Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (4): 896-908.doi: 10.16420/j.issn.0513-353x.2022-0102
• Reviews • Previous Articles Next Articles
ZHENG Jiarui, YANG Xiaoyan, YE Jiabao, LIAO Yongling(), XU Feng(
)
Received:
2022-09-06
Revised:
2022-12-02
Online:
2023-04-25
Published:
2023-04-27
Contact:
*(E-mail:liaoyongling@yangtzeu.edu.cn;xufeng198@126.com)
CLC Number:
ZHENG Jiarui, YANG Xiaoyan, YE Jiabao, LIAO Yongling, XU Feng. Advances in the Functional Studies of MYC2 Transcription Factor in Plants[J]. Acta Horticulturae Sinica, 2023, 50(4): 896-908.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0102
Fig. 2 The network of MYC2 involved in plant hormone synthesis and signal transduction PRP39a/40a:PRE-mRNA-Processing Protein 39a/40a;MED25:Mediator Complex Subunit 25;CUL3BPM: Cullin 3,BPM,BTB/POZ-MATH;UBP12/13:Ubiquttin-specific protease 12/13;EDS5:Enhanced disease susceptibility 5;PAD4:Phytoalexin deficient 4;DELLA:DELLA protein;JAM:JA-ASSOCIATED MYC2-LIKE transcription factor;JAZ:Jasmonate-ZIM domain protein;MTB:MYC2-TARGETED BHLH transcription factor.
Fig. 3 The network of MYC2 involved in biotic and abiotic stress in plants At:Arabidopsis thaliana;Ma:Musa acuminata;Ptr:Poncirus trifoliata;Sl:Solanum lycopersicum;Ca:Capsicum annuum;Os:Oryza sativa. COR:Coronatine;PDF:Plant defense factor;PI:Proteinase inhibitor;NAC:NAC transcription factor;VSP:Vegetative storage protein;ICE:Inducer of CBF(C-repeat-binging factors)expression;BADH:Betaine aldehyde dehydrogenase;CAT:Catalase;NSs:Non-structural protein of tomato spotted wilt orthotospovirus(TSWV);TPS:Terpene synthase;TD:Threonine deaminase;P1BS:Program in biomedical sciences;SPX:SPX protein.
Fig. 4 MYC2 participates in the regulation network of plant secondary metabolism At:Arabidopsis thaliana;Na:Nicotiana attenuata;As:Aquilaria sinensis;Md:Malus × domestica;Tc:Taxus chinensis;Tw:Tripterygium wilfordii;Nt:Nicotiana tabacum;Sm:Salvia miltiorrhiza;Cr:Catharanthus roseus;Fh:Freesia hybrida.ASS:Sesquiterpene synthase;PMT:Putrescine N-methyltransferase;RMT1:Repressor of MYC2 targets 1;BIS:bHLH iridoid synthesis;MIA:Monoterpene indole alkaloid.
Fig. 5 MYC2 participates in the regulation network of plant growth and development Md:Malus × domestica;At:Arabidopsis thaliana;Le:Lycopersicon esculentum.MPK:Mitogen-activated protein kinase;HY5:Hypocotyl 5;USR:U-box senescence related;SAG:Senescence-associated gene;SPCH:SPEECHLESS.
[1] |
Aerts N, Pereira Mendes M, van Wees S C M. 2021. Multiple levels of crosstalk in hormone networks regulating plant defense. The Plant Journal, 105 (2):489-504.
doi: 10.1111/tpj.15124 pmid: 33617121 |
[2] |
Allu A D, Brotman Y, Xue G P, Balazadeh S. 2016. Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection. EMBO Reports, 17 (11):1578-1589.
doi: 10.15252/embr.201642197 URL |
[3] |
An J P, Li H H, Song L Q, Su L, Liu X, You C X, Wang X F, Hao Y J. 2016. The molecular cloning and functional characterization of MdMYC2,a bHLH transcription factor in apple. Plant Physiology and Biochemistry, 108:24-31.
doi: 10.1016/j.plaphy.2016.06.032 URL |
[4] |
An J P, Wang X N, Yao J F, Ren Y R, You C X, Wang X F, Hao X F. 2017. Apple MdMYC2 reduces aluminum stress tolerance by directly regulating MdERF3 gene. Plant Soil, 418:255-266.
doi: 10.1007/s11104-017-3297-7 URL |
[5] | An J P, Wang X F, Zhang X W, You C X, Hao Y J. 2021. Apple BT 2 protein negatively regulates jasmonic acid-triggered leaf senescence by modulating the stability of MYC2 and JAZ2. Plant,Cell & Environment, 44 (1):216-233. |
[6] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L. 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis,poplar,rice,moss,and algae. Plant Physiology, 153 (3):1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[7] |
Chakraborty M, Gangappa S N, Maurya J P, Sethi V, Srivastava A K, Singh A, Dutta S, Ojha M, Gupta N, Sengupta M, Ram H, Chattopadhyay S. 2019. Functional interrelation of MYC2 and HY 5 plays an important role in Arabidopsis seedling development. The Plant Journal, 99 (6):1080-1097.
doi: 10.1111/tpj.14381 pmid: 31059179 |
[8] |
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C. 2012. The Arabidopsis mediator subunit MED 25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. The Plant Cell, 24 (7):2898-2916.
doi: 10.1105/tpc.112.098277 URL |
[9] |
Chen Sijia, Wang Huan, Li Ruirui, Wang Zhuoyi, Luo Jing, Wang Caiyun. 2022. Characterization of CmMYC 2 in formation of green color in ray florets of chrysanthemum. Acta Horticulturae Sinica, 49 (11):2377-2387. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0524 |
陈思嘉, 王焕, 李蕊蕊, 王卓异, 罗靖, 王彩云. 2022. 菊花CmMYC2在舌状花绿色性状形成过程中的功能研究. 园艺学报, 49 (11):2377-2387.
doi: 10.16420/j.issn.0513-353x.2021-0524 |
|
[10] | Chico J M, Lechner E, Fernandez-Barbero G, Canibano E, García-Casado G, Franco-Zorrilla J M, Hammann P, Zamarreño A M, García-Mina J M, Rubio V, Genschik P, Solano R. 2020. CUL3 E3 ubiquitin ligases regulate MYC2,MYC3,and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 117 (11):6205-6215. |
[11] |
Chini A, Boter M, Solano R. 2009. Plant oxylipins:COI1/JAZs/MYC 2 as the core jasmonic acid-signalling module. The FEBS Journal, 276 (17):4682-4692.
doi: 10.1111/j.1742-4658.2009.07194.x URL |
[12] |
Chini A, Fonseca S, Fernández G, Adie B, Chico J M, Lorenzo O, García-Casado G, López-Vidriero I, Lozano F M, Ponce M R, Micol J L, Solano R. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448 (7154):666-671.
doi: 10.1038/nature06006 |
[13] |
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. 2016. Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 33:147-156.
doi: S1369-5266(16)30109-1 pmid: 27490895 |
[14] |
Cui H, Qiu J, Zhou Y, Bhandari D D, Zhao C, Bautor J, Parker J E. 2018. Antagonism of transcription factor MYC 2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Molecular Plant, 11 (8):1053-1066.
doi: 10.1016/j.molp.2018.05.007 URL |
[15] |
de Geyter N, Gholami A, Goormachtig S, Goossens A. 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17 (6):349-359.
doi: 10.1016/j.tplants.2012.03.001 pmid: 22459758 |
[16] |
Dombrecht B, Xue G P, Sprague S J, Kirkegaard J A, Ross J J, Reid J B, Fitt G P, Sewelam N, Schenk P M, Manners J M, Kazan K. 2007. MYC 2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. The Plant Cell, 19 (7):2225-2245.
doi: 10.1105/tpc.106.048017 URL |
[17] |
Du M, Zhao J, Tzeng D T W, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li C B, Li C. 2017. MYC 2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell, 29 (8):1883-1906.
doi: 10.1105/tpc.16.00953 URL |
[18] |
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M, Pauwels L, Witters E, Puga M I, Paz-Ares J, Goossens A, Reymond P, de Jaeger G, Solano R. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC 4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell, 23 (2):701-715.
doi: 10.1105/tpc.110.080788 pmid: 21335373 |
[19] |
Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. 2020. ZmMYC 2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Reports, 39 (2):273-288.
doi: 10.1007/s00299-019-02490-2 |
[20] |
Gao C, Qi S, Liu K, Li D, Jin C, Li Z, Huang G, Hai J, Zhang M, Chen M. 2016. MYC2,MYC3,and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. Plant Physiology and Biochemistry, 108:63-70.
doi: 10.1016/j.plaphy.2016.07.004 URL |
[21] |
Gimenez-Ibanez S, Boter M, Ortigosa A, García-Casado G, Chini A, Lewsey M G, Ecker J R, Ntoukakis V, Solano R. 2017. JAZ 2 controls stomata dynamics during bacterial invasion. The New Phytologist, 213 (3):1378-1392.
doi: 10.1111/nph.2017.213.issue-3 URL |
[22] |
Godee C, Mira M M, Wally O, Hill R D, Stasolla C. 2017. Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. Journal of Experimental Botany, 68 (5):1013-1023.
doi: 10.1093/jxb/erx003 pmid: 28199692 |
[23] |
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. 2016. Jasmonates:signal transduction components and their roles in environmental stress responses. Plant Molecular Biology, 91 (6):673-689.
doi: 10.1007/s11103-016-0480-9 pmid: 27086135 |
[24] |
Guo H, Nolan T M, Song G, Liu S, Xie Z, Chen J, Schnable P S, Walley J W, Yin Y. 2018. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Current Biology, 28 (20):3316-3324.
doi: 10.1016/j.cub.2018.07.078 URL |
[25] |
Gupta N, Prasad V B R, Chattopadhyay S. 2014. LeMYC 2 acts as a negative regulator of blue light mediated photomorphogenic growth,and promotes the growth of adult tomato plants. BMC Plant Biology, 14:38.
doi: 10.1186/1471-2229-14-38 |
[26] |
Han X, Hu Y, Zhang G, Jiang Y, Chen X, Yu D. 2018. Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons. Plant Physiology, 176 (4):2871-2885.
doi: 10.1104/pp.17.00444 URL |
[27] |
Hong G J, Xue X Y, Mao Y B, Wang L J, Chen X Y. 2012. Arabidopsis MYC 2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell, 24 (6):2635-2648.
doi: 10.1105/tpc.112.098749 URL |
[28] |
Hou X, Lee L Y C, Xia K, Yan Y, Yu H. 2010. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Developmental Cell, 19 (6):884-894.
doi: 10.1016/j.devcel.2010.10.024 pmid: 21145503 |
[29] |
Hu S, Yang H, Gao H, Yan J, Xie D. 2021. Control of seed size by jasmonate. Science China Life Sciences, 64 (8):1215-1226.
doi: 10.1007/s11427-020-1899-8 pmid: 33774798 |
[30] |
Hu Y N, Sun H L, Han Z Y, Wang S, Wang T, Li Q Q, Tian J, Wang Y, Zhang X Y, Xu X F, Han Z H, Wu T. 2022. ERF 4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal, 8 (6):689-699.
doi: 10.1016/j.hpj.2022.01.002 URL |
[31] |
Huo Y, Zhang J, Zhang B, Chen L, Zhang X, Zhu C. 2021. MYC 2 transcription factors TwMYC2a and TwMYC2b negatively regulate triptolide biosynthesis in hairy roots. Plants, 10 (4):679.
doi: 10.3390/plants10040679 URL |
[32] |
Huot B, Yao J, Montgomery B L, He S Y. 2014. Growth-defense tradeoffs in plants:a balancing act to optimize fitness. Molecular Plant, 7 (8):1267-1287.
doi: 10.1093/mp/ssu049 URL |
[33] |
Jeong J S, Jung C, Seo J S, Kim J K, Chua N H. 2017. The deubiquitinating enzymes UBP12 and UBP 13 positively regulate MYC2 levels in jasmonate responses. The Plant Cell, 29 (6):1406-1424.
doi: 10.1105/tpc.17.00216 pmid: 28536144 |
[34] |
Kazan K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 20 (4):219-229.
doi: 10.1016/j.tplants.2015.02.001 pmid: 25731753 |
[35] | Kong Y, Wang G, Chen X, Li L, Zhang X, Chen S, He Y, Hong G. 2021. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae. Plant,Cell & Environment, 44 (10):3432-3444. |
[36] |
Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A. 2017. The jasmonate-activated transcription factor MdMYC 2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell, 29 (6):1316-1334.
doi: 10.1105/tpc.17.00349 URL |
[37] |
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q. 2019. MYC 2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. The Plant Cell, 31 (1):106-127.
doi: 10.1105/tpc.18.00405 URL |
[38] |
López-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, Franco-Zorrilla J M. 2021. DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. Plant Communications, 2 (6):100232.
doi: 10.1016/j.xplc.2021.100232 URL |
[39] |
Lorenzo O, Chico J M, Sánchez-Serrano J J, Solano R. 2004. JASMONATE-INSENSITIVE 1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell, 16 (7):1938-1950.
doi: 10.1105/tpc.022319 URL |
[40] |
Min D, Li F, Cui X, Zhou J, Li J, Ai W, Shu P, Zhang X, Li X, Meng D, Guo Y, Li J. 2020. SlMYC 2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Food Chemistry, 310:125901.
doi: 10.1016/j.foodchem.2019.125901 URL |
[41] |
Min D, Li F, Zhang X, Cui X, Shu P, Dong L, Ren C. 2018. SlMYC 2 involved in methyl jasmonate-induced tomato fruit chilling tolerance. Journal of Agricultural and Food Chemistry, 66 (12):3110-3117.
doi: 10.1021/acs.jafc.8b00299 URL |
[42] |
Mine A, Nobori T, Salazar-Rondon M C, Winkelmüller T M, Anver S, Becker D, Tsuda K. 2017. An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Reports, 18 (3):464-476.
doi: 10.15252/embr.201643051 pmid: 28069610 |
[43] |
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu J H. 2021. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. The New Phytologist, 229 (5):2730-2750.
doi: 10.1111/nph.v229.5 URL |
[44] |
Nakata M, Mitsuda N, Herde M, Koo A J K, Moreno J E, Suzuki K, Howe G A, Ohme-Takagi M. 2013. A bHLH-type transcription factor,ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1,acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. The Plant Cell, 25 (5):1641-1656.
doi: 10.1105/tpc.113.111112 URL |
[45] |
Ortigosa A, Fonseca S, Franco-Zorrilla J M, Fernández-Calvo P, Zander M, Lewsey M G, García-Casado G, Fernández-Barbero G, Ecker J R, Solano R. 2020. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal, 102 (1):138-152.
doi: 10.1111/tpj.14618 pmid: 31755159 |
[46] |
Patra B, Pattanaik S, Schluttenhofer C, Yuan L. 2018. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. The New Phytologist, 217 (4):1566-1581.
doi: 10.1111/nph.2018.217.issue-4 URL |
[47] | Peng Yi, Li Yuanhui, Yang Rui, Zhang Ziyi, Li Yanan, Han Yunhao, Zhao Wenchao, Wang Shaohui. 2022. The jasmonic acid synthesis gene LoxD participates in the regulation of tomato drought resistance. Acta Horticulturae Sinica, 49 (2):319-331. (in Chinese) |
彭轶, 李元慧, 杨瑞, 张子怡, 李亚楠, 韩云昊, 赵文超, 王绍辉. 2022. 茉莉酸合成基因LoxD参与调控番茄的抗旱性. 园艺学报, 49 (2):319-331.
doi: 10.16420/j.issn.0513-353x.2021-0025 URL |
|
[48] |
Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla J M, Solano R. 2019. Jasmonate-related MYC transcription factors are functionally conserved in Marchantia polymorpha. The Plant Cell, 31 (10):2491-2509.
doi: 10.1105/tpc.18.00974 pmid: 31391256 |
[49] |
Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell, 23 (5):1795-1814.
doi: 10.1105/tpc.111.083261 URL |
[50] |
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D. 2015. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. The Plant Cell, 27 (6):1634-1649.
doi: 10.1105/tpc.15.00110 URL |
[51] |
Ramirez-Prado J S, Latrasse D, Rodriguez-Granados N Y, Huang Y, Manza-Mianza D, Brik-Chaouche R, Jaouannet M, Citerne S, Bendahmane A, Hirt H, Raynaud C, Benhamed M. 2019. The Polycomb protein LHP 1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity. The Plant Journal, 100 (6):1118-1131.
doi: 10.1111/tpj.14502 pmid: 31437321 |
[52] |
Reinbothe C, Springer A, Samol I, Reinbothe S. 2009. Plant oxylipins:role of jasmonic acid during programmed cell death,defence and leaf senescence. The FEBS Journal, 276 (17):4666-4681.
doi: 10.1111/j.1742-4658.2009.07193.x URL |
[53] |
Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 365 (6452):498-502.
doi: 10.1126/science.aaw1720 pmid: 31371615 |
[54] |
Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K. 2013. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1),JAM2,and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiology, 163 (1):291-304.
doi: 10.1104/pp.113.220129 pmid: 23852442 |
[55] |
Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey M G, Ecker J R, Solano R, Reymond P. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC 4 regulate glucosinolate biosynthesis,insect performance,and feeding behavior. The Plant Cell, 25 (8):3117-3132.
doi: 10.1105/tpc.113.115139 pmid: 23943862 |
[56] |
Sethi V, Raghuram B, Sinha A K, Chattopadhyay S. 2014. A mitogen-activated protein kinase cascade module,MKK3-MPK6 and MYC2,is involved in blue light-mediated seedling development in Arabidopsis. The Plant Cell, 26 (8):3343-3357.
doi: 10.1105/tpc.114.128702 URL |
[57] | Shoji T, Hashimoto T. 2011. Tobacco MYC 2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant & Cell Physiology, 52 (6):1117-1130. |
[58] |
Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X. 2020. CRISPR/Cas9-mediated mutagenesis adverse to tomato plant growth and MeJA-induced fruit resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry, 68 (20):5529-5538.
doi: 10.1021/acs.jafc.9b08069 URL |
[59] |
Song R F, Li T T, Liu W C. 2021. Jasmonic acid impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Frontiers in Plant Science, 12:730228.
doi: 10.3389/fpls.2021.730228 URL |
[60] |
Sui X, Singh S K, Patra B, Schluttenhofer C, Guo W, Pattanaik S, Yuan L. 2018. Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. Journal of Experimental Botany, 69 (18):4267-4281.
doi: 10.1093/jxb/ery229 pmid: 29931167 |
[61] |
Sun H, Wang L, Zhang B, Ma J, Hettenhausen C, Cao G, Sun G, Wu J, Wu J. 2014. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. Journal of Experimental Botany, 65 (15):4305-4315.
doi: 10.1093/jxb/eru203 URL |
[62] |
Toledo-Ortiz G, Huq E, Quail P H. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell, 15 (8):1749-1770.
doi: 10.1105/tpc.013839 URL |
[63] | van Moerkercke A, Duncan O, Zander M, Šimura J, Broda M, Vanden Bossche R, Lewsey M G, Lama S, Singh K B, Ljung K, Ecker J R, Goossens A, Millar A H, van Aken O.. 2019. A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 116 (46):23345-23356. |
[64] |
Wang H, Li S, Li Y a, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang X J, Li C, Zhao J. 2019. MED 25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling. Nature Plants, 5 (6):616-625.
doi: 10.1038/s41477-019-0441-9 |
[65] |
Wang H, Li Y, Pan J, Lou D, Hu Y, Yu D. 2017. The bHLH transcription factors MYC2,MYC3,and MYC 4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis. Molecular Plant, 10 (11):1461-1464.
doi: 10.1016/j.molp.2017.08.007 URL |
[66] | Wang Q, Liu H, Zhang M, Liu S, Hao Y, Zhang Y. 2020. MdMYC2 and MdERF 3 positively co-regulate α-farnesene biosynthesis in apple. Frontiers in Plant Science, 11:512844. |
[67] |
Wasternack C, Hause B. 2013. Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development. Annals of Botany, 111 (6):1021-1058.
doi: 10.1093/aob/mct067 pmid: 23558912 |
[68] |
Wu F, Deng L, Zhai Q, Zhao J, Chen Q, Li C. 2020. Mediator subunit MED 25 couples alternative splicing of genes with fine-tuning of jasmonate signaling. The Plant Cell, 32 (2):429-448.
doi: 10.1105/tpc.19.00583 URL |
[69] | Wu X, Xu S, Zhao P, Zhang X, Yao X, Sun Y, Fang R, Ye J. 2019. The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance. PLoS Pathogens, 15 (6):e1007897. |
[70] |
Xu X, Fang P, Zhang H, Chi C, Song L, Xia X, Shi K, Zhou Y, Zhou J, Yu J. 2019. Strigolactones positively regulate defense against root-knot nematodes in tomato. Journal of Experimental Botany, 70 (4):1325-1337.
doi: 10.1093/jxb/ery439 pmid: 30576511 |
[71] | Xu Y H, Liao Y C, Lv F F, Zhang Z, Sun P W, Gao Z H, Hu K P, Sui C, Jin Y, Wei J H. 2017. Transcription factor AsMYC2 controls the jasmonate-responsive expression of ASS1 regulating sesquiterpene biosynthesis in Aquilaria sinensis(Lour.)Gilg. Plant & Cell Physiology, 58 (11):1924-1933. |
[72] |
Yan C, Xie D. 2015. Jasmonate in plant defence:sentinel or double agent? Plant Biotechnology Journal, 13 (9):1233-1240.
doi: 10.1111/pbi.12417 URL |
[73] |
Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z. 2017. Overexpression of increases the production of phenolic acids in Salvia miltiorrhiza. Frontiers in Plant Science, 8:1804.
doi: 10.3389/fpls.2017.01804 pmid: 29230228 |
[74] |
Yang Y, Yang X H, Guo X, Hu X X, Dong D F, Li G C, Xiong X Y. 2022. Exogenously applied methyl jasmonate induces early defense related genes in response to Phytophthora infestans infection in potato plants. Horticultural Plant Journal, 8 (4):511-526.
doi: 10.1016/j.hpj.2022.04.003 URL |
[75] |
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. 2020. MYB 21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany, 71 (14):4140-4158.
doi: 10.1093/jxb/eraa184 URL |
[76] |
Yi R, Yan J, Xie D. 2020. Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. Science China Life Sciences, 63 (7):943-952.
doi: 10.1007/s11427-019-1584-4 |
[77] |
Yu J, Zhang Y, Di C, Zhang Q, Zhang K, Wang C, You Q, Yan H, Dai S Y, Yuan J S, Xu W, Su Z. 2016. JAZ 7 negatively regulates dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 67 (3):751-762.
doi: 10.1093/jxb/erv487 URL |
[78] |
Zhang C, Lei Y, Lu C, Wang L, Wu J. 2020a. MYC2,MYC3,and MYC 4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. Journal of Integrative Plant Biology, 62 (8):1159-1175.
doi: 10.1111/jipb.v62.8 URL |
[79] |
Zhang M, Jin X, Chen Y, Wei M, Liao W, Zhao S, Fu C, Yu L. 2018a. TcMYC2a,a basic helix-loop-helix transcription factor,transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis. Frontiers in Plant Science, 9:863.
doi: 10.3389/fpls.2018.00863 URL |
[80] |
Zhang Y, Wang Y, Wei H, Li N, Tian W, Chong K, Wang L. 2018b. Circadian evening complex represses jasmonate-induced leaf senescence in Arabidopsis. Molecular Plant, 11 (2):326-337.
doi: 10.1016/j.molp.2017.12.017 URL |
[81] |
Zhang Z, Xu M, Guo Y. 2020b. Ring/U-Box protein AtUSR1 functions in promoting leaf senescence through JA signaling pathway in Arabidopsis. Frontiers in Plant Science, 11:608589.
doi: 10.3389/fpls.2020.608589 URL |
[82] | Zhao M L, Wang J N, Shan W, Fan J G, Kuang J F, Wu K Q, Li X P, Chen W X, He F Y, Chen J Y, Lu W J. 2013. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE 1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant,Cell & Environment, 36 (1):30-51. |
[83] | Zheng X Y, Spivey N W, Zeng W, Liu P P, Fu Z Q, Klessig D F, He S Y, Dong X. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11 (6):587-596. |
[1] | ZHANG Qianwen, YANG Xihang, LI Feng, DENG Yingtian. Advances in miRNA-mediated Growth and Development Regulation in Horticultural Crops [J]. Acta Horticulturae Sinica, 2022, 49(5): 1145-1161. |
[2] | ZHOU Jie, SHI Kai, XIA Xiaojian, ZHOU Yanhong, and YU Jingquan. Vegetable Cultivation Technology in China:A Sixty-year Review and Prospect [J]. Acta Horticulturae Sinica, 2022, 49(10): 2131-2142. |
[3] | WANG Yun, ZHANG Zhenwu, SUN Xun, ZHANG Shaoling. A State-of-the-art Review on the Interaction Between Plant Autophagy and Pathogens [J]. Acta Horticulturae Sinica, 2022, 49(10): 2205-2222. |
[4] | LIANG Zhile, WANG Kuanhong, YANG Jing, ZHU Biao, ZHU Zhujun. The Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassicaceae Family [J]. Acta Horticulturae Sinica, 2022, 49(1): 200-220. |
[5] | YANG Liyuan, WANG Qian, WANG Xuhui, XU Tongda, MA Jun. The Important Biological Function of T111,an Evolutional Conserved Amino Acid in FveTAA1,a Key Enzyme in Strawberry Auxin Biosynthesis [J]. Acta Horticulturae Sinica, 2021, 48(9): 1695-1705. |
[6] | GU Jiamao, WANG Chenyang, WANG Feng, QI Mingfang, LIU Yufeng, LI Tianlai. Roles of CAMTA/SR in Plant Growth and Development and Stress Response [J]. Acta Horticulturae Sinica, 2021, 48(4): 613-631. |
[7] | YUE Lingqi, XING Qiaojuan, ZHANG Xiaolan, LIANG Xue, WANG Qian, QI Hongyan. Research Progress on the Effect of Phytochrome-interacting Factors in Plant Resistance to Abiotic Stress [J]. Acta Horticulturae Sinica, 2021, 48(4): 632-646. |
[8] | WANG Kuanhong, ZHU Biao, ZHU Zhujun. Review of the Role of GSH/GSSG in Plant Abiotic Stress Response [J]. Acta Horticulturae Sinica, 2021, 48(4): 647-660. |
[9] | ZHANG Qingwen, WANG Zhaohao, QI Jingjing, XIE Yu, LEI Tiangang, He Yongrui, CHEN Shanchun, YAO Lixiao. The Advances of Callose Synthase in Plant [J]. Acta Horticulturae Sinica, 2021, 48(4): 661-675. |
[10] | LU Suwen, ZHENG Xuanang, WANG Jiayang, FANG Jinggui. Research Progress on the Metabolism of Flavonoids in Grape [J]. Acta Horticulturae Sinica, 2021, 48(12): 2506-2524. |
[11] | YAO Lixiao,HE Yongrui,and CHEN Shanchun*. Research Advances of Citrus microRNAs in Plant Development and Stress Resistance [J]. ACTA HORTICULTURAE SINICA, 2020, 47(5): 995-1008. |
[12] | XU Zhixuan and REN Zhonghai*. Re-identification of Tomato AP2/ERF Transcription Factor Superfamily and Phenotypic Analysis of the Overexpressing SlERF.D.3 Lines [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 653-664. |
[13] | QIAO Yonggang,CAO Yaping,JIA Mengjun,WANG Yongfei,HE Jiaxin,ZHANG Xinrui,WANG Wenbin,and SONG Yun*. Research on Flower Buds Growth Development and Pollination Habits of Forsythia suspensa Heterostyly [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 699-707. |
[14] | CHEN Yao1,2,ZHOU Hanmei1,HE Bing1,*,and LI Wei1. Preliminary Study on the Regulation Mechanism of GA3 and IAA Combination in Paris polyphylla var. chinensis Seed Germination [J]. ACTA HORTICULTURAE SINICA, 2020, 47(2): 321-333. |
[15] | CUI Jiawei1,LEI Bingfu1,and LIU Houcheng2,*. Effect of Daily Light Integral on Plant Growth and Development [J]. ACTA HORTICULTURAE SINICA, 2019, 46(9): 1670-1680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd