Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (1): 39-52.doi: 10.16420/j.issn.0513-353x.2023-0125
• Reviews • Previous Articles Next Articles
ZHAI Tingkai, MA Xiangwei, CHEN Yan, ZHANG Xueying, LI Zhuoyun, XÜ Luzhen, FU Zhuoran, LAI Zhongxiong, LIN Yuling*()
Received:
2023-03-01
Revised:
2023-07-24
Online:
2024-01-25
Published:
2024-01-16
Contact:
(E-mail:ZHAI Tingkai, MA Xiangwei, CHEN Yan, ZHANG Xueying, LI Zhuoyun, XÜ Luzhen, FU Zhuoran, LAI Zhongxiong, LIN Yuling. Advances in Chromatin Immunoprecipitation Sequencing and Its Application in Horticultural Plants[J]. Acta Horticulturae Sinica, 2024, 51(1): 39-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2023-0125
发展阶段 Stage | 技术名称 Technical name | 细胞数 Number of cell | 新/优化技术 New/optimization technology | 优点 Advantage | 缺点 Disadvantage | 细胞/组织水平Cell/ tissue level | 参考文献 Reference |
---|---|---|---|---|---|---|---|
初 期 Initial (1984— 2010) | ChIP | 107 | 新技术 New technology | 有利于富集与蛋白相结合的DNA片段It’s good for enriching DNA fragments that bind to proteins | 交联效果差;样本需求量大Formaldehyde crosslinking effect is poor;High demand for samples | 组织 Tissue | Gilmour & Lis, |
ChIP-chip | 107 | 新技术 New technology | 基因组微阵列技术对DNA定位Genomic microarray technique for DNA localization | 试验重复性低 Low test repeatability | 组织 Tissue | Bernstein et al., | |
ChIP-seq | 107 | 新技术 New technology | 转录因子结合位点与组蛋白修饰区域定位Localization of transcription factor binding sites and histone modification regions | 样本需求量大;试验重复性低;易出现假阳性 Large sample demand; Low test repeatability; Prone to false positives | 组织 Tissue | Johnson et al., | |
探索发展 Explorative (2011— 2018) | ChIP-exo | 106 | 优化:酶切 Optimization:MNase cutting | 降低测序假阳性;提高单bp准确性Reduce false positive sequencing results; Improve the accuracy of single bp | 样本需求量大;对技术要求高Large sample demand; High technical requirements | 组织 Tissue | Rhee & Pugh, |
Nano- ChIP-seq | 104 | 优化:文库构建 Optimization:library construction | 抑制DNA中GC含量;降低样本需求量Inhibition of GC content in DNA; Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Adli & Bernstein, | |
scChIP-seq | 单细胞 Single cell | 新技术 New technology | 高度集成化;实现单细胞测序Highly integrated; Single cell sequencing was realized | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Rotem et al., | |
ChIP-nexus | 106 | 优化:文库构建 Optimization: library construction | 降低文库构建的DNA需求量Reduce the DNA requirement for library construction | 样本需求量大 Large sample demand | 组织 Tissue | He et al., | |
ULI- NChIP | 103 | 优化:细胞分离 Optimization:cell separation | 降低样本需求量;无需甲醛交联Lower the quantity of samples;No formaldehyde crosslinking required | ChIP时损失DNA影响测序准确性DNA loss during ChIP affects the accuracy of subsequent sequencing results | 组织 Tissue | Brind’ Amour et al., | |
CUT&RUN | 102 ~ 103 | 新技术 New technology | 富集和染色质片段化同时进行;省去ChIP;降低背景噪音Enrichment occurs simultaneously with chromatin fragmentation; Omit ChIP; Reduce background noise | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Skene & Henikoff, | |
快速发展 Rapid (2019—) | ULI-CUT& RUN | 10 ~ 102 | 优化: CUT&RUN Optimization:CUT&RUN | 采用流式细胞分选实现极少数细胞测序Very few cells were sequenced by flow cytometry | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Hainer et al., |
CUT&Tag | 102 ~ 103 | 新技术 New technology | 靶向切割产物可以直接进行文库扩增 Targeted cleavage products can be directly amplified into the library | 易出现假阳性 Prone to false positives | 组织 Tissue | Kaya-Okur et al., | |
TAF-ChIP | 102 | 优化:细胞分离 Optimization:cell separation | 无需DNA纯化与文库构建;降低对样本需求量No DNA purification and library construction;Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Akhtar et al., | |
MOW ChIP-seq | 102 ~ 104 | 优化:免疫共沉Optimization:ChIP | 降低对试剂消耗;便于自动化 Reduce the consumption of reagents; Facilitate automation | 对技术要求高High technical requirements | 组织 Tissue | Zhu et al., | |
快速发展 Rapid (2019—) | CoBATCH | 104 | 新技术 New technology | 实现不同样本高通量单细胞测序Achieve high throughput single cell sequencing of different samples | 无法直接在单细胞水平进行分析Samples cannot be analyzed directly at the single-cell level | 组织 Tissue | Wang et al., |
scCUT&Tag | 单细胞 Single cell | 优化:CUT&Tag Optimization: CUT&Tag | 单细胞水平测序;高信噪比 Single-cell level sequencing; High signal-to-noise ratio | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Bartosovic et al., | |
Greenscreen | 107 | 新技术 New technology | 提高样本间可重复性;消除假阳性Improve repeatability between samples; Eliminate false positives | 对数据处理技术要求高 High requirements on data processing technology | 组织 Tissue | Klasfeld et al., |
Table 1 Development of ChIP-seq technology
发展阶段 Stage | 技术名称 Technical name | 细胞数 Number of cell | 新/优化技术 New/optimization technology | 优点 Advantage | 缺点 Disadvantage | 细胞/组织水平Cell/ tissue level | 参考文献 Reference |
---|---|---|---|---|---|---|---|
初 期 Initial (1984— 2010) | ChIP | 107 | 新技术 New technology | 有利于富集与蛋白相结合的DNA片段It’s good for enriching DNA fragments that bind to proteins | 交联效果差;样本需求量大Formaldehyde crosslinking effect is poor;High demand for samples | 组织 Tissue | Gilmour & Lis, |
ChIP-chip | 107 | 新技术 New technology | 基因组微阵列技术对DNA定位Genomic microarray technique for DNA localization | 试验重复性低 Low test repeatability | 组织 Tissue | Bernstein et al., | |
ChIP-seq | 107 | 新技术 New technology | 转录因子结合位点与组蛋白修饰区域定位Localization of transcription factor binding sites and histone modification regions | 样本需求量大;试验重复性低;易出现假阳性 Large sample demand; Low test repeatability; Prone to false positives | 组织 Tissue | Johnson et al., | |
探索发展 Explorative (2011— 2018) | ChIP-exo | 106 | 优化:酶切 Optimization:MNase cutting | 降低测序假阳性;提高单bp准确性Reduce false positive sequencing results; Improve the accuracy of single bp | 样本需求量大;对技术要求高Large sample demand; High technical requirements | 组织 Tissue | Rhee & Pugh, |
Nano- ChIP-seq | 104 | 优化:文库构建 Optimization:library construction | 抑制DNA中GC含量;降低样本需求量Inhibition of GC content in DNA; Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Adli & Bernstein, | |
scChIP-seq | 单细胞 Single cell | 新技术 New technology | 高度集成化;实现单细胞测序Highly integrated; Single cell sequencing was realized | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Rotem et al., | |
ChIP-nexus | 106 | 优化:文库构建 Optimization: library construction | 降低文库构建的DNA需求量Reduce the DNA requirement for library construction | 样本需求量大 Large sample demand | 组织 Tissue | He et al., | |
ULI- NChIP | 103 | 优化:细胞分离 Optimization:cell separation | 降低样本需求量;无需甲醛交联Lower the quantity of samples;No formaldehyde crosslinking required | ChIP时损失DNA影响测序准确性DNA loss during ChIP affects the accuracy of subsequent sequencing results | 组织 Tissue | Brind’ Amour et al., | |
CUT&RUN | 102 ~ 103 | 新技术 New technology | 富集和染色质片段化同时进行;省去ChIP;降低背景噪音Enrichment occurs simultaneously with chromatin fragmentation; Omit ChIP; Reduce background noise | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Skene & Henikoff, | |
快速发展 Rapid (2019—) | ULI-CUT& RUN | 10 ~ 102 | 优化: CUT&RUN Optimization:CUT&RUN | 采用流式细胞分选实现极少数细胞测序Very few cells were sequenced by flow cytometry | 易发生DNA损失 Prone to DNA loss | 组织 Tissue | Hainer et al., |
CUT&Tag | 102 ~ 103 | 新技术 New technology | 靶向切割产物可以直接进行文库扩增 Targeted cleavage products can be directly amplified into the library | 易出现假阳性 Prone to false positives | 组织 Tissue | Kaya-Okur et al., | |
TAF-ChIP | 102 | 优化:细胞分离 Optimization:cell separation | 无需DNA纯化与文库构建;降低对样本需求量No DNA purification and library construction;Lower the quantity of samples | 易出现假阳性 Prone to false positives | 组织 Tissue | Akhtar et al., | |
MOW ChIP-seq | 102 ~ 104 | 优化:免疫共沉Optimization:ChIP | 降低对试剂消耗;便于自动化 Reduce the consumption of reagents; Facilitate automation | 对技术要求高High technical requirements | 组织 Tissue | Zhu et al., | |
快速发展 Rapid (2019—) | CoBATCH | 104 | 新技术 New technology | 实现不同样本高通量单细胞测序Achieve high throughput single cell sequencing of different samples | 无法直接在单细胞水平进行分析Samples cannot be analyzed directly at the single-cell level | 组织 Tissue | Wang et al., |
scCUT&Tag | 单细胞 Single cell | 优化:CUT&Tag Optimization: CUT&Tag | 单细胞水平测序;高信噪比 Single-cell level sequencing; High signal-to-noise ratio | 成本昂贵;对技术要求高Expensive; High technical requirements | 单细胞 Single cell | Bartosovic et al., | |
Greenscreen | 107 | 新技术 New technology | 提高样本间可重复性;消除假阳性Improve repeatability between samples; Eliminate false positives | 对数据处理技术要求高 High requirements on data processing technology | 组织 Tissue | Klasfeld et al., |
物种 Species | 样品 Sample | 方法 Method | 应用方向 Application direction | 定位基因/定位组蛋白 Localization gene/ histone | 参考文献 Reference |
---|---|---|---|---|---|
龙眼 Dimocarpus longan | 胚性愈伤组织 Embryonic callus | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1 | Ma et al., |
葡萄Vitis vinifera L. | 叶片Leaf | X-ChIP | 转录因子Transcription factor | VlbZIP30 | 涂明星, |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me1、H3K4me3、 H3K27ac | Schwope et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | VaMYB4a | 俞沁含, | |
柑橘Citrus reticulata | 叶片Leaf | X-ChIP | 转录因子Transcription factor | CsbZIP40 | 窦万福, |
叶片Leaf | X-ChIP | 转录因子Transcription factor | CsLOB1 | Zou et al., | |
苹果Malus × domestica | 叶片Leaf | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Xie et al., |
根系Root | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Geng et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | MdDof54 | Chen et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9) | Chen et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | MdERF4 | Hu et al., | |
桃Amygdalus persica | 花蕾Flower bud | X-ChIP | 组蛋白修饰Histone modification | H3K4me3、H3K27me3 | Canton et al., |
杏Prunus | 花蕾Flower bud | X-ChIP | 转录因子Transcription factor | PmTCP4 | Iqbal et al., |
猕猴桃Actinidia | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SHORT VEGETATIVE PHASE (SVP2) | Wu et al., |
香蕉Musa nana | 果实Fruit | X-ChIP | 转录因子Transcription factor | Dehydration-responsive element binding (MaDREB) | Kuang et al., |
梨Pyrus communis | 愈伤组织Callus | X-ChIP | 转录因子Transcription factor | PpDAM2、PpDAM3、 PpDAM4 | 杨锋, |
沙棘 Hippophae rhamnoides | 叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K9ac | 高国日 等, |
草莓Fragaria ananassa | 果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | 黄晓荣, |
果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K9me2、H3K27me3 | 林莹, | |
黄瓜Cucumis sativus | 卷须Tendril | X-ChIP | 转录因子Transcription factor | TCP(TEN) | 许梦楠, |
果实Fruit | X-ChIP | 组蛋白修饰Histone modification | HDAC(SF2) | 张震, | |
油菜Brassica napus | 种子Seed | X-ChIP | 转录因子Transcription factor | SHORT HYPOCOTYL UNDER BLUE1 (SHB1) | Zhang et al., |
叶、根、花芽、角果 Leaf,root,flower bud,horn fruit | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1、H3K27me3 | Zhang et al., | |
叶片Leaf | eChIP | 组蛋白修饰Histone modification | H3K4me1、H3K27me3 | 章清, | |
番茄 | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SlMYC2 | Du et al., |
Solanum lycopersicum | 果实Fruit | X-ChIP | 转录因子Transcription factor | Constans-like4 (SlCOL4) | 吴琼, |
果实Fruit | X-ChIP | 转录因子Transcription factor | SNAC4-9 | 冯炎春, | |
果实Fruit | X-ChIP | 转录因子Transcription factor | BEL1-LIKE HOMEODOMAIN4(SlBL4) | Yan et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | SlGRAS4 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Li et al., | |
花序原基 Inflorescence primordium | X-ChIP | 转录因子 Transcription factor | SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)、 SISTER OF TM3 (STM3) | 王晓甜, | |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Ding et al., | |
莲藕Nelumbo nucifera | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | NnCenH3 | 朱之轩, |
莴苣 Lactuca sativa var. ramosa | 叶片Leaf | X-ChIP | 转录因子Transcription factor | LsSAW1 | 安光辉, |
茄子Solanum melongena | 根系Root | X-ChIP | 转录因子Transcription factor | SmTCP7a | Xiao et al., |
甜菜Beta vulgaris | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K9me2 | Kowar et al., |
白菜Brassica rapa var. glabra | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Poza-Viejo et al., |
桂花Osmanthus fragrans | 花瓣Petal | X-ChIP | 转录因子Transcription factor | COfCCD1、OfCCD4 | Han et al., |
矮牵牛Pharbitis nil | 花冠Corolla | X-ChIP | 转录因子Transcription factor | ODORANT 1 (ODO1) | Boersma et al., |
Table 2 Application of ChIP-seq technique in horticultural plants
物种 Species | 样品 Sample | 方法 Method | 应用方向 Application direction | 定位基因/定位组蛋白 Localization gene/ histone | 参考文献 Reference |
---|---|---|---|---|---|
龙眼 Dimocarpus longan | 胚性愈伤组织 Embryonic callus | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1 | Ma et al., |
葡萄Vitis vinifera L. | 叶片Leaf | X-ChIP | 转录因子Transcription factor | VlbZIP30 | 涂明星, |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me1、H3K4me3、 H3K27ac | Schwope et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | VaMYB4a | 俞沁含, | |
柑橘Citrus reticulata | 叶片Leaf | X-ChIP | 转录因子Transcription factor | CsbZIP40 | 窦万福, |
叶片Leaf | X-ChIP | 转录因子Transcription factor | CsLOB1 | Zou et al., | |
苹果Malus × domestica | 叶片Leaf | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Xie et al., |
根系Root | X-ChIP | 转录因子Transcription factor | MdMYB88、MdMYB124 | Geng et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | MdDof54 | Chen et al., | |
叶片Leaf | X-ChIP | 转录因子Transcription factor | B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9) | Chen et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | MdERF4 | Hu et al., | |
桃Amygdalus persica | 花蕾Flower bud | X-ChIP | 组蛋白修饰Histone modification | H3K4me3、H3K27me3 | Canton et al., |
杏Prunus | 花蕾Flower bud | X-ChIP | 转录因子Transcription factor | PmTCP4 | Iqbal et al., |
猕猴桃Actinidia | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SHORT VEGETATIVE PHASE (SVP2) | Wu et al., |
香蕉Musa nana | 果实Fruit | X-ChIP | 转录因子Transcription factor | Dehydration-responsive element binding (MaDREB) | Kuang et al., |
梨Pyrus communis | 愈伤组织Callus | X-ChIP | 转录因子Transcription factor | PpDAM2、PpDAM3、 PpDAM4 | 杨锋, |
沙棘 Hippophae rhamnoides | 叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K9ac | 高国日 等, |
草莓Fragaria ananassa | 果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | 黄晓荣, |
果实Fruit | N-ChIP | 组蛋白修饰Histone modification | H3K9me2、H3K27me3 | 林莹, | |
黄瓜Cucumis sativus | 卷须Tendril | X-ChIP | 转录因子Transcription factor | TCP(TEN) | 许梦楠, |
果实Fruit | X-ChIP | 组蛋白修饰Histone modification | HDAC(SF2) | 张震, | |
油菜Brassica napus | 种子Seed | X-ChIP | 转录因子Transcription factor | SHORT HYPOCOTYL UNDER BLUE1 (SHB1) | Zhang et al., |
叶、根、花芽、角果 Leaf,root,flower bud,horn fruit | X-ChIP | 组蛋白修饰 Histone modification | H3K4me1、H3K27me3 | Zhang et al., | |
叶片Leaf | eChIP | 组蛋白修饰Histone modification | H3K4me1、H3K27me3 | 章清, | |
番茄 | 叶片Leaf | X-ChIP | 转录因子Transcription factor | SlMYC2 | Du et al., |
Solanum lycopersicum | 果实Fruit | X-ChIP | 转录因子Transcription factor | Constans-like4 (SlCOL4) | 吴琼, |
果实Fruit | X-ChIP | 转录因子Transcription factor | SNAC4-9 | 冯炎春, | |
果实Fruit | X-ChIP | 转录因子Transcription factor | BEL1-LIKE HOMEODOMAIN4(SlBL4) | Yan et al., | |
果实Fruit | X-ChIP | 转录因子Transcription factor | SlGRAS4 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Li et al., | |
花序原基 Inflorescence primordium | X-ChIP | 转录因子 Transcription factor | SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)、 SISTER OF TM3 (STM3) | 王晓甜, | |
叶片Leaf | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Liu et al., | |
果皮Pericarp | X-ChIP | 组蛋白修饰Histone modification | H3K4me3 | Ding et al., | |
莲藕Nelumbo nucifera | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | NnCenH3 | 朱之轩, |
莴苣 Lactuca sativa var. ramosa | 叶片Leaf | X-ChIP | 转录因子Transcription factor | LsSAW1 | 安光辉, |
茄子Solanum melongena | 根系Root | X-ChIP | 转录因子Transcription factor | SmTCP7a | Xiao et al., |
甜菜Beta vulgaris | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K9me2 | Kowar et al., |
白菜Brassica rapa var. glabra | 叶片Leaf | N-ChIP | 组蛋白修饰Histone modification | H3K27me3 | Poza-Viejo et al., |
桂花Osmanthus fragrans | 花瓣Petal | X-ChIP | 转录因子Transcription factor | COfCCD1、OfCCD4 | Han et al., |
矮牵牛Pharbitis nil | 花冠Corolla | X-ChIP | 转录因子Transcription factor | ODORANT 1 (ODO1) | Boersma et al., |
[1] |
doi: 10.1038/nprot.2011.402 pmid: 21959244 |
[2] |
doi: 10.26508/lsa.201900318 URL |
[3] |
|
安光辉. 2022. LsSAW1调控生菜结球及叶背腹性的遗传和分子机理[博士论文]. 武汉: 华中农业大学.
|
|
[4] |
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[5] |
doi: 10.1073/pnas.082249499 pmid: 12060701 |
[6] |
doi: 10.1111/tpj.v109.5 URL |
[7] |
doi: 10.1038/ncomms7033 pmid: 25607992 |
[8] |
doi: 10.1111/nph.18393 pmid: 35860865 |
[9] |
doi: 10.1038/s41438-020-00419-5 |
[10] |
doi: 10.1093/plphys/kiab420 URL |
[11] |
doi: 10.1104/pp.20.00302 URL |
[12] |
doi: 10.1016/j.plaphy.2023.01.006 URL |
[13] |
doi: 10.1111/nph.v233.3 URL |
[14] |
|
窦万福. 2020. 转录因子CsBZIP40增强柑橘对溃疡病抗性的分子机制解析[硕士论文]. 重庆: 西南大学.
|
|
[15] |
doi: 10.1105/tpc.16.00953 URL |
[16] |
|
冯炎春. 2019. 番茄SNAC4/9蛋白的表达特性分析及调控的靶基因研究[硕士论文]. 天津: 天津大学.
|
|
[17] |
|
高国日, 张彤, 陈道国, 何彩云. 2018. 沙棘H3K9ac乙酰化修饰全基因组分析. 西北植物学报, 38 (2):242-248.
|
|
[18] |
doi: 10.1104/pp.18.00502 URL |
[19] |
pmid: 6379641 |
[20] |
doi: S0092-8674(19)30276-4 pmid: 30955888 |
[21] |
|
[22] |
doi: 10.1016/j.ygeno.2021.12.008 URL |
[23] |
doi: 10.1038/nbt.3121 |
[24] |
doi: 10.1016/j.hpj.2022.01.002 URL |
[25] |
|
黄晓荣. 2019. H3K27me3在草莓成熟过程中的调控机理探讨[硕士论文]. 南京: 南京农业大学.
|
|
[26] |
doi: 10.1002/tpg2.v13.3 URL |
[27] |
doi: 10.1126/science.1141319 pmid: 17540862 |
[28] |
doi: 10.1038/nmeth.2766 pmid: 24336359 |
[29] |
doi: 10.1038/s41467-019-09982-5 pmid: 31036827 |
[30] |
doi: 10.1093/plcell/koac282 URL |
[31] |
doi: 10.1186/s12870-016-0805-5 pmid: 27230558 |
[32] |
doi: 10.1111/nph.2017.214.issue-2 URL |
[33] |
doi: 10.1111/nph.v227.4 URL |
[34] |
|
林莹. 2020. HP1和组蛋白甲基修饰酶的共进化及其在草莓中的鉴定和表达模式分析[硕士论文]. 南京: 南京农业大学.
|
|
[35] |
doi: 10.1111/pbi.v18.7 URL |
[36] |
doi: 10.3390/ijms231710049 URL |
[37] |
doi: 10.3389/fpls.2022.1043464 URL |
[38] |
doi: 10.1016/j.jmb.2012.09.022 pmid: 23041298 |
[39] |
doi: 10.1038/s41477-020-00757-1 |
[40] |
doi: 10.1016/S1046-2023(03)00090-2 URL |
[41] |
doi: 10.1111/pce.v45.5 URL |
[42] |
doi: 10.1016/j.cell.2011.11.013 pmid: 22153082 |
[43] |
doi: 10.1038/nature10799 |
[44] |
doi: 10.1186/1471-2229-14-29 |
[45] |
doi: 10.1038/nbt.3383 pmid: 26458175 |
[46] |
doi: 10.1007/978-1-0716-2281-0_9 pmid: 35486242 |
[47] |
doi: 10.1111/tpj.v107.6 URL |
[48] |
doi: 10.7554/eLife.21856 URL |
[49] |
pmid: 2995966 |
[50] |
|
涂明星. 2021. 葡萄转录因子VlbZIP30抗旱功能及其调控机理研究[博士论文]. 杨凌: 西北农林科技大学.
|
|
[51] |
doi: 10.1038/nature07730 |
[52] |
doi: S1097-2765(19)30545-3 pmid: 31471188 |
[53] |
|
王晓甜. 2021. 番茄花序分枝调控基因qMIB1的图位克隆及功能分析[博士论文]. 北京: 中国农业科学院.
|
|
[54] |
|
吴琼. 2019. ABA-乙烯互作调控樱桃番茄果实成熟的效应与机理研究[博士论文]. 杭州: 浙江大学.
|
|
[55] |
doi: 10.1007/s11103-017-0688-3 URL |
[56] |
doi: 10.3390/ijms23126844 URL |
[57] |
doi: 10.1111/nph.14952 pmid: 29266327 |
[58] |
|
许梦楠. 2015. TCP基因调控黄瓜卷须发育机理的初探[硕士论文]. 北京: 中国农业科学院.
|
|
[59] |
doi: 10.1093/jxb/eraa272 URL |
[60] |
|
杨锋. 2021. 基于梨愈伤组织的CRISPR/Cas9基因编辑系统和ChIP-Seq体系的建立与应用[硕士论文]. 杭州: 浙江大学.
|
|
[61] |
|
俞沁含. 2022. 山葡萄VaMYB4a参与低温胁迫应答的机理研究[硕士论文]. 银川: 宁夏大学.
|
|
[62] |
doi: 10.16420/j.issn.0513-353x.2021-1219 URL |
俞沁含, 李俊铎, 崔莹, 王佳慧, 郑巧玲, 徐伟荣. 2023. 山葡萄转录因子VaMYB4a互作蛋白的筛选与鉴定. 园艺学报, 50 (3):508-522.
doi: 10.16420/j.issn.0513-353x.2021-1219 URL |
|
[63] |
doi: 10.1111/tpj.2017.91.issue-1 URL |
[64] |
doi: 10.1016/j.molp.2020.12.020 pmid: 33387675 |
[65] |
|
章清. 2021. 甘蓝型油菜表观遗传图谱和亚基因组不平衡的研究[博士论文]. 武汉: 华中农业大学.
|
|
[66] |
doi: 10.1016/j.hpj.2022.01.002 URL |
[67] |
|
张震. 2019. 黄瓜果实长度调控基因SF2的克隆及分子机制的研究[博士论文]. 杨凌: 西北农林科技大学.
|
|
[68] |
doi: 10.1038/s41588-018-0115-y |
[69] |
doi: 10.1038/s41596-019-0223-x pmid: 31666743 |
[70] |
doi: 10.1016/j.hpj.2023.03.002 URL |
[71] |
|
朱之轩. 2015. 莲藕(Nelumbo nucifera Gaertn.)着丝粒蛋白NnCenH3和着丝粒DNA序列研究[博士论文]. 武汉: 武汉大学.
|
|
[72] |
doi: 10.1111/tpj.v106.4 URL |
[1] | LIANG Guoping, ZENG Baozhen, LIU Ming, BIAN Zhiyuan, CHEN Baihong, MAO Juan. Identification of VaSR Gene Family in Vitis amurensis,Verification of Cold Resistance Function of VaSR1 and Screening of Interacting Proteins [J]. Acta Horticulturae Sinica, 2025, 52(1): 37-50. |
[2] | DUAN Minjie, LI Yifei, WANG Chunping, YANG Xiaomiao, HUANG Renzhong, HUANG Qizhong, ZHANG Shicai. Integrated Transcriptomic and Targeted Metabolomic Analysis Reveals Regulation of Carotenoid Accumulation During Pepper Fruit Development [J]. Acta Horticulturae Sinica, 2024, 51(8): 1773-1791. |
[3] | ZHAO Zeyang, ZHOU Yuqing, LIN Deshu, REN Huibo. Advances in Morphogenesis of Petal Conical Epidermal Cells [J]. Acta Horticulturae Sinica, 2024, 51(7): 1695-1706. |
[4] | DENG Shufang, LIU Qian, LIU Ling, CHEN Ou, WANG Wenjun, ZENG Kaifang, DENG Lili. Cloning of Mandarin Fruit CcHY5 and Its Function in Fruit Coloration [J]. Acta Horticulturae Sinica, 2024, 51(5): 939-955. |
[5] | JIANG Bo, LÜ Yuanda, LIU Shumei, YAN Huaxue. Research Advances in the Regulation of Plant Hormones in Citrus Fruit Maturation [J]. Acta Horticulturae Sinica, 2024, 51(12): 2928-2944. |
[6] | TANG Zheng, CHEN Sique, XU Qian, ZHONG Weijie, LIU Qing, ZHU Shiyang. Functional Study of AP2/ERF in Response to Black Rot at Broccoli Seedling Stage [J]. Acta Horticulturae Sinica, 2024, 51(11): 2523-2539. |
[7] | YOU Qian, LIU Xiao, LIU Mengmeng, LIU Dan, BO Chen, ZHU Yanfang, DUAN Yongbo, XUE Jianping, ZHANG Aimin, XUE Tao. Identification and Bioinformatics Analysis of the HSF Family Gene in Pinellia ternata [J]. Acta Horticulturae Sinica, 2024, 51(10): 2371-2385. |
[8] | HE Weizhi, LEI Weiqi, GUO Xiangxin, LI Ruilian, CHEN Guanqun. Identification of the MYB Gene Family and Functional Analysis of Key Genes Related to Blue Flower Coloration in Agapanthus praecox [J]. Acta Horticulturae Sinica, 2023, 50(6): 1255-1268. |
[9] | WANG Tonghuan, WU Yuxin, WU Yiyuan, LI Xinxin, LIU Mengyang, YANG Lianlian, LI Jiapeng, ZHANG Zhongshan, CAO Fang, ZHONG Xueting, WANG Zhanqi. Genome-wide Identification and Expression Analysis of the GRAS Gene Family in Response to Cold Stress in Chrysanthemum nankingense [J]. Acta Horticulturae Sinica, 2023, 50(4): 815-830. |
[10] | ZHENG Jiarui, YANG Xiaoyan, YE Jiabao, LIAO Yongling, XU Feng. Advances in the Functional Studies of MYC2 Transcription Factor in Plants [J]. Acta Horticulturae Sinica, 2023, 50(4): 896-908. |
[11] | LIU Yunuo, CAO Ya, WANG Shuai, DU Meixia, ZHENG Lin, CHEN Shanchun, ZOU Xiuping. Expression Analysis of CsMYB41 and CsMYB63 Genes in Response to Citrus Canker [J]. Acta Horticulturae Sinica, 2023, 50(3): 495-507. |
[12] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, ZHAO Xiaochun. Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[13] | SONG Yanhong, CHEN Yaduo, ZHANG Xiaoyu, SONG Pan, LIU Lifeng, LI Gang, ZHAO Xia, ZHOU Houcheng. The Transcription Factor FvbHLH130 Activates Flowering in Fragaria vesca [J]. Acta Horticulturae Sinica, 2023, 50(2): 295-306. |
[14] | HAN Rui, ZHONG Xionghui, CHEN Denghui, CUI Jian, YUE Xiangqing, XIE Jianming, KANG Jungen. Cloning and Functional Analysis of BobHLH34 Gene in Cabbage that Interacts with XopR from Xanthomonas [J]. Acta Horticulturae Sinica, 2023, 50(2): 319-330. |
[15] | TIAN Mingkang, XU Zhixiang, LIU Xiuqun, SUI Shunzhao, LI Mingyang, LI Zhineng. Identification of the AP2 Subfamily Transcription Factors in Chimonanthus praecox and the Functional Study of CpAP2-L11 [J]. Acta Horticulturae Sinica, 2023, 50(2): 382-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd