11 | CAAGGCTGCAACTCTGAAAG | TATTCGATCCACAGGTTGGC |
MdMLP12 | CCCACCTCATCCCAAACATT | GCAATGCAGGTGCTTTCATC |
MdActin | ATTCAAGTATGCCTGGGTGC | CAGTCAGCCTGTGATGTTCC |
表1 荧光定量PCR引物
Table 1 Primers for qRT-PCR
基因名称 Gene name | 正向引物序列(5′-3′) Forward primer sequence | 反向引物序列(5′-3′) Revers primer sequences |
---|---|---|
MdMLP1 | TAGCGATTGTGGTAAGCTGG | GGAGATGTGGTGTGGTTTGT |
MdMLP2 | ACGAGAAGTGGGAGGGTAAA | GGAGATGTGGTGTGGTTTGT |
MdMLP3 | TAGCGATTGTGGTAAGCTGG | GGAGATGTGGTGTGGTTTGT |
MdMLP4 | GCACGGGAACACAAATGATG | AGACCTCAACTGCAAACTGG |
MdMLP5/13 | GGCGGTTGCTTATAAGGTGA | AACCTGTTCGTGTGCTTTCT |
MdMLP6 | CCTTCAGGTCATCCAAGGTG | TTTGGTGTGACTTGAACCGT |
MdMLP7 | CGAAGGTGATTGGGAGACTG | CGCTTCAACCGTCTCCTTTA |
MdMLP810 | TTCTAGCAAGGTGGAGACGA | CCACAAGAAGACACAACCCA |
MdMLP9 | GGAAACACACGGCTCTGTTA | CCGACATGATCCCGATTGTT |
MdMLP11 | CAAGGCTGCAACTCTGAAAG | TATTCGATCCACAGGTTGGC |
MdMLP12 | CCCACCTCATCCCAAACATT | GCAATGCAGGTGCTTTCATC |
MdActin | ATTCAAGTATGCCTGGGTGC | CAGTCAGCCTGTGATGTTCC |
基因名称 Gene name | 基因组登录号 Gene accession No.(GDR) | 编码 区/bp CDS | 染色体位置 Chromosome location | 蛋白质 Protein | |||||
---|---|---|---|---|---|---|---|---|---|
信号肽 Signal peptide (Sec/SPI) | 长度/ aa Length | 分子量/ kD Molecular weight | pI | 不稳定 指数 Instability index | 亲水性 Hydropa- thicity | ||||
MdMLP1 | MD00G1063600 | 468 | Chr00:11768127..11768939(+) | 0.0011 | 155 | 17.62 | 5.32 | 27.52 | -0.576 |
MdMLP2 | MD13G1022700 | 498 | Chr13:1627661..1629214(-) | 0.0021 | 165 | 18.68 | 5.52 | 22.52 | -0.444 |
MdMLP3 | MD13G1022900 | 468 | Chr13:1645481..1646431(-) | 0.0011 | 155 | 17.62 | 5.32 | 27.52 | -0.576 |
MdMLP4 | MD13G1023000 | 468 | Chr13:1657247..1658331(-) | 0.0016 | 155 | 17.45 | 5.32 | 26.36 | -0.497 |
MdMLP5 | MD13G1088200 | 462 | Chr13:6177671..6178671(+) | 0.0006 | 153 | 16.83 | 5.26 | 22.52 | -0.137 |
MdMLP6 | MD16G1024000 | 474 | Chr16:1729158..1730220(-) | 0.0012 | 157 | 17.58 | 8.43 | 37.24 | -0.258 |
MdMLP7 | MD16G1024100 | 462 | Chr16:1731391..1732218(-) | 0.0011 | 153 | 17.27 | 4.88 | 30.74 | -0.381 |
MdMLP8 | MD16G1024300 | 468 | Chr16:1742688..1743368(-) | 0.0007 | 155 | 17.57 | 4.88 | 30.00 | -0.338 |
MdMLP9 | MD16G1024900 | 558 | Chr16:1792284..1793136(-) | 0.0022 | 185 | 21.01 | 6.71 | 28.99 | -0.334 |
MdMLP10 | MD16G1025000 | 420 | Chr16:1802244..1802758(-) | 0.0007 | 139 | 15.78 | 5.33 | 27.31 | -0.394 |
MdMLP11 | MD16G1025800 | 453 | Chr16:1839602..1840796(-) | 0.0017 | 150 | 17.05 | 5.47 | 11.39 | -0.386 |
MdMLP12 | MD16G1026200 | 387 | Chr16:1862558..1863354(-) | 0.0022 | 128 | 14.68 | 6.14 | 20.19 | -0.303 |
MdMLP13 | MD16G1088600 | 462 | Chr16:6094690..6095895(+) | 0.0006 | 153 | 16.92 | 4.97 | 23.39 | -0.145 |
表2 苹果中鉴定出的MdMLP家族基因及其基本特性
Table 2 The MdMLP gene family in Malus × domestica and their basic characteristics
基因名称 Gene name | 基因组登录号 Gene accession No.(GDR) | 编码 区/bp CDS | 染色体位置 Chromosome location | 蛋白质 Protein | |||||
---|---|---|---|---|---|---|---|---|---|
信号肽 Signal peptide (Sec/SPI) | 长度/ aa Length | 分子量/ kD Molecular weight | pI | 不稳定 指数 Instability index | 亲水性 Hydropa- thicity | ||||
MdMLP1 | MD00G1063600 | 468 | Chr00:11768127..11768939(+) | 0.0011 | 155 | 17.62 | 5.32 | 27.52 | -0.576 |
MdMLP2 | MD13G1022700 | 498 | Chr13:1627661..1629214(-) | 0.0021 | 165 | 18.68 | 5.52 | 22.52 | -0.444 |
MdMLP3 | MD13G1022900 | 468 | Chr13:1645481..1646431(-) | 0.0011 | 155 | 17.62 | 5.32 | 27.52 | -0.576 |
MdMLP4 | MD13G1023000 | 468 | Chr13:1657247..1658331(-) | 0.0016 | 155 | 17.45 | 5.32 | 26.36 | -0.497 |
MdMLP5 | MD13G1088200 | 462 | Chr13:6177671..6178671(+) | 0.0006 | 153 | 16.83 | 5.26 | 22.52 | -0.137 |
MdMLP6 | MD16G1024000 | 474 | Chr16:1729158..1730220(-) | 0.0012 | 157 | 17.58 | 8.43 | 37.24 | -0.258 |
MdMLP7 | MD16G1024100 | 462 | Chr16:1731391..1732218(-) | 0.0011 | 153 | 17.27 | 4.88 | 30.74 | -0.381 |
MdMLP8 | MD16G1024300 | 468 | Chr16:1742688..1743368(-) | 0.0007 | 155 | 17.57 | 4.88 | 30.00 | -0.338 |
MdMLP9 | MD16G1024900 | 558 | Chr16:1792284..1793136(-) | 0.0022 | 185 | 21.01 | 6.71 | 28.99 | -0.334 |
MdMLP10 | MD16G1025000 | 420 | Chr16:1802244..1802758(-) | 0.0007 | 139 | 15.78 | 5.33 | 27.31 | -0.394 |
MdMLP11 | MD16G1025800 | 453 | Chr16:1839602..1840796(-) | 0.0017 | 150 | 17.05 | 5.47 | 11.39 | -0.386 |
MdMLP12 | MD16G1026200 | 387 | Chr16:1862558..1863354(-) | 0.0022 | 128 | 14.68 | 6.14 | 20.19 | -0.303 |
MdMLP13 | MD16G1088600 | 462 | Chr16:6094690..6095895(+) | 0.0006 | 153 | 16.92 | 4.97 | 23.39 | -0.145 |
图1 不同物种MLP蛋白序列比对 Md:苹果;At:拟南芥;Pg:人参;Op:罂粟。
Fig. 1 Multiple sequence alignment of MLP protein from different species Md:Malus × domestica;At:Arabidopsis thaliana;Pg:Panax ginseng;Op:Papaver somniferum.
图3 不同物种MLP家族蛋白序列系统进化树(A)、基因结构(B)和蛋白质保守结构域motifs(C) Md:苹果;At:拟南芥;Fv:野草莓;Vv:葡萄;RcH:蔷薇。
Fig. 3 Phylogenetic relationships,gene structure,architecture of conserved protein motifs in MLP genes from 5 species Md:Malus × domestica;At:Arabidopsis thaliana;Fv:Fragaria vesca;Vv:Vitis vinifera;RcH:Rosa.
图4 苹果与蔷薇、葡萄、拟南芥和草莓MLP家族基因的共线性分析 背景中灰色线条表示基因组中的共线区域,红色线条突出显示共线的MLP基因对。
Fig. 4 Synteny analysis of MLP genes between apple and rose,grape,Arabidopsis and strawberry Gray lines in the background indicate the collinear blocks within genomes,while the red lines highlight the syntenic MLP gene pairs.
图5 MdMLP互作蛋白功能预测网络图 利用String蛋白数据库基于拟南芥同源蛋白分析MdMLP1 ~ MdMLP13蛋白功能关系网络图,包括AtMLP28(AT1G70830)、AtMLP31(AT1G70840)、AtMLP34(AT1G70850)、AtMLP43(AT1G70890)、AtMLP328(AT2G01520)和AtMLP423(AT1G24020)。
Fig. 5 Prediction of functional network of interacting proteins of MdMLP Based on Arabidopsis thaliana homologous proteins,String protein database was used to analyze the functional relationship network diagram of MdMLP1-MdMLP13 proteins,including AtMLP28(AT1G70830),AtMLP31(AT1G70840),AtMLP34(AT1G70850),AtMLP43(AT1G70890),AtMLP328(AT2G01520)and AtMLP423(AT1G24020).
图6 MdMLP在‘新疆1号’苹果不同器官中基因表达情况 将叶中MdMLP的表达量设为1,以MdActin作为内参对照,2-??Ct法处理数据,3个重复。
Fig. 6 Expression levels in different organs of‘Xinjiang 1’of MdMLP in apple The expression of MdMLP in leaves was 1,and the data was calculated based on the 2-??Ct method,and three replicates were set.
图7 MdMLP在非生物胁迫处理‘新疆1号’苹果组培苗中表达的qRT-PCR分析 MdActin作为内参对照,MdMLPs在0 h的表达水平设为1,2-??Ct法处理,设置3个重复,同一基因不同处理时间之间进行显著性差异分析,置信区间为5%(P < 0.05)。
Fig. 7 Expression of MdMLP genes in apple cultured under different abiotic stress The expression level of MdMLPs at 0 hour was set as 1,and the data was calculated based on the 2-??Ct method,and three replicates were set. The difference between the same gene and different treatment time was analyzed with a confidence interval of 5%(P < 0.05).
[1] |
Benedetto R, Fiorenza Z, Silvana P, Angela R, Serena V, Pietro T, Giovannoni J, Angelo R. 2002. Characterization of a major latex protein(MLP)gene down-regulated by ethylene during peach fruitlet abscission. Plant Science, 163:265-272.
doi: 10.1016/S0168-9452(02)00094-8 URL |
[2] | Bong K P, Jin H C, Jong S J, Seong H B, Tae R H. 2007. Comparative proteomic analysis of blue light signaling components in the Arabidopsis Cryptochrome 1 mutant. Molecules and Cells, 23:154-160. |
[3] | Cai J J, Huang H J, Xu X Z, Zhu G H. 2020. An Arabidopsis WD40 repeat-containing protein XIW1 promotes salt inhibition of seed germination. Plant Signaling & Behavior,Doi: 10.1080/15592324.2020.1712542. |
[4] |
Chen J Y, Dai X F. 2010. Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta, 231:861-873.
doi: 10.1007/s00425-009-1092-2 URL |
[5] |
Choi S H, Hong M K, Kim H J, Ryoo N, Rhim H, Nah S Y, Kang L W. 2015. Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism. Biological Crystallography, 71:1039-1050.
doi: 10.1107/S139900471500259X URL |
[6] | Craig L N, Wolfgang G W, Lawrence E P. 1990. Isolation and analysis of the major latex protein genes of opium poppy. Plant Molecular Biology Update Plant Molccular Biology, 15:951-953. |
[7] | D’Avino R, Bernardi M L, Wallner M, Palazzo P, Camardella L, Tuppo L, Alessandri C, Breiteneder H, Ferreira F, Ciardiello M A, Mari A. 2011. Kiwifruit Act d 11 is the first member of the ripening-related protein family identified as an allergen. Allergy,Doi: 10.1111/j.1398-9995.2011.02555.x. |
[8] |
Griffing L P, Nessler C L. 1989. Immunolocalization of the major latex proteins in developing laticifers of opium poppy(Papaver somniferum L.). Plant Physiol, 134:357-363.
doi: 10.1016/S0176-1617(89)80256-1 URL |
[9] |
Guo D, Wong W S, Xu W Z, Sun F F, Qing D J, Li N. 2011. cis-Cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. Plant Mol Biol, 75:481-495.
doi: 10.1007/s11103-011-9746-4 URL |
[10] |
Inui H, Sawada M, Goto J, Yamazaki K, Kodama N, Tsuruta H, Eun H. 2013. A major latex-like protein is a key factor in crop contamination by persistent organic pollutants. Plant Physiology, 161:2128-2135.
doi: 10.1104/pp.112.213645 URL |
[11] |
Javier P, Romero M K, Guy H, Marie L S, Beatrice M, Rodolphe S. 1995. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper(Capsicum annuum):identification of a new family of transposable elements. Plant Molecular Biology, 28:1011-1025.
doi: 10.1007/BF00032663 URL |
[12] | Khalid M H B, Raza M A, Yu H Q, Khan I, Sun F A, Feng L Y, Qu J T, Fu F L, Li W C. 2019. Expression,subcellular localization,and interactions of CPK family genes in maize. International Journal of Molecular Sciences,Doi: 10.3390/ijms20246173. |
[13] |
Kim H S, Yu Y, Snesrud E C, Moy L P, Linford L D, Haas B J, Nierman W C, Quackenbush J. 2010. Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant J, 41:212-220.
doi: 10.1111/tpj.2005.41.issue-2 URL |
[14] |
Kimbrough J M, Salinasmondragon R, Boss W F, Brown C S, Sederoff H W. 2004. The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex1. Plant Physiol, 136:2790-2805.
pmid: 15347791 |
[15] |
Konstantinidis K T, Tiedje J M. 2004. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA, 101:3160-3165.
doi: 10.1073/pnas.0308653100 URL |
[16] | Kumar S, Pandey A K. 2013. Chemistry and biological activities of flavonoids:an overview. The Scientific World Journal, 16:27-50. |
[17] | Li Rong. 2018. Investigation on Major Latex Protein 423(MdMLP423)from apple in response to abiotic stress[M. D. Dissertation]. Tai’an:Shandong Agricultural University. (in Chinese) |
李荣. 2018. 苹果乳胶蛋白MdMLP423响应非生物胁迫的研究[硕士论文]. 泰安:山东农业大学. | |
[18] |
Litholdo C G, Parker B L, Eamens A L, Larsen M R, Cordwell S J, Waterhouse P M. 2016. Proteomic identification of putative microRNA394 target genes in Arabidopsis thaliana Identifies Major Latex Protein family members critical for normal development. Mol Cell Proteomics, 15:2033-2047.
doi: 10.1074/mcp.M115.053124 URL |
[19] | Lynch M, Conery J S. 2003. The origins of genome complexity. Sci, 302:1401-1404. |
[20] | Lytle B L, Song J, Cruz N B D L, Peterson F C, Volkman B F. 2010. Structures of two Arabidopsis thaliana Major Latex Proteins represent novel Helix-Grip folds. Proteins Structure Function & Bioinformatics, 76:237-243. |
[21] | Miao Lili, Liu Xiulin, Zhang Hongji, Mao Xinguo, Jing Ruilian. 2019. Research progress on SnRK2,a multi-functional plant regulator. Journal of Triticeae crop, 39(7):787-793.(in Chinese) |
苗丽丽, 刘秀林, 张宏纪, 毛新国, 景蕊莲. 2019. 植物多功能调控因子SnRK2研究进展. 麦类作物学报, 39(7):787-793. | |
[22] |
Mirza O, Henriksen A, Ipsen H, Larsen J N, Wissenbach M, Spangfort M D, Gajhede M. 2000. Dominant epitopes and allergic cross-reactivity:complex formation between a fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. The Journal of Immunology, 165:331-338.
doi: 10.4049/jimmunol.165.1.331 URL |
[23] |
Nam Y W, Tichit L, Leperlier M, Cuerq B, Marty I, Lelièvre J M. 1999. Isolation and characterization of mRNAs differentially expressed during ripening of wild strawberry(Fragaria vesca L.)fruits. Plant Mol Biol, 39:629.
pmid: 10092188 |
[24] |
Nessler C L, Allen R D, Galewsky S. 1985. Identification and characterization of Latex-specific proteins in opium poppy. Plant Physiol, 79:499-504.
pmid: 16664439 |
[25] |
Niu D K, Jiang L. 2013. Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun, 430:1340-1343.
doi: 10.1016/j.bbrc.2012.12.074 URL |
[26] |
Osmark P, Boyle B, Brisson N. 1998. Sequential and structural homology between intracellular pathogenesis-related proteins and a group of latex proteins. Plant Mol Biol, 38:1243.
pmid: 9869429 |
[27] |
Pasternak O, Bujacz G D, Fujimoto Y, Hashimoto Y, Jelen F, Otlewski J, Sikorski M M, Jaskolski M. 2006. Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin. The Plant Cell, 18:2622-2634.
doi: 10.1105/tpc.105.037119 URL |
[28] | Seyyed K K, Sahar F, Hamid N Z. 2020. Identification and in silico evaluation of bHLH genes in the Sesamum indicum genome:growth regulation and stress dealing specially through the metal ions homeostasis and flavonoid biosynthesis. Gene Reports,Doi: 10.1016/j.genrep.2020.100639. |
[29] |
Spangfort M D, Mirza O, Ipsen H, Neerven R J, Gajhede M, Larsen J N. 2003. Dominating Ig E-binding epitope of Bet_v_1,the major allergen of birch pollen,characterized by X-ray crystallography and site-directed mutagenesis. The Journal of Immunology, 171:3084-3090.
doi: 10.4049/jimmunol.171.6.3084 URL |
[30] | Takuro S K Y, Hitoshi M, Kiyotoshi T, Yamaki S. 1999. Cloning cDNAs for genes preferentially expressed during fruit growth in cucumber. Jamer Sochort Sci, 124:136-139. |
[31] |
Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R, Wu Y, Chan Z. 2015. Major latex protein-like protein 43(MLP43)functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany, 67:421-434.
doi: 10.1093/jxb/erv477 URL |
[32] | Wang Wenjie, Wu Qiong, Wu Fangyun. 2016. Research progress on the activity of phenylalanine ammonia-lyase induced by mechanical injury in plants. Modern Agricultural Science and Technology,(1):157-160. (in Chinese) |
王文杰, 吴琼, 吴方云. 2016. 机械损伤诱导植物苯丙氨酸解氨酶活性研究进展. 现代农业科技,(1):157-158,160. | |
[33] | Xu P, Zhang X Y, Su H, Liu X F, Wang Y F, Hong G J. 2020. Genome-wide analysis of PYL-PP2C-SnRK2s family in Camellia sinensis. Bioengineered,Doi: 10.1080/21655979.2019.1710932. |
[34] |
Yang C L, Liang S, Wang H Y, Han L B, Wang F X, Cheng H Q, Wu X M, Qu Z L, Wu J H, Xia G X. 2015. Cotton Major Latex Protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Molecular Plant, 8:399-411.
doi: 10.1016/j.molp.2014.11.023 URL |
[35] | Yuan G P, He S S, Bian S X, Han X L, Liu K, Cong P H, Zhang C X . 2020. Genome-wide identification and expression analysis of major latex protein(MLP)family genes in the apple(Malus domestica Borkh.)genome. Gene,Doi: 10.1016/j.gene.2019.144275. |
[36] | Zuo Ran, Xu Meiling, Wen Zewen, Zhang Donguan. 2012. Study on the functions of plastid-specific ribosomal protein 4 gene(Psrp-4)of Arabidopsis in photosyntheticsis. Genomics and Applied Biology, 31(3):257-262. (in Chinese) |
左然, 徐美玲, 温泽文, 张东远. 2012. 拟南芥Psrp-4基因参与光合作用机制的研究. 基因组学与应用生物学, 31(3):257-262. | |
[37] | Zhang N B, Li R M, Shen W, Jiao S Z, Zhang J X, Xu W R. 2018. Genome-wide evolutionary characterization and expression analyses of major latex protein(MLP)family genes in Vitis vinifera. Molecular Genetics & Genomics, 293:1-15. |
[38] | Zhong R L, Wang Yu X, Gai R N, Xi D D, Mao C J, Ming F . 2020. Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses. Plant Science,Doi: 10.1016/j.plantsci.2019.110373. |
[1] | 于婷婷, 李 欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409. |
[2] | 韩晓蕾, 张彩霞, 刘 锴, 杨 安, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘中苹优蕾’[J]. 园艺学报, 2022, 49(S2): 1-2. |
[3] | 韩晓蕾, 张彩霞, 刘 锴, 严家帝, 李武兴, 康立群, 丛佩华. 中熟苹果新品种‘苹优2号’[J]. 园艺学报, 2022, 49(S1): 1-2. |
[4] | 王 强, 丛佩华, 刘肖烽. 晚熟苹果新品种‘华优甜娃’[J]. 园艺学报, 2022, 49(S1): 3-4. |
[5] | 王 强, 丛佩华, 刘肖烽. 中熟苹果新品种‘华优宝蜜’[J]. 园艺学报, 2022, 49(S1): 5-6. |
[6] | 杨 玲, 丛佩华, 王 强, 李武兴, 康立群. 中熟鲜食苹果新品种‘华丰’[J]. 园艺学报, 2022, 49(S1): 7-8. |
[7] | 丁志杰, 包金波, 柔鲜古丽, 朱甜甜, 李雪丽, 苗浩宇, 田新民. 新疆野苹果与‘元帅’‘金冠’的叶绿体基因组比对研究[J]. 园艺学报, 2022, 49(9): 1977-1990. |
[8] | 高彦龙, 吴玉霞, 张仲兴, 王双成, 张瑞, 张德, 王延秀. 苹果ELO家族基因鉴定及其在低温胁迫下的表达分析[J]. 园艺学报, 2022, 49(8): 1621-1636. |
[9] | 郑晓东, 袭祥利, 李玉琪, 孙志娟, 马长青, 韩明三, 李少旋, 田义轲, 王彩虹. 油菜素内酯对盐碱胁迫下平邑甜茶幼苗生长的影响及调控机理研究[J]. 园艺学报, 2022, 49(7): 1401-1414. |
[10] | 夏炎, 黄松, 武雪莉, 刘一琪, 王苗苗, 宋春晖, 白团辉, 宋尚伟, 庞宏光, 焦健, 郑先波. 基于宏病毒组测序技术的苹果病毒病鉴定与分析[J]. 园艺学报, 2022, 49(7): 1415-1428. |
[11] | 刘照霞, 张鑫, 王璐, 马玉婷, 陈倩, 朱占玲, 葛顺峰, 姜远茂. 肥料穴施位点对苹果细根生长、15N吸收利用及产量品质的影响[J]. 园艺学报, 2022, 49(7): 1545-1556. |
[12] | 马维峰, 李艳梅, 马宗桓, 陈佰鸿, 毛娟. 苹果POD家族基因的鉴定与MdPOD15的功能分析[J]. 园艺学报, 2022, 49(6): 1181-1199. |
[13] | 冯琛, 黄学旺, 李兴亮, 周佳, 李天红. 不同苹果矮化砧穗组合的抗旱性比较研究[J]. 园艺学报, 2022, 49(5): 945-957. |
[14] | 肖学宸, 刘梦雨, 蒋梦琦, 陈燕, 薛晓东, 周承哲, 吴兴健, 吴君楠, 郭寅生, 叶开温, 赖钟雄, 林玉玲. 龙眼褪黑素合成途径SNAT、ASMT和COMT家族基因鉴定及表达分析[J]. 园艺学报, 2022, 49(5): 1031-1046. |
[15] | 潘鑫峰, 叶方婷, 毛志君, 李兆伟, 范凯. 睡莲WRKY家族的全基因组鉴定和分子进化分析[J]. 园艺学报, 2022, 49(5): 1121-1135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司